inst_queue_impl.hh revision 2301
16167SN/A/* 26167SN/A * Copyright (c) 2004-2005 The Regents of The University of Michigan 36167SN/A * All rights reserved. 410036SAli.Saidi@ARM.com * 58835SAli.Saidi@ARM.com * Redistribution and use in source and binary forms, with or without 610036SAli.Saidi@ARM.com * modification, are permitted provided that the following conditions are 77935SN/A * met: redistributions of source code must retain the above copyright 87935SN/A * notice, this list of conditions and the following disclaimer; 97935SN/A * redistributions in binary form must reproduce the above copyright 106167SN/A * notice, this list of conditions and the following disclaimer in the 116167SN/A * documentation and/or other materials provided with the distribution; 126167SN/A * neither the name of the copyright holders nor the names of its 1310315Snilay@cs.wisc.edu * contributors may be used to endorse or promote products derived from 148835SAli.Saidi@ARM.com * this software without specific prior written permission. 159864Snilay@cs.wisc.edu * 169864Snilay@cs.wisc.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1710036SAli.Saidi@ARM.com * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 188835SAli.Saidi@ARM.com * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 198835SAli.Saidi@ARM.com * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 2010315Snilay@cs.wisc.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 218835SAli.Saidi@ARM.com * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 2210093Snilay@cs.wisc.edu * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 237935SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 249864Snilay@cs.wisc.edu * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 258540SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 268721SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 278835SAli.Saidi@ARM.com */ 288835SAli.Saidi@ARM.com 297935SN/A// Todo: 307935SN/A// Current ordering allows for 0 cycle added-to-scheduled. Could maybe fake 317935SN/A// it; either do in reverse order, or have added instructions put into a 327935SN/A// different ready queue that, in scheduleRreadyInsts(), gets put onto the 337935SN/A// normal ready queue. This would however give only a one cycle delay, 347935SN/A// but probably is more flexible to actually add in a delay parameter than 357935SN/A// just running it backwards. 368983Snate@binkert.org 376167SN/A#include <limits> 389864Snilay@cs.wisc.edu#include <vector> 399864Snilay@cs.wisc.edu 409864Snilay@cs.wisc.edu#include "sim/root.hh" 4110315Snilay@cs.wisc.edu 4210036SAli.Saidi@ARM.com#include "cpu/o3/fu_pool.hh" 4310315Snilay@cs.wisc.edu#include "cpu/o3/inst_queue.hh" 449864Snilay@cs.wisc.edu 459864Snilay@cs.wisc.eduusing namespace std; 466167SN/A 476167SN/Atemplate <class Impl> 489864Snilay@cs.wisc.eduInstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 4910093Snilay@cs.wisc.edu int fu_idx, 506167SN/A InstructionQueue<Impl> *iq_ptr) 519864Snilay@cs.wisc.edu : Event(&mainEventQueue, Stat_Event_Pri), 526167SN/A inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr) 536167SN/A{ 548835SAli.Saidi@ARM.com this->setFlags(Event::AutoDelete); 556167SN/A} 566167SN/A 5710036SAli.Saidi@ARM.comtemplate <class Impl> 586167SN/Avoid 596167SN/AInstructionQueue<Impl>::FUCompletion::process() 608835SAli.Saidi@ARM.com{ 619469Snilay@cs.wisc.edu iqPtr->processFUCompletion(inst, fuIdx); 626167SN/A inst = NULL; 636167SN/A} 646167SN/A 656167SN/A 666167SN/Atemplate <class Impl> 676167SN/Aconst char * 688835SAli.Saidi@ARM.comInstructionQueue<Impl>::FUCompletion::description() 696167SN/A{ 709864Snilay@cs.wisc.edu return "Functional unit completion event"; 7110229Snilay@cs.wisc.edu} 729469Snilay@cs.wisc.edu 736167SN/Atemplate <class Impl> 746167SN/AInstructionQueue<Impl>::InstructionQueue(Params *params) 756167SN/A : dcacheInterface(params->dcacheInterface), 769469Snilay@cs.wisc.edu fuPool(params->fuPool), 779469Snilay@cs.wisc.edu numEntries(params->numIQEntries), 786167SN/A totalWidth(params->issueWidth), 799864Snilay@cs.wisc.edu numPhysIntRegs(params->numPhysIntRegs), 809864Snilay@cs.wisc.edu numPhysFloatRegs(params->numPhysFloatRegs), 819864Snilay@cs.wisc.edu commitToIEWDelay(params->commitToIEWDelay) 8210315Snilay@cs.wisc.edu{ 8310036SAli.Saidi@ARM.com assert(fuPool); 8410315Snilay@cs.wisc.edu 859864Snilay@cs.wisc.edu numThreads = params->numberOfThreads; 869864Snilay@cs.wisc.edu 876167SN/A //Initialize thread IQ counts 886167SN/A for (int i = 0; i <numThreads; i++) { 8910036SAli.Saidi@ARM.com count[i] = 0; 906167SN/A } 916167SN/A 928835SAli.Saidi@ARM.com // Initialize the number of free IQ entries. 938835SAli.Saidi@ARM.com freeEntries = numEntries; 9410036SAli.Saidi@ARM.com 958835SAli.Saidi@ARM.com // Set the number of physical registers as the number of int + float 969469Snilay@cs.wisc.edu numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 979469Snilay@cs.wisc.edu 9810036SAli.Saidi@ARM.com DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 999469Snilay@cs.wisc.edu 1009469Snilay@cs.wisc.edu //Create an entry for each physical register within the 10110036SAli.Saidi@ARM.com //dependency graph. 1029469Snilay@cs.wisc.edu dependGraph = new DependencyEntry[numPhysRegs]; 1036167SN/A 1046167SN/A // Resize the register scoreboard. 10510036SAli.Saidi@ARM.com regScoreboard.resize(numPhysRegs); 1066167SN/A 1076167SN/A //Initialize Mem Dependence Units 1086167SN/A for (int i = 0; i < numThreads; i++) { 1096167SN/A memDepUnit[i].init(params,i); 11010036SAli.Saidi@ARM.com memDepUnit[i].setIQ(this); 1116167SN/A } 1126167SN/A 1136167SN/A // Initialize all the head pointers to point to NULL, and all the 1146167SN/A // entries as unready. 1156167SN/A // Note that in actuality, the registers corresponding to the logical 1166167SN/A // registers start off as ready. However this doesn't matter for the 1176167SN/A // IQ as the instruction should have been correctly told if those 1186167SN/A // registers are ready in rename. Thus it can all be initialized as 1196167SN/A // unready. 