inst_queue_impl.hh revision 10510:7e54a9a9f6b2
1/*
2 * Copyright (c) 2011-2014 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_INST_QUEUE_IMPL_HH__
46#define __CPU_O3_INST_QUEUE_IMPL_HH__
47
48#include <limits>
49#include <vector>
50
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/inst_queue.hh"
53#include "debug/IQ.hh"
54#include "enums/OpClass.hh"
55#include "params/DerivO3CPU.hh"
56#include "sim/core.hh"
57
58// clang complains about std::set being overloaded with Packet::set if
59// we open up the entire namespace std
60using std::list;
61
62template <class Impl>
63InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
64    int fu_idx, InstructionQueue<Impl> *iq_ptr)
65    : Event(Stat_Event_Pri, AutoDelete),
66      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
67{
68}
69
70template <class Impl>
71void
72InstructionQueue<Impl>::FUCompletion::process()
73{
74    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
75    inst = NULL;
76}
77
78
79template <class Impl>
80const char *
81InstructionQueue<Impl>::FUCompletion::description() const
82{
83    return "Functional unit completion";
84}
85
86template <class Impl>
87InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
88                                         DerivO3CPUParams *params)
89    : cpu(cpu_ptr),
90      iewStage(iew_ptr),
91      fuPool(params->fuPool),
92      numEntries(params->numIQEntries),
93      totalWidth(params->issueWidth),
94      commitToIEWDelay(params->commitToIEWDelay)
95{
96    assert(fuPool);
97
98    numThreads = params->numThreads;
99
100    // Set the number of total physical registers
101    numPhysRegs = params->numPhysIntRegs + params->numPhysFloatRegs +
102        params->numPhysCCRegs;
103
104    //Create an entry for each physical register within the
105    //dependency graph.
106    dependGraph.resize(numPhysRegs);
107
108    // Resize the register scoreboard.
109    regScoreboard.resize(numPhysRegs);
110
111    //Initialize Mem Dependence Units
112    for (ThreadID tid = 0; tid < numThreads; tid++) {
113        memDepUnit[tid].init(params, tid);
114        memDepUnit[tid].setIQ(this);
115    }
116
117    resetState();
118
119    std::string policy = params->smtIQPolicy;
120
121    //Convert string to lowercase
122    std::transform(policy.begin(), policy.end(), policy.begin(),
123                   (int(*)(int)) tolower);
124
125    //Figure out resource sharing policy
126    if (policy == "dynamic") {
127        iqPolicy = Dynamic;
128
129        //Set Max Entries to Total ROB Capacity
130        for (ThreadID tid = 0; tid < numThreads; tid++) {
131            maxEntries[tid] = numEntries;
132        }
133
134    } else if (policy == "partitioned") {
135        iqPolicy = Partitioned;
136
137        //@todo:make work if part_amt doesnt divide evenly.
138        int part_amt = numEntries / numThreads;
139
140        //Divide ROB up evenly
141        for (ThreadID tid = 0; tid < numThreads; tid++) {
142            maxEntries[tid] = part_amt;
143        }
144
145        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
146                "%i entries per thread.\n",part_amt);
147    } else if (policy == "threshold") {
148        iqPolicy = Threshold;
149
150        double threshold =  (double)params->smtIQThreshold / 100;
151
152        int thresholdIQ = (int)((double)threshold * numEntries);
153
154        //Divide up by threshold amount
155        for (ThreadID tid = 0; tid < numThreads; tid++) {
156            maxEntries[tid] = thresholdIQ;
157        }
158
159        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
160                "%i entries per thread.\n",thresholdIQ);
161   } else {
162       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
163              "Partitioned, Threshold}");
164   }
165}
166
167template <class Impl>
168InstructionQueue<Impl>::~InstructionQueue()
169{
170    dependGraph.reset();
171#ifdef DEBUG
172    cprintf("Nodes traversed: %i, removed: %i\n",
173            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
174#endif
175}
176
177template <class Impl>
178std::string
179InstructionQueue<Impl>::name() const
180{
181    return cpu->name() + ".iq";
182}
183
184template <class Impl>
185void
186InstructionQueue<Impl>::regStats()
187{
188    using namespace Stats;
189    iqInstsAdded
190        .name(name() + ".iqInstsAdded")
191        .desc("Number of instructions added to the IQ (excludes non-spec)")
192        .prereq(iqInstsAdded);
193
194    iqNonSpecInstsAdded
195        .name(name() + ".iqNonSpecInstsAdded")
196        .desc("Number of non-speculative instructions added to the IQ")
197        .prereq(iqNonSpecInstsAdded);
198
199    iqInstsIssued
200        .name(name() + ".iqInstsIssued")
201        .desc("Number of instructions issued")
202        .prereq(iqInstsIssued);
203
204    iqIntInstsIssued
205        .name(name() + ".iqIntInstsIssued")
206        .desc("Number of integer instructions issued")
207        .prereq(iqIntInstsIssued);
208
209    iqFloatInstsIssued
210        .name(name() + ".iqFloatInstsIssued")
211        .desc("Number of float instructions issued")
212        .prereq(iqFloatInstsIssued);
213
214    iqBranchInstsIssued
215        .name(name() + ".iqBranchInstsIssued")
216        .desc("Number of branch instructions issued")
217        .prereq(iqBranchInstsIssued);
218
219    iqMemInstsIssued
220        .name(name() + ".iqMemInstsIssued")
221        .desc("Number of memory instructions issued")
222        .prereq(iqMemInstsIssued);
223
224    iqMiscInstsIssued
225        .name(name() + ".iqMiscInstsIssued")
226        .desc("Number of miscellaneous instructions issued")
