inst_queue.hh revision 9920:028e4da64b42
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_O3_INST_QUEUE_HH__
45#define __CPU_O3_INST_QUEUE_HH__
46
47#include <list>
48#include <map>
49#include <queue>
50#include <vector>
51
52#include "base/statistics.hh"
53#include "base/types.hh"
54#include "cpu/o3/dep_graph.hh"
55#include "cpu/inst_seq.hh"
56#include "cpu/op_class.hh"
57#include "cpu/timebuf.hh"
58#include "sim/eventq.hh"
59
60struct DerivO3CPUParams;
61class FUPool;
62class MemInterface;
63
64/**
65 * A standard instruction queue class.  It holds ready instructions, in
66 * order, in seperate priority queues to facilitate the scheduling of
67 * instructions.  The IQ uses a separate linked list to track dependencies.
68 * Similar to the rename map and the free list, it expects that
69 * floating point registers have their indices start after the integer
70 * registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
71 * and 96-191 are fp).  This remains true even for both logical and
72 * physical register indices. The IQ depends on the memory dependence unit to
73 * track when memory operations are ready in terms of ordering; register
74 * dependencies are tracked normally. Right now the IQ also handles the
75 * execution timing; this is mainly to allow back-to-back scheduling without
76 * requiring IEW to be able to peek into the IQ. At the end of the execution
77 * latency, the instruction is put into the queue to execute, where it will
78 * have the execute() function called on it.
79 * @todo: Make IQ able to handle multiple FU pools.
80 */
81template <class Impl>
82class InstructionQueue
83{
84  public:
85    //Typedefs from the Impl.
86    typedef typename Impl::O3CPU O3CPU;
87    typedef typename Impl::DynInstPtr DynInstPtr;
88
89    typedef typename Impl::CPUPol::IEW IEW;
90    typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
91    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
92    typedef typename Impl::CPUPol::TimeStruct TimeStruct;
93
94    // Typedef of iterator through the list of instructions.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    /** FU completion event class. */
98    class FUCompletion : public Event {
99      private:
100        /** Executing instruction. */
101        DynInstPtr inst;
102
103        /** Index of the FU used for executing. */
104        int fuIdx;
105
106        /** Pointer back to the instruction queue. */
107        InstructionQueue<Impl> *iqPtr;
108
109        /** Should the FU be added to the list to be freed upon
110         * completing this event.
111         */
112        bool freeFU;
113
114      public:
115        /** Construct a FU completion event. */
116        FUCompletion(DynInstPtr &_inst, int fu_idx,
117                     InstructionQueue<Impl> *iq_ptr);
118
119        virtual void process();
120        virtual const char *description() const;
121        void setFreeFU() { freeFU = true; }
122    };
123
124    /** Constructs an IQ. */
125    InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params);
126
127    /** Destructs the IQ. */
128    ~InstructionQueue();
129
130    /** Returns the name of the IQ. */
131    std::string name() const;
132
133    /** Registers statistics. */
134    void regStats();
135
136    /** Resets all instruction queue state. */
137    void resetState();
138
139    /** Sets active threads list. */
140    void setActiveThreads(std::list<ThreadID> *at_ptr);
141
142    /** Sets the timer buffer between issue and execute. */
143    void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
144
145    /** Sets the global time buffer. */
146    void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
147
148    /** Perform sanity checks after a drain. */
149    void drainSanityCheck() const;
150
151    /** Takes over execution from another CPU's thread. */
152    void takeOverFrom();
153
154    /** Number of entries needed for given amount of threads. */
155    int entryAmount(ThreadID num_threads);
156
157    /** Resets max entries for all threads. */
158    void resetEntries();
159
160    /** Returns total number of free entries. */
161    unsigned numFreeEntries();
162
163    /** Returns number of free entries for a thread. */
164    unsigned numFreeEntries(ThreadID tid);
165
166    /** Returns whether or not the IQ is full. */
167    bool isFull();
168
169    /** Returns whether or not the IQ is full for a specific thread. */
170    bool isFull(ThreadID tid);
171
172    /** Returns if there are any ready instructions in the IQ. */
173    bool hasReadyInsts();
174
175    /** Inserts a new instruction into the IQ. */
176    void insert(DynInstPtr &new_inst);
177
178    /** Inserts a new, non-speculative instruction into the IQ. */
179    void insertNonSpec(DynInstPtr &new_inst);
180
181    /** Inserts a memory or write barrier into the IQ to make sure
182     *  loads and stores are ordered properly.