12010036SAli.Saidi@ARM.com for (int i = 0; i < numPhysRegs; ++i) { 12110229Snilay@cs.wisc.edu dependGraph[i].next = NULL; 1226167SN/A dependGraph[i].inst = NULL; 1236167SN/A regScoreboard[i] = false; 1246167SN/A } 1256167SN/A 1266167SN/A for (int i = 0; i < numThreads; ++i) { 1276167SN/A squashedSeqNum[i] = 0; 1286167SN/A } 1296167SN/A 1306167SN/A for (int i = 0; i < Num_OpClasses; ++i) { 13110451Snilay@cs.wisc.edu queueOnList[i] = false; 1326167SN/A readyIt[i] = listOrder.end(); 13310315Snilay@cs.wisc.edu } 13410315Snilay@cs.wisc.edu 13510315Snilay@cs.wisc.edu string policy = params->smtIQPolicy; 13610315Snilay@cs.wisc.edu 13710315Snilay@cs.wisc.edu //Convert string to lowercase 13810315Snilay@cs.wisc.edu std::transform(policy.begin(), policy.end(), policy.begin(), 13910315Snilay@cs.wisc.edu (int(*)(int)) tolower); 14010315Snilay@cs.wisc.edu 1419469Snilay@cs.wisc.edu //Figure out resource sharing policy 1429469Snilay@cs.wisc.edu if (policy == "dynamic") { 1439469Snilay@cs.wisc.edu iqPolicy = Dynamic; 1449864Snilay@cs.wisc.edu 1459864Snilay@cs.wisc.edu //Set Max Entries to Total ROB Capacity 14610036SAli.Saidi@ARM.com for (int i = 0; i < numThreads; i++) { 1479469Snilay@cs.wisc.edu maxEntries[i] = numEntries; 1489469Snilay@cs.wisc.edu } 1499469Snilay@cs.wisc.edu 1509578Snilay@cs.wisc.edu } else if (policy == "partitioned") { 1519469Snilay@cs.wisc.edu iqPolicy = Partitioned; 1529469Snilay@cs.wisc.edu 1539469Snilay@cs.wisc.edu //@todo:make work if part_amt doesnt divide evenly. 1549469Snilay@cs.wisc.edu int part_amt = numEntries / numThreads; 15510036SAli.Saidi@ARM.com 15610036SAli.Saidi@ARM.com //Divide ROB up evenly 1579469Snilay@cs.wisc.edu for (int i = 0; i < numThreads; i++) { 1589864Snilay@cs.wisc.edu maxEntries[i] = part_amt; 15910036SAli.Saidi@ARM.com } 16010036SAli.Saidi@ARM.com 1619864Snilay@cs.wisc.edu DPRINTF(Fetch, "IQ sharing policy set to Partitioned:" 1629469Snilay@cs.wisc.edu "%i entries per thread.\n",part_amt); 16310036SAli.Saidi@ARM.com 1649469Snilay@cs.wisc.edu } else if (policy == "threshold") { 1659469Snilay@cs.wisc.edu iqPolicy = Threshold; 1669469Snilay@cs.wisc.edu 1679864Snilay@cs.wisc.edu double threshold = (double)params->smtIQThreshold / 100; 1689864Snilay@cs.wisc.edu 1699864Snilay@cs.wisc.edu int thresholdIQ = (int)((double)threshold * numEntries); 17010315Snilay@cs.wisc.edu 17110036SAli.Saidi@ARM.com //Divide up by threshold amount 17210315Snilay@cs.wisc.edu for (int i = 0; i < numThreads; i++) { 1739864Snilay@cs.wisc.edu maxEntries[i] = thresholdIQ; 1749864Snilay@cs.wisc.edu } 1759469Snilay@cs.wisc.edu 1766928SN/A DPRINTF(Fetch, "IQ sharing policy set to Threshold:" 1776928SN/A "%i entries per thread.\n",thresholdIQ); 1786928SN/A } else { 1799864Snilay@cs.wisc.edu assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 18010036SAli.Saidi@ARM.com "Partitioned, Threshold}"); 1819469Snilay@cs.wisc.edu } 1826928SN/A} 18310036SAli.Saidi@ARM.com 1849469Snilay@cs.wisc.edutemplate <class Impl> 1856928SN/AInstructionQueue<Impl>::~InstructionQueue() 1869605Snilay@cs.wisc.edu{ 1876928SN/A // Clear the dependency graph 1888540SN/A DependencyEntry *curr; 1899864Snilay@cs.wisc.edu DependencyEntry *prev; 1906928SN/A 19110315Snilay@cs.wisc.edu for (int i = 0; i < numPhysRegs; ++i) { 19210315Snilay@cs.wisc.edu curr = dependGraph[i].next; 19310315Snilay@cs.wisc.edu 19410315Snilay@cs.wisc.edu while (curr) { 19510315Snilay@cs.wisc.edu DependencyEntry::mem_alloc_counter--; 1966928SN/A 1979469Snilay@cs.wisc.edu prev = curr; 1986928SN/A curr = prev->next; 19910036SAli.Saidi@ARM.com prev->inst = NULL; 2007935SN/A 2019469Snilay@cs.wisc.edu delete prev; 2029864Snilay@cs.wisc.edu } 2037935SN/A 2046928SN/A if (dependGraph[i].inst) { 2056928SN/A dependGraph[i].inst = NULL; 2069469Snilay@cs.wisc.edu } 2076928SN/A 2086928SN/A dependGraph[i].next = NULL; 2096928SN/A } 2106928SN/A 2116928SN/A assert(DependencyEntry::mem_alloc_counter == 0); 2126928SN/A 2139864Snilay@cs.wisc.edu delete [] dependGraph; 2146928SN/A} 2156928SN/A 21610036SAli.Saidi@ARM.comtemplate <class Impl> 2176928SN/Astd::string 2186928SN/AInstructionQueue<Impl>::name() const 2196928SN/A{ 2206928SN/A return cpu->name() + ".iq"; 2216928SN/A} 2226928SN/A 2236928SN/Atemplate <class Impl> 2246928SN/Avoid 2259207Snilay@cs.wisc.eduInstructionQueue<Impl>::regStats() 2266928SN/A{ 2276928SN/A using namespace Stats; 2286928SN/A iqInstsAdded 2299469Snilay@cs.wisc.edu .name(name() + ".iqInstsAdded") 2307935SN/A .desc("Number of instructions added to the IQ (excludes non-spec)") 2318540SN/A .prereq(iqInstsAdded); 2327935SN/A 2339469Snilay@cs.wisc.edu iqNonSpecInstsAdded 2347935SN/A .name(name() + ".iqNonSpecInstsAdded") 23510315Snilay@cs.wisc.edu .desc("Number of non-speculative instructions added to the IQ") 23610036SAli.Saidi@ARM.com .prereq(iqNonSpecInstsAdded); 23710036SAli.Saidi@ARM.com 2387935SN/A// iqIntInstsAdded; 2397935SN/A 2409605Snilay@cs.wisc.edu iqInstsIssued 2417935SN/A .name(name() + ".iqInstsIssued") 2428540SN/A .desc("Number of instructions issued") 2438835SAli.Saidi@ARM.com .prereq(iqInstsIssued); 2449469Snilay@cs.wisc.edu 2459864Snilay@cs.wisc.edu iqIntInstsIssued 2467935SN/A .name(name() + ".iqIntInstsIssued") 24710315Snilay@cs.wisc.edu .desc("Number of integer instructions issued") 24810315Snilay@cs.wisc.edu .prereq(iqIntInstsIssued); 24910315Snilay@cs.wisc.edu 25010315Snilay@cs.wisc.edu// iqFloatInstsAdded; 2517935SN/A 2529469Snilay@cs.wisc.edu iqFloatInstsIssued 2538540SN/A .name(name() + ".iqFloatInstsIssued") 2548540SN/A .desc("Number of float instructions issued") 2559113SBrad.Beckmann@amd.com .prereq(iqFloatInstsIssued); 2569113SBrad.Beckmann@amd.com 25710036SAli.Saidi@ARM.com// iqBranchInstsAdded; 2588721SN/A 2598540SN/A iqBranchInstsIssued 2608540SN/A .name(name() + ".iqBranchInstsIssued") 2619113SBrad.Beckmann@amd.com .desc("Number of branch instructions issued") 2628540SN/A .prereq(iqBranchInstsIssued); 2638540SN/A 2649113SBrad.Beckmann@amd.com// iqMemInstsAdded; 