227        .prereq(iqMiscInstsIssued);
228
229    iqSquashedInstsIssued
230        .name(name() + ".iqSquashedInstsIssued")
231        .desc("Number of squashed instructions issued")
232        .prereq(iqSquashedInstsIssued);
233
234    iqSquashedInstsExamined
235        .name(name() + ".iqSquashedInstsExamined")
236        .desc("Number of squashed instructions iterated over during squash;"
237              " mainly for profiling")
238        .prereq(iqSquashedInstsExamined);
239
240    iqSquashedOperandsExamined
241        .name(name() + ".iqSquashedOperandsExamined")
242        .desc("Number of squashed operands that are examined and possibly "
243              "removed from graph")
244        .prereq(iqSquashedOperandsExamined);
245
246    iqSquashedNonSpecRemoved
247        .name(name() + ".iqSquashedNonSpecRemoved")
248        .desc("Number of squashed non-spec instructions that were removed")
249        .prereq(iqSquashedNonSpecRemoved);
250/*
251    queueResDist
252        .init(Num_OpClasses, 0, 99, 2)
253        .name(name() + ".IQ:residence:")
254        .desc("cycles from dispatch to issue")
255        .flags(total | pdf | cdf )
256        ;
257    for (int i = 0; i < Num_OpClasses; ++i) {
258        queueResDist.subname(i, opClassStrings[i]);
259    }
260*/
261    numIssuedDist
262        .init(0,totalWidth,1)
263        .name(name() + ".issued_per_cycle")
264        .desc("Number of insts issued each cycle")
265        .flags(pdf)
266        ;
267/*
268    dist_unissued
269        .init(Num_OpClasses+2)
270        .name(name() + ".unissued_cause")
271        .desc("Reason ready instruction not issued")
272        .flags(pdf | dist)
273        ;
274    for (int i=0; i < (Num_OpClasses + 2); ++i) {
275        dist_unissued.subname(i, unissued_names[i]);
276    }
277*/
278    statIssuedInstType
279        .init(numThreads,Enums::Num_OpClass)
280        .name(name() + ".FU_type")
281        .desc("Type of FU issued")
282        .flags(total | pdf | dist)
283        ;
284    statIssuedInstType.ysubnames(Enums::OpClassStrings);
285
286    //
287    //  How long did instructions for a particular FU type wait prior to issue
288    //
289/*
290    issueDelayDist
291        .init(Num_OpClasses,0,99,2)
292        .name(name() + ".")
293        .desc("cycles from operands ready to issue")
294        .flags(pdf | cdf)
295        ;
296
297    for (int i=0; i<Num_OpClasses; ++i) {
298        std::stringstream subname;
299        subname << opClassStrings[i] << "_delay";
300        issueDelayDist.subname(i, subname.str());
301    }
302*/
303    issueRate
304        .name(name() + ".rate")
305        .desc("Inst issue rate")
306        .flags(total)
307        ;
308    issueRate = iqInstsIssued / cpu->numCycles;
309
310    statFuBusy
311        .init(Num_OpClasses)
312        .name(name() + ".fu_full")
313        .desc("attempts to use FU when none available")
314        .flags(pdf | dist)
315        ;
316    for (int i=0; i < Num_OpClasses; ++i) {
317        statFuBusy.subname(i, Enums::OpClassStrings[i]);
318    }
319
320    fuBusy
321        .init(numThreads)
322        .name(name() + ".fu_busy_cnt")
323        .desc("FU busy when requested")
324        .flags(total)
325        ;
326
327    fuBusyRate
328        .name(name() + ".fu_busy_rate")
329        .desc("FU busy rate (busy events/executed inst)")
330        .flags(total)
331        ;
332    fuBusyRate = fuBusy / iqInstsIssued;
333
334    for (ThreadID tid = 0; tid < numThreads; tid++) {
335        // Tell mem dependence unit to reg stats as well.
336        memDepUnit[tid].regStats();
337    }
338
339    intInstQueueReads
340        .name(name() + ".int_inst_queue_reads")
341        .desc("Number of integer instruction queue reads")
342        .flags(total);
343
344    intInstQueueWrites
345        .name(name() + ".int_inst_queue_writes")
346        .desc("Number of integer instruction queue writes")
347        .flags(total);
348
349    intInstQueueWakeupAccesses
350        .name(name() + ".int_inst_queue_wakeup_accesses")
351        .desc("Number of integer instruction queue wakeup accesses")
352        .flags(total);
353
354    fpInstQueueReads
355        .name(name() + ".fp_inst_queue_reads")
356        .desc("Number of floating instruction queue reads")
357        .flags(total);
358
359    fpInstQueueWrites
360        .name(name() + ".fp_inst_queue_writes")
361        .desc("Number of floating instruction queue writes")
362        .flags(total);
363
364    fpInstQueueWakeupQccesses
365        .name(name() + ".fp_inst_queue_wakeup_accesses")
366        .desc("Number of floating instruction queue wakeup accesses")
367        .flags(total);
368
369    intAluAccesses
370        .name(name() + ".int_alu_accesses")
371        .desc("Number of integer alu accesses")
372        .flags(total);
373
374    fpAluAccesses
375        .name(name() + ".fp_alu_accesses")
376        .desc("Number of floating point alu accesses")
377        .flags(total);
378
379}
380
381template <class Impl>
382void
383InstructionQueue<Impl>::resetState()
384{
385    //Initialize thread IQ counts
386    for (ThreadID tid = 0; tid <numThreads; tid++) {
387        count[tid] = 0;
388        instList[tid].clear();
389    }
390
391    // Initialize the number of free IQ entries.
392    freeEntries = numEntries;
393
394    // Note that in actuality, the registers corresponding to the logical
395    // registers start off as ready.  However this doesn't matter for the
396    // IQ as the instruction should have been correctly told if those
397    // registers are ready in rename.  Thus it can all be initialized as
398    // unready.