183     */
184    void insertBarrier(DynInstPtr &barr_inst);
185
186    /** Returns the oldest scheduled instruction, and removes it from
187     * the list of instructions waiting to execute.
188     */
189    DynInstPtr getInstToExecute();
190
191    /** Returns a memory instruction that was referred due to a delayed DTB
192     *  translation if it is now ready to execute.
193     */
194    DynInstPtr getDeferredMemInstToExecute();
195
196    /**
197     * Records the instruction as the producer of a register without
198     * adding it to the rest of the IQ.
199     */
200    void recordProducer(DynInstPtr &inst)
201    { addToProducers(inst); }
202
203    /** Process FU completion event. */
204    void processFUCompletion(DynInstPtr &inst, int fu_idx);
205
206    /**
207     * Schedules ready instructions, adding the ready ones (oldest first) to
208     * the queue to execute.
209     */
210    void scheduleReadyInsts();
211
212    /** Schedules a single specific non-speculative instruction. */
213    void scheduleNonSpec(const InstSeqNum &inst);
214
215    /**
216     * Commits all instructions up to and including the given sequence number,
217     * for a specific thread.
218     */
219    void commit(const InstSeqNum &inst, ThreadID tid = 0);
220
221    /** Wakes all dependents of a completed instruction. */
222    int wakeDependents(DynInstPtr &completed_inst);
223
224    /** Adds a ready memory instruction to the ready list. */
225    void addReadyMemInst(DynInstPtr &ready_inst);
226
227    /**
228     * Reschedules a memory instruction. It will be ready to issue once
229     * replayMemInst() is called.
230     */
231    void rescheduleMemInst(DynInstPtr &resched_inst);
232
233    /** Replays a memory instruction. It must be rescheduled first. */
234    void replayMemInst(DynInstPtr &replay_inst);
235
236    /** Completes a memory operation. */
237    void completeMemInst(DynInstPtr &completed_inst);
238
239    /**
240     * Defers a memory instruction when its DTB translation incurs a hw
241     * page table walk.
242     */
243    void deferMemInst(DynInstPtr &deferred_inst);
244
245    /** Indicates an ordering violation between a store and a load. */
246    void violation(DynInstPtr &store, DynInstPtr &faulting_load);
247
248    /**
249     * Squashes instructions for a thread. Squashing information is obtained
250     * from the time buffer.
251     */
252    void squash(ThreadID tid);
253
254    /** Returns the number of used entries for a thread. */
255    unsigned getCount(ThreadID tid) { return count[tid]; };
256
257    /** Debug function to print all instructions. */
258    void printInsts();
259
260  private:
261    /** Does the actual squashing. */
262    void doSquash(ThreadID tid);
263
264    /////////////////////////
265    // Various pointers
266    /////////////////////////
267
268    /** Pointer to the CPU. */
269    O3CPU *cpu;
270
271    /** Cache interface. */
272    MemInterface *dcacheInterface;
273
274    /** Pointer to IEW stage. */
275    IEW *iewStage;
276
277    /** The memory dependence unit, which tracks/predicts memory dependences
278     *  between instructions.
279     */
280    MemDepUnit memDepUnit[Impl::MaxThreads];
281
282    /** The queue to the execute stage.  Issued instructions will be written
283     *  into it.
284     */
285    TimeBuffer<IssueStruct> *issueToExecuteQueue;
286
287    /** The backwards time buffer. */
288    TimeBuffer<TimeStruct> *timeBuffer;
289
290    /** Wire to read information from timebuffer. */
291    typename TimeBuffer<TimeStruct>::wire fromCommit;
292
293    /** Function unit pool. */
294    FUPool *fuPool;
295
296    //////////////////////////////////////
297    // Instruction lists, ready queues, and ordering
298    //////////////////////////////////////
299
300    /** List of all the instructions in the IQ (some of which may be issued). */
301    std::list<DynInstPtr> instList[Impl::MaxThreads];
302
303    /** List of instructions that are ready to be executed. */
304    std::list<DynInstPtr> instsToExecute;
305
306    /** List of instructions waiting for their DTB translation to
307     *  complete (hw page table walk in progress).