2659113SBrad.Beckmann@amd.com 2668540SN/A iqMemInstsIssued 2679469Snilay@cs.wisc.edu .name(name() + ".iqMemInstsIssued") 2688540SN/A .desc("Number of memory instructions issued") 2699578Snilay@cs.wisc.edu .prereq(iqMemInstsIssued); 27010315Snilay@cs.wisc.edu 2719469Snilay@cs.wisc.edu// iqMiscInstsAdded; 2728540SN/A 27310036SAli.Saidi@ARM.com iqMiscInstsIssued 2749469Snilay@cs.wisc.edu .name(name() + ".iqMiscInstsIssued") 2758540SN/A .desc("Number of miscellaneous instructions issued") 2768540SN/A .prereq(iqMiscInstsIssued); 2778983Snate@binkert.org 2788983Snate@binkert.org iqSquashedInstsIssued 2798983Snate@binkert.org .name(name() + ".iqSquashedInstsIssued") 2808540SN/A .desc("Number of squashed instructions issued") 2818540SN/A .prereq(iqSquashedInstsIssued); 2828540SN/A 2838983Snate@binkert.org iqSquashedInstsExamined 2848540SN/A .name(name() + ".iqSquashedInstsExamined") 2859864Snilay@cs.wisc.edu .desc("Number of squashed instructions iterated over during squash;" 2869864Snilay@cs.wisc.edu " mainly for profiling") 2879864Snilay@cs.wisc.edu .prereq(iqSquashedInstsExamined); 2889864Snilay@cs.wisc.edu 28910036SAli.Saidi@ARM.com iqSquashedOperandsExamined 2909864Snilay@cs.wisc.edu .name(name() + ".iqSquashedOperandsExamined") 2917935SN/A .desc("Number of squashed operands that are examined and possibly " 2927935SN/A "removed from graph") 2939864Snilay@cs.wisc.edu .prereq(iqSquashedOperandsExamined); 2947935SN/A 2957935SN/A iqSquashedNonSpecRemoved 2969864Snilay@cs.wisc.edu .name(name() + ".iqSquashedNonSpecRemoved") 2977935SN/A .desc("Number of squashed non-spec instructions that were removed") 2988540SN/A .prereq(iqSquashedNonSpecRemoved); 29910036SAli.Saidi@ARM.com 3009605Snilay@cs.wisc.edu queue_res_dist 3019605Snilay@cs.wisc.edu .init(Num_OpClasses, 0, 99, 2) 30210229Snilay@cs.wisc.edu .name(name() + ".IQ:residence:") 3037935SN/A .desc("cycles from dispatch to issue") 3049864Snilay@cs.wisc.edu .flags(total | pdf | cdf ) 3058540SN/A ; 3069605Snilay@cs.wisc.edu for (int i = 0; i < Num_OpClasses; ++i) { 30710315Snilay@cs.wisc.edu queue_res_dist.subname(i, opClassStrings[i]); 30810315Snilay@cs.wisc.edu } 3097935SN/A n_issued_dist 3109605Snilay@cs.wisc.edu .init(totalWidth + 1) 3118540SN/A .name(name() + ".ISSUE:issued_per_cycle") 3128540SN/A .desc("Number of insts issued each cycle") 31310036SAli.Saidi@ARM.com .flags(total | pdf | dist) 3149469Snilay@cs.wisc.edu ; 3159864Snilay@cs.wisc.edu/* 3167935SN/A dist_unissued 3178540SN/A .init(Num_OpClasses+2) 3187935SN/A .name(name() + ".ISSUE:unissued_cause") 3197935SN/A .desc("Reason ready instruction not issued") 3209605Snilay@cs.wisc.edu .flags(pdf | dist) 3218540SN/A ; 3228540SN/A for (int i=0; i < (Num_OpClasses + 2); ++i) { 32310036SAli.Saidi@ARM.com dist_unissued.subname(i, unissued_names[i]); 3249469Snilay@cs.wisc.edu } 3259864Snilay@cs.wisc.edu*/ 3267935SN/A stat_issued_inst_type 3278540SN/A .init(numThreads,Num_OpClasses) 3287935SN/A .name(name() + ".ISSUE:FU_type") 3297935SN/A .desc("Type of FU issued") 3309605Snilay@cs.wisc.edu .flags(total | pdf | dist) 3318540SN/A ; 3328540SN/A stat_issued_inst_type.ysubnames(opClassStrings); 33310036SAli.Saidi@ARM.com 3346928SN/A // 3358540SN/A // How long did instructions for a particular FU type wait prior to issue 3369864Snilay@cs.wisc.edu // 3379864Snilay@cs.wisc.edu 3386928SN/A issue_delay_dist 3396928SN/A .init(Num_OpClasses,0,99,2) 3409605Snilay@cs.wisc.edu .name(name() + ".ISSUE:") 3418540SN/A .desc("cycles from operands ready to issue") 3428540SN/A .flags(pdf | cdf) 34310036SAli.Saidi@ARM.com ; 3446928SN/A 3458540SN/A for (int i=0; i<Num_OpClasses; ++i) { 3469864Snilay@cs.wisc.edu stringstream subname; 3479864Snilay@cs.wisc.edu subname << opClassStrings[i] << "_delay"; 3486928SN/A issue_delay_dist.subname(i, subname.str()); 3496928SN/A } 3509864Snilay@cs.wisc.edu 3519864Snilay@cs.wisc.edu issue_rate 3529864Snilay@cs.wisc.edu .name(name() + ".ISSUE:rate") 35310036SAli.Saidi@ARM.com .desc("Inst issue rate") 3549864Snilay@cs.wisc.edu .flags(total) 3559864Snilay@cs.wisc.edu ; 3569864Snilay@cs.wisc.edu issue_rate = iqInstsIssued / cpu->numCycles; 3579864Snilay@cs.wisc.edu/* 3589864Snilay@cs.wisc.edu issue_stores 3599864Snilay@cs.wisc.edu .name(name() + ".ISSUE:stores") 36010036SAli.Saidi@ARM.com .desc("Number of stores issued") 3619864Snilay@cs.wisc.edu .flags(total) 3629864Snilay@cs.wisc.edu ; 3639864Snilay@cs.wisc.edu issue_stores = exe_refs - exe_loads; 3649864Snilay@cs.wisc.edu*/ 3659864Snilay@cs.wisc.edu/* 3669864Snilay@cs.wisc.edu issue_op_rate 36710036SAli.Saidi@ARM.com .name(name() + ".ISSUE:op_rate") 3689864Snilay@cs.wisc.edu .desc("Operation issue rate") 3699864Snilay@cs.wisc.edu .flags(total) 3709864Snilay@cs.wisc.edu ; 3718721SN/A issue_op_rate = issued_ops / numCycles; 3728721SN/A*/ 3738721SN/A stat_fu_busy 3749864Snilay@cs.wisc.edu .init(Num_OpClasses) 37510036SAli.Saidi@ARM.com .name(name() + ".ISSUE:fu_full") 3768540SN/A .desc("attempts to use FU when none available") 3778983Snate@binkert.org .flags(pdf | dist) 3788983Snate@binkert.org ; 3798983Snate@binkert.org for (int i=0; i < Num_OpClasses; ++i) { 3808721SN/A stat_fu_busy.subname(i, opClassStrings[i]); 3818721SN/A } 3828983Snate@binkert.org 3836928SN/A fu_busy 3849864Snilay@cs.wisc.edu .init(numThreads) 3859864Snilay@cs.wisc.edu .name(name() + ".ISSUE:fu_busy_cnt") 38610036SAli.Saidi@ARM.com .desc("FU busy when requested") 3879864Snilay@cs.wisc.edu .flags(total) 3889864Snilay@cs.wisc.edu ; 389 390 fu_busy_rate 391 .name(name() + ".ISSUE:fu_busy_rate") 392 .desc("FU busy rate (busy events/executed inst)") 393 .flags(total) 394 ; 395 fu_busy_rate = fu_busy / iqInstsIssued; 396 397 for ( int i=0; i < numThreads; i++) { 398 // Tell mem dependence unit to reg stats as well. 399 memDepUnit[i].regStats(); 400 } 401} 402 403template <class Impl> 404void 405InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 406{ 407 DPRINTF(IQ, "Setting active threads list pointer.