399    for (int i = 0; i < numPhysRegs; ++i) {
400        regScoreboard[i] = false;
401    }
402
403    for (ThreadID tid = 0; tid < numThreads; ++tid) {
404        squashedSeqNum[tid] = 0;
405    }
406
407    for (int i = 0; i < Num_OpClasses; ++i) {
408        while (!readyInsts[i].empty())
409            readyInsts[i].pop();
410        queueOnList[i] = false;
411        readyIt[i] = listOrder.end();
412    }
413    nonSpecInsts.clear();
414    listOrder.clear();
415    deferredMemInsts.clear();
416    blockedMemInsts.clear();
417    retryMemInsts.clear();
418}
419
420template <class Impl>
421void
422InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
423{
424    activeThreads = at_ptr;
425}
426
427template <class Impl>
428void
429InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
430{
431      issueToExecuteQueue = i2e_ptr;
432}
433
434template <class Impl>
435void
436InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
437{
438    timeBuffer = tb_ptr;
439
440    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
441}
442
443template <class Impl>
444bool
445InstructionQueue<Impl>::isDrained() const
446{
447    bool drained = dependGraph.empty() && instsToExecute.empty();
448    for (ThreadID tid = 0; tid < numThreads; ++tid)
449        drained = drained && memDepUnit[tid].isDrained();
450
451    return drained;
452}
453
454template <class Impl>
455void
456InstructionQueue<Impl>::drainSanityCheck() const
457{
458    assert(dependGraph.empty());
459    assert(instsToExecute.empty());
460    for (ThreadID tid = 0; tid < numThreads; ++tid)
461        memDepUnit[tid].drainSanityCheck();
462}
463
464template <class Impl>
465void
466InstructionQueue<Impl>::takeOverFrom()
467{
468    resetState();
469}
470
471template <class Impl>
472int
473InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
474{
475    if (iqPolicy == Partitioned) {
476        return numEntries / num_threads;
477    } else {
478        return 0;
479    }
480}
481
482
483template <class Impl>
484void
485InstructionQueue<Impl>::resetEntries()
486{
487    if (iqPolicy != Dynamic || numThreads > 1) {
488        int active_threads = activeThreads->size();
489
490        list<ThreadID>::iterator threads = activeThreads->begin();
491        list<ThreadID>::iterator end = activeThreads->end();
492
493        while (threads != end) {
494            ThreadID tid = *threads++;
495
496            if (iqPolicy == Partitioned) {
497                maxEntries[tid] = numEntries / active_threads;
498            } else if(iqPolicy == Threshold && active_threads == 1) {
499                maxEntries[tid] = numEntries;
500            }
501        }
502    }
503}
504
505template <class Impl>
506unsigned
507InstructionQueue<Impl>::numFreeEntries()
508{
509    return freeEntries;
510}
511
512template <class Impl>
513unsigned
514InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
515{
516    return maxEntries[tid] - count[tid];
517}
518
519// Might want to do something more complex if it knows how many instructions
520// will be issued this cycle.
521template <class Impl>
522bool
523InstructionQueue<Impl>::isFull()
524{
525    if (freeEntries == 0) {
526        return(true);
527    } else {
528        return(false);
529    }
530}
531
532template <class Impl>
533bool
534InstructionQueue<Impl>::isFull(ThreadID tid)
535{
536    if (numFreeEntries(tid) == 0) {
537        return(true);
538    } else {
539        return(false);
540    }
541}
542
543template <class Impl>
544bool
545InstructionQueue<Impl>::hasReadyInsts()
546{
547    if (!listOrder.empty()) {
548        return true;
549    }
550
551    for (int i = 0; i < Num_OpClasses; ++i) {
552        if (!readyInsts[i].empty()) {
553            return true;
554        }
555    }
556
557    return false;
558}
559
560template <class Impl>
561void
562InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
563{
564    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
565    // Make sure the instruction is valid
566    assert(new_inst);
567
568    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
569            new_inst->seqNum, new_inst->pcState());
570
571    assert(freeEntries != 0);
572
573    instList[new_inst->threadNumber].push_back(new_inst);
574
575    --freeEntries;
576
577    new_inst->setInIQ();
578
579    // Look through its source registers (physical regs), and mark any
580    // dependencies.
581    addToDependents(new_inst);
582
583    // Have this instruction set itself as the producer of its destination
584    // register(s).
585    addToProducers(new_inst);
586
587    if (new_inst->isMemRef()) {
588        memDepUnit[new_inst->threadNumber].insert(new_inst);
589    } else {
590        addIfReady(new_inst);
591    }
592
593    ++iqInstsAdded;
594
595    count[new_inst->threadNumber]++;
596
597    assert(freeEntries == (numEntries - countInsts()));
598}
599
600template <class Impl>
601void
602InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
603{
604    // @todo: Clean up this code; can do it by setting inst as unable
605    // to issue, then calling normal insert on the inst.
606    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
607
608    assert(new_inst);
609
610    nonSpecInsts[new_inst->seqNum] = new_inst;
611
612    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
613            "to the IQ.\n",
614            new_inst->seqNum, new_inst->pcState());
615
616    assert(freeEntries != 0);
617
618    instList[new_inst->threadNumber].push_back(new_inst);
619
620    --freeEntries;
621
622    new_inst->setInIQ();
623
624    // Have this instruction set itself as the producer of its destination
625    // register(s).
626    addToProducers(new_inst);
627
628    // If it's a memory instruction, add it to the memory dependency
629    // unit.