\n"); 408 activeThreads = at_ptr; 409} 410 411template <class Impl> 412void 413InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 414{ 415 DPRINTF(IQ, "Set the issue to execute queue.\n"); 416 issueToExecuteQueue = i2e_ptr; 417} 418 419template <class Impl> 420void 421InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 422{ 423 DPRINTF(IQ, "Set the time buffer.\n"); 424 timeBuffer = tb_ptr; 425 426 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 427} 428 429template <class Impl> 430int 431InstructionQueue<Impl>::entryAmount(int num_threads) 432{ 433 if (iqPolicy == Partitioned) { 434 return numEntries / num_threads; 435 } else { 436 return 0; 437 } 438} 439 440 441template <class Impl> 442void 443InstructionQueue<Impl>::resetEntries() 444{ 445 if (iqPolicy != Dynamic || numThreads > 1) { 446 int active_threads = (*activeThreads).size(); 447 448 list<unsigned>::iterator threads = (*activeThreads).begin(); 449 list<unsigned>::iterator list_end = (*activeThreads).end(); 450 451 while (threads != list_end) { 452 if (iqPolicy == Partitioned) { 453 maxEntries[*threads++] = numEntries / active_threads; 454 } else if(iqPolicy == Threshold && active_threads == 1) { 455 maxEntries[*threads++] = numEntries; 456 } 457 } 458 } 459} 460 461template <class Impl> 462unsigned 463InstructionQueue<Impl>::numFreeEntries() 464{ 465 return freeEntries; 466} 467 468template <class Impl> 469unsigned 470InstructionQueue<Impl>::numFreeEntries(unsigned tid) 471{ 472 return maxEntries[tid] - count[tid]; 473} 474 475// Might want to do something more complex if it knows how many instructions 476// will be issued this cycle. 477template <class Impl> 478bool 479InstructionQueue<Impl>::isFull() 480{ 481 if (freeEntries == 0) { 482 return(true); 483 } else { 484 return(false); 485 } 486} 487 488template <class Impl> 489bool 490InstructionQueue<Impl>::isFull(unsigned tid) 491{ 492 if (numFreeEntries(tid) == 0) { 493 return(true); 494 } else { 495 return(false); 496 } 497} 498 499template <class Impl> 500bool 501InstructionQueue<Impl>::hasReadyInsts() 502{ 503 if (!listOrder.empty()) { 504 return true; 505 } 506 507 for (int i = 0; i < Num_OpClasses; ++i) { 508 if (!readyInsts[i].empty()) { 509 return true; 510 } 511 } 512 513 return false; 514} 515 516template <class Impl> 517void 518InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 519{ 520 // Make sure the instruction is valid 521 assert(new_inst); 522 523 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 524 new_inst->readPC()); 525 526 // Check if there are any free entries. Panic if there are none. 527 // Might want to have this return a fault in the future instead of 528 // panicing. 529 assert(freeEntries != 0); 530 531 instList[new_inst->threadNumber].push_back(new_inst); 532 533 // Decrease the number of free entries. 534 --freeEntries; 535 536 //Mark Instruction as in IQ 537 new_inst->setInIQ(); 538 539 // Look through its source registers (physical regs), and mark any 540 // dependencies. 541 addToDependents(new_inst); 542 543 // Have this instruction set itself as the producer of its destination 544 // register(s). 545 createDependency(new_inst); 546 547 // If it's a memory instruction, add it to the memory dependency 548 // unit. 549 if (new_inst->isMemRef()) { 550 memDepUnit[new_inst->threadNumber].insert(new_inst); 551 } else { 552 // If the instruction is ready then add it to the ready list. 553 addIfReady(new_inst); 554 } 555 556 ++iqInstsAdded; 557 558 559 //Update Thread IQ Count 560 count[new_inst->threadNumber]++; 561 562 assert(freeEntries == (numEntries - countInsts())); 563} 564 565template <class Impl> 566void 567InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 568{ 569 // @todo: Clean up this code; can do it by setting inst as unable 570 // to issue, then calling normal insert on the inst. 571 572 // Make sure the instruction is valid 573 assert(new_inst); 574 575 nonSpecInsts[new_inst->seqNum] = new_inst; 576 577 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 578 new_inst->readPC()); 579 580 // Check if there are any free entries. Panic if there are none. 581 // Might want to have this return a fault in the future instead of 582 // panicing. 583 assert(freeEntries != 0); 584 585 instList[new_inst->threadNumber].push_back(new_inst); 586 587 // Decrease the number of free entries. 588 --freeEntries; 589 590 //Mark Instruction as in IQ 591 new_inst->setInIQ(); 592 593 // Have this instruction set itself as the producer of its destination 594 // register(s). 595 createDependency(new_inst); 596 597 // If it's a memory instruction, add it to the memory dependency 598 // unit. 599 if (new_inst->isMemRef()) { 600 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 601 } 602 603 ++iqNonSpecInstsAdded; 604 605 //Update Thread IQ Count 606 count[new_inst->threadNumber]++; 607 608 assert(freeEntries == (numEntries - countInsts())); 609} 610 611template <class Impl> 612void 613InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 614{ 615 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 616 617 insertNonSpec(barr_inst); 618} 619 620template <class Impl> 621void 622InstructionQueue<Impl>::advanceTail(DynInstPtr &inst) 623{ 624 // Have this instruction set itself as the producer of its destination 625 // register(s). 626 createDependency(inst); 627} 628 629template <class Impl> 630void 631InstructionQueue<Impl>::addToOrderList(OpClass op_class) 632{ 633 assert(!readyInsts[op_class].empty()); 634 635 ListOrderEntry queue_entry; 636 637 queue_entry.queueType = op_class; 638 639 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 640 641 ListOrderIt list_it = listOrder.begin(); 642 ListOrderIt list_end_it = listOrder.end(); 643 644 while (list_it != list_end_it) { 645 if ((*list_it).oldestInst > queue_entry.oldestInst) { 646 break; 647 } 648 649 list_it++; 650 } 651 652 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 653 queueOnList[op_class] = true; 654} 655 656template <class Impl> 657void 658InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 659{ 660 // Get iterator of next item on the list 661 // Delete the original iterator 662 // Determine if the next item is either the end of the list or younger 663 // than the new instruction. If so, then add in a new iterator right here. 664 // If not, then move along. 665 ListOrderEntry queue_entry; 666 OpClass op_class = (*list_order_it).queueType; 667 ListOrderIt next_it = list_order_it; 668 669 ++next_it; 670 671 queue_entry.queueType = op_class; 672 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 673 674 while (next_it != listOrder.end() && 675 (*next_it).oldestInst < queue_entry.oldestInst) { 676 ++next_it; 677 } 678 679 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 680} 681 682template <class Impl> 683void 684InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 685{ 686 // The CPU could have been sleeping until this op completed (*extremely* 687 // long latency op). Wake it if it was. This may be overkill. 688 iewStage->wakeCPU(); 689 690 fuPool->freeUnit(fu_idx); 691 692 int &size = issueToExecuteQueue->access(0)->size; 693 694 issueToExecuteQueue->access(0)->insts[size++] = inst; 695} 696 697// @todo: Figure out a better way to remove the squashed items from the 698// lists. Checking the top item of each list to see if it's squashed 699// wastes time and forces jumps. 700template <class Impl> 701void 702InstructionQueue<Impl>::scheduleReadyInsts() 703{ 704 DPRINTF(IQ, "Attempting to schedule ready instructions from " 705 "the IQ.\n"); 706 707 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 708 709 // Will need to reorder the list if either a queue is not on the list, 710 // or it has an older instruction than last time. 711 for (int i = 0; i < Num_OpClasses; ++i) { 712 if (!readyInsts[i].empty()) { 713 if (!queueOnList[i]) { 714 addToOrderList(OpClass(i)); 715 } else if (readyInsts[i].top()->seqNum < 716 (*readyIt[i]).oldestInst) { 717 listOrder.erase(readyIt[i]); 718 addToOrderList(OpClass(i)); 719 } 720 } 721 } 722 723 // Have iterator to head of the list 724 // While I haven't exceeded bandwidth or reached the end of the list, 725 // Try to get a FU that can do what this op needs. 726 // If successful, change the oldestInst to the new top of the list, put 727 // the queue in the proper place in the list. 728 // Increment the iterator. 729 // This will avoid trying to schedule a certain op class if there are no 730 // FUs that handle it. 731 ListOrderIt order_it = listOrder.begin(); 732 ListOrderIt order_end_it = listOrder.end(); 733 int total_issued = 0; 734 int exec_queue_slot = i2e_info->size; 735 736 while (exec_queue_slot < totalWidth && order_it != order_end_it) { 737 OpClass op_class = (*order_it).queueType; 738 739 assert(!readyInsts[op_class].empty()); 740 741 DynInstPtr issuing_inst = readyInsts[op_class].top(); 742 743 assert(issuing_inst->seqNum == (*order_it).oldestInst); 744 745 if (issuing_inst->isSquashed()) { 746 readyInsts[op_class].pop(); 747 748 if (!readyInsts[op_class].empty()) { 749 moveToYoungerInst(order_it); 750 } else { 751 readyIt[op_class] = listOrder.end(); 752 queueOnList[op_class] = false; 753 } 754 755 listOrder.erase(order_it++); 756 757 ++iqSquashedInstsIssued; 758 759 continue; 760 } 761 762 int idx = fuPool->getUnit(op_class); 763 764 int tid = issuing_inst->threadNumber; 765 766 if (idx == -2) { 767 assert(op_class == No_OpClass); 768 769 i2e_info->insts[exec_queue_slot++] = issuing_inst; 770 i2e_info->size++; 771 772 DPRINTF(IQ, "Thread %i: Issuing instruction PC that needs no FU" 773 " %#x [sn:%lli]\n", 774 tid, issuing_inst->readPC(), 775 issuing_inst->seqNum); 776 777 readyInsts[op_class].pop(); 778 779 if (!readyInsts[op_class].empty()) { 780 moveToYoungerInst(order_it); 781 } else { 782 readyIt[op_class] = listOrder.end(); 783 queueOnList[op_class] = false; 784 } 785 786 issuing_inst->setIssued(); 787 ++total_issued; 788 789 if (!issuing_inst->isMemRef()) { 790 // Memory instructions can not be freed from the IQ until they 791 // complete. 792 ++freeEntries; 793 count[tid]--; 794 issuing_inst->removeInIQ(); 795 } else { 796 memDepUnit[tid].issue(issuing_inst); 797 } 798 799 listOrder.erase(order_it++); 800 801 stat_issued_inst_type[tid][op_class]++; 802 } else if (idx != -1) { 803 int op_latency = fuPool->getOpLatency(op_class); 804 805 if (op_latency == 1) { 806 i2e_info->insts[exec_queue_slot++] = issuing_inst; 807 i2e_info->size++; 808 809 // Add the FU onto the list of FU's to be freed next cycle. 810 fuPool->freeUnit(idx); 811 } else { 812 int issue_latency = fuPool->getIssueLatency(op_class); 813 814 if (issue_latency > 1) { 815 // Generate completion event for the FU 816 FUCompletion *execution = new FUCompletion(issuing_inst, 817 idx, this); 818 819 execution->schedule(curTick + issue_latency - 1); 820 } else { 821 i2e_info->insts[exec_queue_slot++] = issuing_inst; 822 i2e_info->size++; 823 824 // Add the FU onto the list of FU's to be freed next cycle. 825 fuPool->freeUnit(idx); 826 } 827 } 828 829 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 830 "[sn:%lli]\n", 831 tid, issuing_inst->readPC(), 832 issuing_inst->seqNum); 833 834 readyInsts[op_class].pop(); 835 836 if (!readyInsts[op_class].empty()) { 837 moveToYoungerInst(order_it); 838 } else { 839 readyIt[op_class] = listOrder.end(); 840 queueOnList[op_class] = false; 841 } 842 843 issuing_inst->setIssued(); 844 ++total_issued; 845 846 if (!issuing_inst->isMemRef()) { 847 // Memory instructions can not be freed from the IQ until they 848 // complete. 849 ++freeEntries; 850 count[tid]--; 851 issuing_inst->removeInIQ(); 852 } else { 853 memDepUnit[tid].issue(issuing_inst); 854 } 855 856 listOrder.erase(order_it++); 857 stat_issued_inst_type[tid][op_class]++; 858 } else { 859 stat_fu_busy[op_class]++; 860 fu_busy[tid]++; 861 ++order_it; 862 } 863 } 864 865 if (total_issued) { 866 cpu->activityThisCycle(); 867 } else { 868 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 869 } 870} 871 872template <class Impl> 873void 874InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 875{ 876 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 877 "to execute.