630    if (new_inst->isMemRef()) {
631        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
632    }
633
634    ++iqNonSpecInstsAdded;
635
636    count[new_inst->threadNumber]++;
637
638    assert(freeEntries == (numEntries - countInsts()));
639}
640
641template <class Impl>
642void
643InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
644{
645    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
646
647    insertNonSpec(barr_inst);
648}
649
650template <class Impl>
651typename Impl::DynInstPtr
652InstructionQueue<Impl>::getInstToExecute()
653{
654    assert(!instsToExecute.empty());
655    DynInstPtr inst = instsToExecute.front();
656    instsToExecute.pop_front();
657    if (inst->isFloating()){
658        fpInstQueueReads++;
659    } else {
660        intInstQueueReads++;
661    }
662    return inst;
663}
664
665template <class Impl>
666void
667InstructionQueue<Impl>::addToOrderList(OpClass op_class)
668{
669    assert(!readyInsts[op_class].empty());
670
671    ListOrderEntry queue_entry;
672
673    queue_entry.queueType = op_class;
674
675    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
676
677    ListOrderIt list_it = listOrder.begin();
678    ListOrderIt list_end_it = listOrder.end();
679
680    while (list_it != list_end_it) {
681        if ((*list_it).oldestInst > queue_entry.oldestInst) {
682            break;
683        }
684
685        list_it++;
686    }
687
688    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
689    queueOnList[op_class] = true;
690}
691
692template <class Impl>
693void
694InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
695{
696    // Get iterator of next item on the list
697    // Delete the original iterator
698    // Determine if the next item is either the end of the list or younger
699    // than the new instruction.  If so, then add in a new iterator right here.
700    // If not, then move along.
701    ListOrderEntry queue_entry;
702    OpClass op_class = (*list_order_it).queueType;
703    ListOrderIt next_it = list_order_it;
704
705    ++next_it;
706
707    queue_entry.queueType = op_class;
708    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
709
710    while (next_it != listOrder.end() &&
711           (*next_it).oldestInst < queue_entry.oldestInst) {
712        ++next_it;
713    }
714
715    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
716}
717
718template <class Impl>
719void
720InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
721{
722    DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
723    assert(!cpu->switchedOut());
724    // The CPU could have been sleeping until this op completed (*extremely*
725    // long latency op).  Wake it if it was.  This may be overkill.
726    iewStage->wakeCPU();
727
728    if (fu_idx > -1)
729        fuPool->freeUnitNextCycle(fu_idx);
730
731    // @todo: Ensure that these FU Completions happen at the beginning
732    // of a cycle, otherwise they could add too many instructions to
733    // the queue.
734    issueToExecuteQueue->access(-1)->size++;
735    instsToExecute.push_back(inst);
736}
737
738// @todo: Figure out a better way to remove the squashed items from the
739// lists.  Checking the top item of each list to see if it's squashed
740// wastes time and forces jumps.
741template <class Impl>
742void
743InstructionQueue<Impl>::scheduleReadyInsts()
744{
745    DPRINTF(IQ, "Attempting to schedule ready instructions from "
746            "the IQ.\n");
747
748    IssueStruct *i2e_info = issueToExecuteQueue->access(0);
749
750    DynInstPtr mem_inst;
751    while (mem_inst = getDeferredMemInstToExecute()) {
752        addReadyMemInst(mem_inst);
753    }
754
755    // See if any cache blocked instructions are able to be executed
756    while (mem_inst = getBlockedMemInstToExecute()) {
757        addReadyMemInst(mem_inst);
758    }
759
760    // Have iterator to head of the list
761    // While I haven't exceeded bandwidth or reached the end of the list,
762    // Try to get a FU that can do what this op needs.
763    // If successful, change the oldestInst to the new top of the list, put
764    // the queue in the proper place in the list.
765    // Increment the iterator.
766    // This will avoid trying to schedule a certain op class if there are no
767    // FUs that handle it.
768    int total_issued = 0;
769    ListOrderIt order_it = listOrder.begin();
770    ListOrderIt order_end_it = listOrder.end();
771
772    while (total_issued < totalWidth && order_it != order_end_it) {
773        OpClass op_class = (*order_it).queueType;
774
775        assert(!readyInsts[op_class].empty());
776
777        DynInstPtr issuing_inst = readyInsts[op_class].top();
778
779        issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
780
781        assert(issuing_inst->seqNum == (*order_it).oldestInst);
782
783        if (issuing_inst->isSquashed()) {
784            readyInsts[op_class].pop();
785
786            if (!readyInsts[op_class].empty()) {
787                moveToYoungerInst(order_it);
788            } else {
789                readyIt[op_class] = listOrder.end();
790                queueOnList[op_class] = false;
791            }
792
793            listOrder.erase(order_it++);
794
795            ++iqSquashedInstsIssued;
796
797            continue;
798        }
799
800        int idx = -2;
801        Cycles op_latency = Cycles(1);
802        ThreadID tid = issuing_inst->threadNumber;
803
804        if (op_class != No_OpClass) {
805            idx = fuPool->getUnit(op_class);
806            issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
807            if (idx > -1) {
808                op_latency = fuPool->getOpLatency(op_class);
809            }
810        }
811
812        // If we have an instruction that doesn't require a FU, or a
813        // valid FU, then schedule for execution.
814        if (idx == -2 || idx != -1) {
815            if (op_latency == Cycles(1)) {
816                i2e_info->size++;
817                instsToExecute.push_back(issuing_inst);
818
819                // Add the FU onto the list of FU's to be freed next
820                // cycle if we used one.
821                if (idx >= 0)
822                    fuPool->freeUnitNextCycle(idx);
823            } else {
824                Cycles issue_latency = fuPool->getIssueLatency(op_class);
825                // Generate completion event for the FU
826                FUCompletion *execution = new FUCompletion(issuing_inst,
827                                                           idx, this);
828
829                cpu->schedule(execution,
830                              cpu->clockEdge(Cycles(op_latency - 1)));
831
832                // @todo: Enforce that issue_latency == 1 or op_latency
833                if (issue_latency > Cycles(1)) {
834                    // If FU isn't pipelined, then it must be freed
835                    // upon the execution completing.
836                    execution->setFreeFU();
837                } else {
838                    // Add the FU onto the list of FU's to be freed next cycle.
839                    fuPool->freeUnitNextCycle(idx);
840                }
841            }
842
843            DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
844                    "[sn:%lli]\n",
845                    tid, issuing_inst->pcState(),
846                    issuing_inst->seqNum);
847
848            readyInsts[op_class].pop();
849
850            if (!readyInsts[op_class].empty()) {
851                moveToYoungerInst(order_it);
852            } else {
853                readyIt[op_class] = listOrder.end();
854                queueOnList[op_class] = false;
855            }
856
857            issuing_inst->setIssued();
858            ++total_issued;
859
860#if TRACING_ON
861            issuing_inst->issueTick = curTick() - issuing_inst->fetchTick;
862#endif
863
864            if (!issuing_inst->isMemRef()) {
865                // Memory instructions can not be freed from the IQ until they
866                // complete.
867                ++freeEntries;
868                count[tid]--;
869                issuing_inst->clearInIQ();
870            } else {
871                memDepUnit[tid].issue(issuing_inst);
872            }
873
874            listOrder.erase(order_it++);
875            statIssuedInstType[tid][op_class]++;
876        } else {
877            statFuBusy[op_class]++;
878            fuBusy[tid]++;
879            ++order_it;
880        }
881    }
882
883    numIssuedDist.sample(total_issued);
884    iqInstsIssued+= total_issued;
885
886    // If we issued any instructions, tell the CPU we had activity.
887    // @todo If the way deferred memory instructions are handeled due to
888    // translation changes then the deferredMemInsts condition should be removed
889    // from the code below.
890    if (total_issued || !retryMemInsts.empty() || !deferredMemInsts.empty()) {
891        cpu->activityThisCycle();
892    } else {
893        DPRINTF(IQ, "Not able to schedule any instructions.\n");
894    }
895}
896
897template <class Impl>
898void
899InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
900{
901    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
902            "to execute.\n", inst);
903
904    NonSpecMapIt inst_it = nonSpecInsts.find(inst);
905
906    assert(inst_it != nonSpecInsts.end());
907
908    ThreadID tid = (*inst_it).second->threadNumber;
909
910    (*inst_it).second->setAtCommit();
911
912    (*inst_it).second->setCanIssue();
913
914    if (!(*inst_it).second->isMemRef()) {
915        addIfReady((*inst_it).second);
916    } else {
917        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
918    }
919
920    (*inst_it).second = NULL;
921
922    nonSpecInsts.erase(inst_it);
923}
924
925template <class Impl>
926void
927InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
928{
929    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
930            tid,inst);
931
932    ListIt iq_it = instList[tid].begin();
933
934    while (iq_it != instList[tid].end() &&
935           (*iq_it)->seqNum <= inst) {
936        ++iq_it;
937        instList[tid].pop_front();
938    }
939
940    assert(freeEntries == (numEntries - countInsts()));
941}
942
943template <class Impl>
944int
945InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
946{
947    int dependents = 0;
948
949    // The instruction queue here takes care of both floating and int ops
950    if (completed_inst->isFloating()) {
951        fpInstQueueWakeupQccesses++;
952    } else {
953        intInstQueueWakeupAccesses++;
954    }
955
956    DPRINTF(IQ, "Waking dependents of completed instruction.\n");
957
958    assert(!completed_inst->isSquashed());
959
960    // Tell the memory dependence unit to wake any dependents on this
961    // instruction if it is a memory instruction.  Also complete the memory
962    // instruction at this point since we know it executed without issues.
963    // @todo: Might want to rename "completeMemInst" to something that
964    // indicates that it won't need to be replayed, and call this
965    // earlier.  Might not be a big deal.
966    if (completed_inst->isMemRef()) {
967        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
968        completeMemInst(completed_inst);
969    } else if (completed_inst->isMemBarrier() ||
970               completed_inst->isWriteBarrier()) {
971        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
972    }
973
974    for (int dest_reg_idx = 0;
975         dest_reg_idx < completed_inst->numDestRegs();
976         dest_reg_idx++)
977    {
978        PhysRegIndex dest_reg =
979            completed_inst->renamedDestRegIdx(dest_reg_idx);
980
981        // Special case of uniq or control registers.  They are not
982        // handled by the IQ and thus have no dependency graph entry.
983        // @todo Figure out a cleaner way to handle this.
984        if (dest_reg >= numPhysRegs) {
985            DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
986                    numPhysRegs);
987            continue;
988        }
989
990        DPRINTF(IQ, "Waking any dependents on register %i.\n",
991                (int) dest_reg);
992
993        //Go through the dependency chain, marking the registers as
994        //ready within the waiting instructions.
995        DynInstPtr dep_inst = dependGraph.pop(dest_reg);
996
997        while (dep_inst) {
998            DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
999                    "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
1000
1001            // Might want to give more information to the instruction
1002            // so that it knows which of its source registers is
1003            // ready.  However that would mean that the dependency
1004            // graph entries would need to hold the src_reg_idx.
1005            dep_inst->markSrcRegReady();
1006
1007            addIfReady(dep_inst);
1008
1009            dep_inst = dependGraph.pop(dest_reg);
1010
1011            ++dependents;
1012        }
1013
1014        // Reset the head node now that all of its dependents have
1015        // been woken up.