\n", inst); 878 879 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 880 881 assert(inst_it != nonSpecInsts.end()); 882 883 unsigned tid = (*inst_it).second->threadNumber; 884 885 // Mark this instruction as ready to issue. 886 (*inst_it).second->setCanIssue(); 887 888 // Now schedule the instruction. 889 if (!(*inst_it).second->isMemRef()) { 890 addIfReady((*inst_it).second); 891 } else { 892 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 893 } 894 895 (*inst_it).second = NULL; 896 897 nonSpecInsts.erase(inst_it); 898} 899 900template <class Impl> 901void 902InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 903{ 904 /*Need to go through each thread??*/ 905 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 906 tid,inst); 907 908 ListIt iq_it = instList[tid].begin(); 909 910 while (iq_it != instList[tid].end() && 911 (*iq_it)->seqNum <= inst) { 912 ++iq_it; 913 instList[tid].pop_front(); 914 } 915 916 assert(freeEntries == (numEntries - countInsts())); 917} 918 919template <class Impl> 920int 921InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 922{ 923 int dependents = 0; 924 925 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 926 927 assert(!completed_inst->isSquashed()); 928 // Look at the physical destination register of the DynInst 929 // and look it up on the dependency graph. Then mark as ready 930 // any instructions within the instruction queue. 931 DependencyEntry *curr; 932 DependencyEntry *prev; 933 934 // Tell the memory dependence unit to wake any dependents on this 935 // instruction if it is a memory instruction. Also complete the memory 936 // instruction at this point since we know it executed fine. 937 // @todo: Might want to rename "completeMemInst" to 938 // something that indicates that it won't need to be replayed, and call 939 // this earlier. Might not be a big deal. 940 if (completed_inst->isMemRef()) { 941 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 942 completeMemInst(completed_inst); 943 } else if (completed_inst->isMemBarrier() || 944 completed_inst->isWriteBarrier()) { 945 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 946 } 947 948 for (int dest_reg_idx = 0; 949 dest_reg_idx < completed_inst->numDestRegs(); 950 dest_reg_idx++) 951 { 952 PhysRegIndex dest_reg = 953 completed_inst->renamedDestRegIdx(dest_reg_idx); 954 955 // Special case of uniq or control registers. They are not 956 // handled by the IQ and thus have no dependency graph entry. 957 // @todo Figure out a cleaner way to handle this. 958 if (dest_reg >= numPhysRegs) { 959 continue; 960 } 961 962 DPRINTF(IQ, "Waking any dependents on register %i.\n", 963 (int) dest_reg); 964 965 //Maybe abstract this part into a function. 966 //Go through the dependency chain, marking the registers as ready 967 //within the waiting instructions. 968 969 curr = dependGraph[dest_reg].next; 970 971 while (curr) { 972 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 973 curr->inst->readPC()); 974 975 // Might want to give more information to the instruction 976 // so that it knows which of its source registers is ready. 977 // However that would mean that the dependency graph entries 978 // would need to hold the src_reg_idx. 979 curr->inst->markSrcRegReady(); 980 981 addIfReady(curr->inst); 982 983 DependencyEntry::mem_alloc_counter--; 984 985 prev = curr; 986 curr = prev->next; 987 prev->inst = NULL; 988 989 ++dependents; 990 991 delete prev; 992 } 993 994 // Reset the head node now that all of its dependents have been woken 995 // up. 996 dependGraph[dest_reg].next = NULL; 997 dependGraph[dest_reg].inst = NULL; 998 999 // Mark the scoreboard as having that register ready. 1000 regScoreboard[dest_reg] = true; 1001 } 1002 return dependents; 1003} 1004 1005template <class Impl> 1006void 1007InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 1008{ 1009 OpClass op_class = ready_inst->opClass(); 1010 1011 readyInsts[op_class].push(ready_inst); 1012 1013 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1014 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1015 ready_inst->readPC(), op_class, ready_inst->seqNum); 1016} 1017 1018template <class Impl> 1019void 1020InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 1021{ 1022 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 1023} 1024 1025template <class Impl> 1026void 1027InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 1028{ 1029 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 1030} 1031 1032template <class Impl> 1033void 1034InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 1035{ 1036 int tid = completed_inst->threadNumber; 1037 1038 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 1039 completed_inst->readPC(), completed_inst->seqNum); 1040 1041 ++freeEntries; 1042 1043 completed_inst->memOpDone = true; 1044 1045 memDepUnit[tid].completed(completed_inst); 1046 1047 count[tid]--; 1048} 1049 1050template <class Impl> 1051void 1052InstructionQueue<Impl>::violation(DynInstPtr &store, 1053 DynInstPtr &faulting_load) 1054{ 1055 memDepUnit[store->threadNumber].violation(store, faulting_load); 1056} 1057 1058template <class Impl> 1059void 1060InstructionQueue<Impl>::squash(unsigned tid) 1061{ 1062 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1063 "the IQ.\n", tid); 1064 1065 // Read instruction sequence number of last instruction out of the 1066 // time buffer. 1067 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1068 1069 // Setup the squash iterator to point to the tail. 1070 squashIt[tid] = instList[tid].end(); 1071 --squashIt[tid]; 1072 1073 // Call doSquash if there are insts in the IQ 1074 if (count[tid] > 0) { 1075 doSquash(tid); 1076 } 1077 1078 // Also tell the memory dependence unit to squash. 1079 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1080} 1081 1082template <class Impl> 1083void 1084InstructionQueue<Impl>::doSquash(unsigned tid) 1085{ 1086 // Make sure the squashed sequence number is valid. 1087// assert(squashedSeqNum[tid] != 0); 1088 1089 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1090 tid, squashedSeqNum[tid]); 1091 1092 // Squash any instructions younger than the squashed sequence number 1093 // given. 1094 while (squashIt[tid] != instList[tid].end() && 1095 (*squashIt[tid])->seqNum > squashedSeqNum[tid]) { 1096 1097 DynInstPtr squashed_inst = (*squashIt[tid]); 1098 1099 // Only handle the instruction if it actually is in the IQ and 1100 // hasn't already been squashed in the IQ. 1101 if (squashed_inst->threadNumber != tid || 1102 squashed_inst->isSquashedInIQ()) { 1103 --squashIt[tid]; 1104 continue; 1105 } 1106 1107 if (!squashed_inst->isIssued() || 1108 (squashed_inst->isMemRef() && 1109 !squashed_inst->memOpDone)) { 1110 1111 // Remove the instruction from the dependency list. 1112 if (!squashed_inst->isNonSpeculative() && 1113 !squashed_inst->isMemBarrier() && 1114 !squashed_inst->isWriteBarrier()) { 1115 1116 for (int src_reg_idx = 0; 1117 src_reg_idx < squashed_inst->numSrcRegs(); 1118 src_reg_idx++) 1119 { 1120 PhysRegIndex src_reg = 1121 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1122 1123 // Only remove it from the dependency graph if it was 1124 // placed there in the first place. 1125 // HACK: This assumes that instructions woken up from the 1126 // dependency chain aren't informed that a specific src 1127 // register has become ready. This may not always be true 1128 // in the future. 1129 // Instead of doing a linked list traversal, we can just 1130 // remove these squashed instructions either at issue time, 1131 // or when the register is overwritten. The only downside 1132 // to this is it leaves more room for error. 1133 1134 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1135 src_reg < numPhysRegs) { 1136 dependGraph[src_reg].remove(squashed_inst); 1137 } 1138 1139 1140 ++iqSquashedOperandsExamined; 1141 } 1142 1143 // Might want to remove producers as well. 1144 } else { 1145 NonSpecMapIt ns_inst_it = 1146 nonSpecInsts.find(squashed_inst->seqNum); 1147 assert(ns_inst_it != nonSpecInsts.end()); 1148 1149 (*ns_inst_it).second = NULL; 1150 1151 nonSpecInsts.erase(ns_inst_it); 1152 1153 ++iqSquashedNonSpecRemoved; 1154 } 1155 1156 // Might want to also clear out the head of the dependency graph. 1157 1158 // Mark it as squashed within the IQ. 1159 squashed_inst->setSquashedInIQ(); 1160 1161 // @todo: Remove this hack where several statuses are set so the 1162 // inst will flow through the rest of the pipeline. 1163 squashed_inst->setIssued(); 1164 squashed_inst->setCanCommit(); 1165 squashed_inst->removeInIQ(); 1166 1167 //Update Thread IQ Count 1168 count[squashed_inst->threadNumber]--; 1169 1170 ++freeEntries; 1171 1172 if (numThreads > 1) { 1173 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1174 "squashed.\n", 1175 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1176 } else { 1177 DPRINTF(IQ, "Instruction [sn:%lli] PC %#x squashed.\n", 1178 squashed_inst->seqNum, squashed_inst->readPC()); 1179 } 1180 } 1181 1182 instList[tid].erase(squashIt[tid]--); 1183 ++iqSquashedInstsExamined; 1184 } 1185} 1186 1187template <class Impl> 1188void 1189InstructionQueue<Impl>::DependencyEntry::insert(DynInstPtr &new_inst) 1190{ 1191 //Add this new, dependent instruction at the head of the dependency 1192 //chain. 1193 1194 // First create the entry that will be added to the head of the 1195 // dependency chain. 1196 DependencyEntry *new_entry = new DependencyEntry; 1197 new_entry->next = this->next; 1198 new_entry->inst = new_inst; 1199 1200 // Then actually add it to the chain. 1201 this->next = new_entry; 1202 1203 ++mem_alloc_counter; 1204} 1205 1206template <class Impl> 1207void 1208InstructionQueue<Impl>::DependencyEntry::remove(DynInstPtr &inst_to_remove) 1209{ 1210 DependencyEntry *prev = this; 1211 DependencyEntry *curr = this->next; 1212 1213 // Make sure curr isn't NULL. Because this instruction is being 1214 // removed from a dependency list, it must have been placed there at 1215 // an earlier time. The dependency chain should not be empty, 1216 // unless the instruction dependent upon it is already ready. 1217 if (curr == NULL) { 1218 return; 1219 } 1220 1221 // Find the instruction to remove within the dependency linked list. 1222 while (curr->inst != inst_to_remove) { 1223 prev = curr; 1224 curr = curr->next; 1225 1226 assert(curr != NULL); 1227 } 1228 1229 // Now remove this instruction from the list. 1230 prev->next = curr->next; 1231 1232 --mem_alloc_counter; 1233 1234 // Could push this off to the destructor of DependencyEntry 1235 curr->inst = NULL; 1236 1237 delete curr; 1238} 1239 1240template <class Impl> 1241bool 1242InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1243{ 1244 // Loop through the instruction's source registers, adding 1245 // them to the dependency list if they are not ready. 1246 int8_t total_src_regs = new_inst->numSrcRegs(); 1247 bool return_val = false; 1248 1249 for (int src_reg_idx = 0; 1250 src_reg_idx < total_src_regs; 1251 src_reg_idx++) 1252 { 1253 // Only add it to the dependency graph if it's not ready. 1254 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1255 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1256 1257 // Check the IQ's scoreboard to make sure the register 1258 // hasn't become ready while the instruction was in flight 1259 // between stages. Only if it really isn't ready should 1260 // it be added to the dependency graph. 1261 if (src_reg >= numPhysRegs) { 1262 continue; 1263 } else if (regScoreboard[src_reg] == false) { 1264 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1265 "is being added to the dependency chain.\n", 1266 new_inst->readPC(), src_reg); 1267 1268 dependGraph[src_reg].insert(new_inst); 1269 1270 // Change the return value to indicate that something 1271 // was added to the dependency graph. 1272 return_val = true; 1273 } else { 1274 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1275 "became ready before it reached the IQ.