1016        assert(dependGraph.empty(dest_reg));
1017        dependGraph.clearInst(dest_reg);
1018
1019        // Mark the scoreboard as having that register ready.
1020        regScoreboard[dest_reg] = true;
1021    }
1022    return dependents;
1023}
1024
1025template <class Impl>
1026void
1027InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1028{
1029    OpClass op_class = ready_inst->opClass();
1030
1031    readyInsts[op_class].push(ready_inst);
1032
1033    // Will need to reorder the list if either a queue is not on the list,
1034    // or it has an older instruction than last time.
1035    if (!queueOnList[op_class]) {
1036        addToOrderList(op_class);
1037    } else if (readyInsts[op_class].top()->seqNum  <
1038               (*readyIt[op_class]).oldestInst) {
1039        listOrder.erase(readyIt[op_class]);
1040        addToOrderList(op_class);
1041    }
1042
1043    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1044            "the ready list, PC %s opclass:%i [sn:%lli].\n",
1045            ready_inst->pcState(), op_class, ready_inst->seqNum);
1046}
1047
1048template <class Impl>
1049void
1050InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1051{
1052    DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1053
1054    // Reset DTB translation state
1055    resched_inst->translationStarted(false);
1056    resched_inst->translationCompleted(false);
1057
1058    resched_inst->clearCanIssue();
1059    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1060}
1061
1062template <class Impl>
1063void
1064InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1065{
1066    memDepUnit[replay_inst->threadNumber].replay();
1067}
1068
1069template <class Impl>
1070void
1071InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1072{
1073    ThreadID tid = completed_inst->threadNumber;
1074
1075    DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1076            completed_inst->pcState(), completed_inst->seqNum);
1077
1078    ++freeEntries;
1079
1080    completed_inst->memOpDone(true);
1081
1082    memDepUnit[tid].completed(completed_inst);
1083    count[tid]--;
1084}
1085
1086template <class Impl>
1087void
1088InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1089{
1090    deferredMemInsts.push_back(deferred_inst);
1091}
1092
1093template <class Impl>
1094void
1095InstructionQueue<Impl>::blockMemInst(DynInstPtr &blocked_inst)
1096{
1097    blocked_inst->translationStarted(false);
1098    blocked_inst->translationCompleted(false);
1099
1100    blocked_inst->clearIssued();
1101    blocked_inst->clearCanIssue();
1102    blockedMemInsts.push_back(blocked_inst);
1103}
1104
1105template <class Impl>
1106void
1107InstructionQueue<Impl>::cacheUnblocked()
1108{
1109    retryMemInsts.splice(retryMemInsts.end(), blockedMemInsts);
1110    // Get the CPU ticking again
1111    cpu->wakeCPU();
1112}
1113
1114template <class Impl>
1115typename Impl::DynInstPtr
1116InstructionQueue<Impl>::getDeferredMemInstToExecute()
1117{
1118    for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1119         ++it) {
1120        if ((*it)->translationCompleted() || (*it)->isSquashed()) {
1121            DynInstPtr mem_inst = *it;
1122            deferredMemInsts.erase(it);
1123            return mem_inst;
1124        }
1125    }
1126    return nullptr;
1127}
1128
1129template <class Impl>
1130typename Impl::DynInstPtr
1131InstructionQueue<Impl>::getBlockedMemInstToExecute()
1132{
1133    if (retryMemInsts.empty()) {
1134        return nullptr;
1135    } else {
1136        DynInstPtr mem_inst = retryMemInsts.front();
1137        retryMemInsts.pop_front();
1138        return mem_inst;
1139    }
1140}
1141
1142template <class Impl>
1143void
1144InstructionQueue<Impl>::violation(DynInstPtr &store,
1145                                  DynInstPtr &faulting_load)
1146{
1147    intInstQueueWrites++;
1148    memDepUnit[store->threadNumber].violation(store, faulting_load);
1149}
1150
1151template <class Impl>
1152void
1153InstructionQueue<Impl>::squash(ThreadID tid)
1154{
1155    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1156            "the IQ.\n", tid);
1157
1158    // Read instruction sequence number of last instruction out of the
1159    // time buffer.
1160    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1161
1162    // Call doSquash if there are insts in the IQ
1163    if (count[tid] > 0) {
1164        doSquash(tid);
1165    }
1166
1167    // Also tell the memory dependence unit to squash.
1168    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1169}
1170
1171template <class Impl>
1172void
1173InstructionQueue<Impl>::doSquash(ThreadID tid)
1174{
1175    // Start at the tail.
1176    ListIt squash_it = instList[tid].end();
1177    --squash_it;
1178
1179    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1180            tid, squashedSeqNum[tid]);
1181
1182    // Squash any instructions younger than the squashed sequence number
1183    // given.
1184    while (squash_it != instList[tid].end() &&
1185           (*squash_it)->seqNum > squashedSeqNum[tid]) {
1186
1187        DynInstPtr squashed_inst = (*squash_it);
1188        squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1189
1190        // Only handle the instruction if it actually is in the IQ and
1191        // hasn't already been squashed in the IQ.
1192        if (squashed_inst->threadNumber != tid ||
1193            squashed_inst->isSquashedInIQ()) {
1194            --squash_it;
1195            continue;
1196        }
1197
1198        if (!squashed_inst->isIssued() ||
1199            (squashed_inst->isMemRef() &&
1200             !squashed_inst->memOpDone())) {
1201
1202            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1203                    tid, squashed_inst->seqNum, squashed_inst->pcState());
1204
1205            bool is_acq_rel = squashed_inst->isMemBarrier() &&
1206                         (squashed_inst->isLoad() ||
1207                           (squashed_inst->isStore() &&
1208                             !squashed_inst->isStoreConditional()));
1209
1210            // Remove the instruction from the dependency list.