\n", 1276 new_inst->readPC(), src_reg); 1277 // Mark a register ready within the instruction. 1278 new_inst->markSrcRegReady(); 1279 } 1280 } 1281 } 1282 1283 return return_val; 1284} 1285 1286template <class Impl> 1287void 1288InstructionQueue<Impl>::createDependency(DynInstPtr &new_inst) 1289{ 1290 //Actually nothing really needs to be marked when an 1291 //instruction becomes the producer of a register's value, 1292 //but for convenience a ptr to the producing instruction will 1293 //be placed in the head node of the dependency links. 1294 int8_t total_dest_regs = new_inst->numDestRegs(); 1295 1296 for (int dest_reg_idx = 0; 1297 dest_reg_idx < total_dest_regs; 1298 dest_reg_idx++) 1299 { 1300 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1301 1302 // Instructions that use the misc regs will have a reg number 1303 // higher than the normal physical registers. In this case these 1304 // registers are not renamed, and there is no need to track 1305 // dependencies as these instructions must be executed at commit. 1306 if (dest_reg >= numPhysRegs) { 1307 continue; 1308 } 1309 1310 if (dependGraph[dest_reg].next) { 1311 dumpDependGraph(); 1312 panic("Dependency graph %i not empty!", dest_reg); 1313 } 1314 1315 dependGraph[dest_reg].inst = new_inst; 1316 1317 // Mark the scoreboard to say it's not yet ready. 1318 regScoreboard[dest_reg] = false; 1319 } 1320} 1321 1322template <class Impl> 1323void 1324InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1325{ 1326 //If the instruction now has all of its source registers 1327 // available, then add it to the list of ready instructions. 1328 if (inst->readyToIssue()) { 1329 1330 //Add the instruction to the proper ready list. 1331 if (inst->isMemRef()) { 1332 1333 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1334 1335 // Message to the mem dependence unit that this instruction has 1336 // its registers ready. 1337 1338 memDepUnit[inst->threadNumber].regsReady(inst); 1339 1340 return; 1341 } 1342 1343 OpClass op_class = inst->opClass(); 1344 1345 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1346 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1347 inst->readPC(), op_class, inst->seqNum); 1348 1349 readyInsts[op_class].push(inst); 1350 } 1351} 1352 1353template <class Impl> 1354int 1355InstructionQueue<Impl>::countInsts() 1356{ 1357 //ksewell:This works but definitely could use a cleaner write 1358 //with a more intuitive way of counting. Right now it's 1359 //just brute force .... 1360 1361#if 0 1362 int total_insts = 0; 1363 1364 for (int i = 0; i < numThreads; ++i) { 1365 ListIt count_it = instList[i].begin(); 1366 1367 while (count_it != instList[i].end()) { 1368 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1369 if (!(*count_it)->isIssued()) { 1370 ++total_insts; 1371 } else if ((*count_it)->isMemRef() && 1372 !(*count_it)->memOpDone) { 1373 // Loads that have not been marked as executed still count 1374 // towards the total instructions. 1375 ++total_insts; 1376 } 1377 } 1378 1379 ++count_it; 1380 } 1381 } 1382 1383 return total_insts; 1384#else 1385 return numEntries - freeEntries; 1386#endif 1387} 1388 1389template <class Impl> 1390void 1391InstructionQueue<Impl>::dumpDependGraph() 1392{ 1393 DependencyEntry *curr; 1394 1395 for (int i = 0; i < numPhysRegs; ++i) 1396 { 1397 curr = &dependGraph[i]; 1398 1399 if (curr->inst) { 1400 cprintf("dependGraph[%i]: producer: %#x [sn:%lli] consumer: ", 1401 i, curr->inst->readPC(), curr->inst->seqNum); 1402 } else { 1403 cprintf("dependGraph[%i]: No producer. consumer: ", i); 1404 } 1405 1406 while (curr->next != NULL) { 1407 curr = curr->next; 1408 1409 cprintf("%#x [sn:%lli] ", 1410 curr->inst->readPC(), curr->inst->seqNum); 1411 } 1412 1413 cprintf("\n"); 1414 } 1415} 1416 1417template <class Impl> 1418void 1419InstructionQueue<Impl>::dumpLists() 1420{ 1421 for (int i = 0; i < Num_OpClasses; ++i) { 1422 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1423 1424 cprintf("\n"); 1425 } 1426 1427 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1428 1429 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1430 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1431 1432 cprintf("Non speculative list: "); 1433 1434 while (non_spec_it != non_spec_end_it) { 1435 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1436 (*non_spec_it).second->seqNum); 1437 ++non_spec_it; 1438 } 1439 1440 cprintf("\n"); 1441 1442 ListOrderIt list_order_it = listOrder.begin(); 1443 ListOrderIt list_order_end_it = listOrder.end(); 1444 int i = 1; 1445 1446 cprintf("List order: "); 1447 1448 while (list_order_it != list_order_end_it) { 1449 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1450 (*list_order_it).oldestInst); 1451 1452 ++list_order_it; 1453 ++i; 1454 } 1455 1456 cprintf("\n"); 1457} 1458 1459 1460template <class Impl> 1461void 1462InstructionQueue<Impl>::dumpInsts() 1463{ 1464 for (int i = 0; i < numThreads; ++i) { 1465 int num = 0; 1466 int valid_num = 0; 1467 ListIt inst_list_it = instList[i].begin(); 1468 1469 while (inst_list_it != instList[i].end()) 1470 { 1471 cprintf("Instruction:%i\n", 1472 num); 1473 if (!(*inst_list_it)->isSquashed()) { 1474 if (!(*inst_list_it)->isIssued()) { 1475 ++valid_num; 1476 cprintf("Count:%i\n", valid_num); 1477 } else if ((*inst_list_it)->isMemRef() && 1478 !(*inst_list_it)->memOpDone) { 1479 // Loads that have not been marked as executed still count 1480 // towards the total instructions. 1481 ++valid_num; 1482 cprintf("Count:%i\n", valid_num); 1483 } 1484 } 1485 1486 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1487 "Issued:%i\nSquashed:%i\n", 1488 (*inst_list_it)->readPC(), 1489 (*inst_list_it)->seqNum, 1490 (*inst_list_it)->threadNumber, 1491 (*inst_list_it)->isIssued(), 1492 (*inst_list_it)->isSquashed()); 1493 1494 if ((*inst_list_it)->isMemRef()) { 1495 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1496 } 1497 1498 cprintf("\n"); 1499 1500 inst_list_it++; 1501 ++num; 1502 } 1503 } 1504} 1505