1211            if (is_acq_rel ||
1212                (!squashed_inst->isNonSpeculative() &&
1213                 !squashed_inst->isStoreConditional() &&
1214                 !squashed_inst->isMemBarrier() &&
1215                 !squashed_inst->isWriteBarrier())) {
1216
1217                for (int src_reg_idx = 0;
1218                     src_reg_idx < squashed_inst->numSrcRegs();
1219                     src_reg_idx++)
1220                {
1221                    PhysRegIndex src_reg =
1222                        squashed_inst->renamedSrcRegIdx(src_reg_idx);
1223
1224                    // Only remove it from the dependency graph if it
1225                    // was placed there in the first place.
1226
1227                    // Instead of doing a linked list traversal, we
1228                    // can just remove these squashed instructions
1229                    // either at issue time, or when the register is
1230                    // overwritten.  The only downside to this is it
1231                    // leaves more room for error.
1232
1233                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1234                        src_reg < numPhysRegs) {
1235                        dependGraph.remove(src_reg, squashed_inst);
1236                    }
1237
1238
1239                    ++iqSquashedOperandsExamined;
1240                }
1241            } else if (!squashed_inst->isStoreConditional() ||
1242                       !squashed_inst->isCompleted()) {
1243                NonSpecMapIt ns_inst_it =
1244                    nonSpecInsts.find(squashed_inst->seqNum);
1245
1246                // we remove non-speculative instructions from
1247                // nonSpecInsts already when they are ready, and so we
1248                // cannot always expect to find them
1249                if (ns_inst_it == nonSpecInsts.end()) {
1250                    // loads that became ready but stalled on a
1251                    // blocked cache are alreayd removed from
1252                    // nonSpecInsts, and have not faulted
1253                    assert(squashed_inst->getFault() != NoFault ||
1254                           squashed_inst->isMemRef());
1255                } else {
1256
1257                    (*ns_inst_it).second = NULL;
1258
1259                    nonSpecInsts.erase(ns_inst_it);
1260
1261                    ++iqSquashedNonSpecRemoved;
1262                }
1263            }
1264
1265            // Might want to also clear out the head of the dependency graph.
1266
1267            // Mark it as squashed within the IQ.
1268            squashed_inst->setSquashedInIQ();
1269
1270            // @todo: Remove this hack where several statuses are set so the
1271            // inst will flow through the rest of the pipeline.
1272            squashed_inst->setIssued();
1273            squashed_inst->setCanCommit();
1274            squashed_inst->clearInIQ();
1275
1276            //Update Thread IQ Count
1277            count[squashed_inst->threadNumber]--;
1278
1279            ++freeEntries;
1280        }
1281
1282        instList[tid].erase(squash_it--);
1283        ++iqSquashedInstsExamined;
1284    }
1285}
1286
1287template <class Impl>
1288bool
1289InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1290{
1291    // Loop through the instruction's source registers, adding
1292    // them to the dependency list if they are not ready.
1293    int8_t total_src_regs = new_inst->numSrcRegs();
1294    bool return_val = false;
1295
1296    for (int src_reg_idx = 0;
1297         src_reg_idx < total_src_regs;
1298         src_reg_idx++)
1299    {
1300        // Only add it to the dependency graph if it's not ready.
1301        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1302            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1303
1304            // Check the IQ's scoreboard to make sure the register
1305            // hasn't become ready while the instruction was in flight
1306            // between stages.  Only if it really isn't ready should
1307            // it be added to the dependency graph.
1308            if (src_reg >= numPhysRegs) {
1309                continue;
1310            } else if (!regScoreboard[src_reg]) {
1311                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1312                        "is being added to the dependency chain.\n",
1313                        new_inst->pcState(), src_reg);
1314
1315                dependGraph.insert(src_reg, new_inst);
1316
1317                // Change the return value to indicate that something
1318                // was added to the dependency graph.
1319                return_val = true;
1320            } else {
1321                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1322                        "became ready before it reached the IQ.\n",
1323                        new_inst->pcState(), src_reg);
1324                // Mark a register ready within the instruction.
1325                new_inst->markSrcRegReady(src_reg_idx);
1326            }
1327        }
1328    }
1329
1330    return return_val;
1331}
1332
1333template <class Impl>
1334void
1335InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1336{
1337    // Nothing really needs to be marked when an instruction becomes
1338    // the producer of a register's value, but for convenience a ptr
1339    // to the producing instruction will be placed in the head node of
1340    // the dependency links.
1341    int8_t total_dest_regs = new_inst->numDestRegs();
1342
1343    for (int dest_reg_idx = 0;
1344         dest_reg_idx < total_dest_regs;
1345         dest_reg_idx++)
1346    {
1347        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1348
1349        // Instructions that use the misc regs will have a reg number
1350        // higher than the normal physical registers.  In this case these
1351        // registers are not renamed, and there is no need to track
1352        // dependencies as these instructions must be executed at commit.
1353        if (dest_reg >= numPhysRegs) {
1354            continue;
1355        }
1356
1357        if (!dependGraph.empty(dest_reg)) {
1358            dependGraph.dump();
1359            panic("Dependency graph %i not empty!", dest_reg);
1360        }
1361
1362        dependGraph.setInst(dest_reg, new_inst);
1363
1364        // Mark the scoreboard to say it's not yet ready.
1365        regScoreboard[dest_reg] = false;
1366    }
1367}
1368
1369template <class Impl>
1370void
1371InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1372{
1373    // If the instruction now has all of its source registers
1374    // available, then add it to the list of ready instructions.
1375    if (inst->readyToIssue()) {
1376
1377        //Add the instruction to the proper ready list.
1378        if (inst->isMemRef()) {
1379
1380            DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1381
1382            // Message to the mem dependence unit that this instruction has
1383            // its registers ready.
1384            memDepUnit[inst->threadNumber].regsReady(inst);
1385
1386            return;
1387        }
1388
1389        OpClass op_class = inst->opClass();
1390
1391        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1392                "the ready list, PC %s opclass:%i [sn:%lli].\n",
1393                inst->pcState(), op_class, inst->seqNum);
1394
1395        readyInsts[op_class].push(inst);
1396
1397        // Will need to reorder the list if either a queue is not on the list,
1398        // or it has an older instruction than last time.
1399        if (!queueOnList[op_class]) {
1400            addToOrderList(op_class);
1401        } else if (readyInsts[op_class].top()->seqNum  <
1402                   (*readyIt[op_class]).oldestInst) {
1403            listOrder.erase(readyIt[op_class]);
1404            addToOrderList(op_class);
1405        }
1406    }
1407}
1408
1409template <class Impl>
1410int
1411InstructionQueue<Impl>::countInsts()
1412{
1413#if 0
1414    //ksewell:This works but definitely could use a cleaner write
1415    //with a more intuitive way of counting. Right now it's
1416    //just brute force ....
1417    // Change the #if if you want to use this method.
1418    int total_insts = 0;
1419
1420    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1421        ListIt count_it = instList[tid].begin();
1422
1423        while (count_it != instList[tid].end()) {
1424            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1425                if (!(*count_it)->isIssued()) {
1426                    ++total_insts;
1427                } else if ((*count_it)->isMemRef() &&
1428                           !(*count_it)->memOpDone) {
1429                    // Loads that have not been marked as executed still count
1430                    // towards the total instructions.
1431                    ++total_insts;
1432                }
1433            }
1434
1435            ++count_it;
1436        }
1437    }
1438
1439    return total_insts;
1440#else
1441    return numEntries - freeEntries;
1442#endif
1443}
1444
1445template <class Impl>
1446void
1447InstructionQueue<Impl>::dumpLists()
1448{
1449    for (int i = 0; i < Num_OpClasses; ++i) {
1450        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1451
1452        cprintf("\n");
1453    }
1454
1455    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1456
1457    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1458    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1459
1460    cprintf("Non speculative list: ");
1461
1462    while (non_spec_it != non_spec_end_it) {
1463        cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1464                (*non_spec_it).second->seqNum);
1465        ++non_spec_it;
1466    }
1467
1468    cprintf("\n");
1469
1470    ListOrderIt list_order_it = listOrder.begin();
1471    ListOrderIt list_order_end_it = listOrder.end();
1472    int i = 1;
1473
1474    cprintf("List order: ");
1475
1476    while (list_order_it != list_order_end_it) {
1477        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1478                (*list_order_it).oldestInst);
1479
1480        ++list_order_it;
1481        ++i;
1482    }
1483
1484    cprintf("\n");
1485}
1486
1487
1488template <class Impl>
1489void
1490InstructionQueue<Impl>::dumpInsts()
1491{
1492    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1493        int num = 0;
1494        int valid_num = 0;
1495        ListIt inst_list_it = instList[tid].begin();
1496
1497        while (inst_list_it != instList[tid].end()) {
1498            cprintf("Instruction:%i\n", num);
1499            if (!(*inst_list_it)->isSquashed()) {
1500                if (!(*inst_list_it)->isIssued()) {
1501                    ++valid_num;
1502                    cprintf("Count:%i\n", valid_num);
1503                } else if ((*inst_list_it)->isMemRef() &&
1504                           !(*inst_list_it)->memOpDone()) {
1505                    // Loads that have not been marked as executed
1506                    // still count towards the total instructions.
1507                    ++valid_num;
1508                    cprintf("Count:%i\n", valid_num);
1509                }
1510            }
1511
1512            cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1513                    "Issued:%i\nSquashed:%i\n",
1514                    (*inst_list_it)->pcState(),
1515                    (*inst_list_it)->seqNum,
1516                    (*inst_list_it)->threadNumber,
1517                    (*inst_list_it)->isIssued(),
1518                    (*inst_list_it)->isSquashed());
1519
1520            if ((*inst_list_it)->isMemRef()) {
1521                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1522            }
1523
1524            cprintf("\n");
1525
1526            inst_list_it++;
1527            ++num;
1528        }
1529    }
1530
1531    cprintf("Insts to Execute list:\n");
1532
1533    int num = 0;
1534    int valid_num = 0;
1535    ListIt inst_list_it = instsToExecute.begin();
1536
1537    while (inst_list_it != instsToExecute.end())
1538    {
1539        cprintf("Instruction:%i\n",
1540                num);
1541        if (!(*inst_list_it)->isSquashed()) {
1542            if (!(*inst_list_it)->isIssued()) {
1543                ++valid_num;
1544                cprintf("Count:%i\n", valid_num);
1545            } else if ((*inst_list_it)->isMemRef() &&
1546                       !(*inst_list_it)->memOpDone()) {
1547                // Loads that have not been marked as executed
1548                // still count towards the total instructions.
1549                ++valid_num;
1550                cprintf("Count:%i\n", valid_num);
1551            }
1552        }
1553
1554        cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1555                "Issued:%i\nSquashed:%i\n",
1556                (*inst_list_it)->pcState(),
1557                (*inst_list_it)->seqNum,
1558                (*inst_list_it)->threadNumber,
1559                (*inst_list_it)->isIssued(),
1560                (*inst_list_it)->isSquashed());
1561
1562        if ((*inst_list_it)->isMemRef()) {
1563            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1564        }
1565
1566        cprintf("\n");
1567
1568        inst_list_it++;
1569        ++num;
1570    }
1571}
1572
1573#endif//__CPU_O3_INST_QUEUE_IMPL_HH__
1574