308     */
309    std::list<DynInstPtr> deferredMemInsts;
310
311    /**
312     * Struct for comparing entries to be added to the priority queue.
313     * This gives reverse ordering to the instructions in terms of
314     * sequence numbers: the instructions with smaller sequence
315     * numbers (and hence are older) will be at the top of the
316     * priority queue.
317     */
318    struct pqCompare {
319        bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
320        {
321            return lhs->seqNum > rhs->seqNum;
322        }
323    };
324
325    typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare>
326    ReadyInstQueue;
327
328    /** List of ready instructions, per op class.  They are separated by op
329     *  class to allow for easy mapping to FUs.
330     */
331    ReadyInstQueue readyInsts[Num_OpClasses];
332
333    /** List of non-speculative instructions that will be scheduled
334     *  once the IQ gets a signal from commit.  While it's redundant to
335     *  have the key be a part of the value (the sequence number is stored
336     *  inside of DynInst), when these instructions are woken up only
337     *  the sequence number will be available.  Thus it is most efficient to be
338     *  able to search by the sequence number alone.
339     */
340    std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
341
342    typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt;
343
344    /** Entry for the list age ordering by op class. */
345    struct ListOrderEntry {
346        OpClass queueType;
347        InstSeqNum oldestInst;
348    };
349
350    /** List that contains the age order of the oldest instruction of each
351     *  ready queue.  Used to select the oldest instruction available
352     *  among op classes.
353     *  @todo: Might be better to just move these entries around instead
354     *  of creating new ones every time the position changes due to an
355     *  instruction issuing.  Not sure std::list supports this.
356     */
357    std::list<ListOrderEntry> listOrder;
358
359    typedef typename std::list<ListOrderEntry>::iterator ListOrderIt;
360
361    /** Tracks if each ready queue is on the age order list. */
362    bool queueOnList[Num_OpClasses];
363
364    /** Iterators of each ready queue.  Points to their spot in the age order
365     *  list.
366     */
367    ListOrderIt readyIt[Num_OpClasses];
368
369    /** Add an op class to the age order list. */
370    void addToOrderList(OpClass op_class);
371
372    /**
373     * Called when the oldest instruction has been removed from a ready queue;
374     * this places that ready queue into the proper spot in the age order list.
375     */
376    void moveToYoungerInst(ListOrderIt age_order_it);
377
378    DependencyGraph<DynInstPtr> dependGraph;
379
380    //////////////////////////////////////
381    // Various parameters
382    //////////////////////////////////////
383
384    /** IQ Resource Sharing Policy */
385    enum IQPolicy {
386        Dynamic,
387        Partitioned,
388        Threshold
389    };
390
391    /** IQ sharing policy for SMT. */
392    IQPolicy iqPolicy;
393
394    /** Number of Total Threads*/
395    ThreadID numThreads;
396
397    /** Pointer to list of active threads. */
398    std::list<ThreadID> *activeThreads;
399
400    /** Per Thread IQ count */
401    unsigned count[Impl::MaxThreads];
402
403    /** Max IQ Entries Per Thread */
404    unsigned maxEntries[Impl::MaxThreads];
405
406    /** Number of free IQ entries left. */
407    unsigned freeEntries;
408
409    /** The number of entries in the instruction queue. */
410    unsigned numEntries;
411
412    /** The total number of instructions that can be issued in one cycle. */
413    unsigned totalWidth;
414
415    /** The number of physical registers in the CPU. */
416    unsigned numPhysRegs;
417
418    /** Delay between commit stage and the IQ.
419     *  @todo: Make there be a distinction between the delays within IEW.
420     */
421    Cycles commitToIEWDelay;
422
423    /** The sequence number of the squashed instruction. */
424    InstSeqNum squashedSeqNum[Impl::MaxThreads];
425
426    /** A cache of the recently woken registers.  It is 1 if the register
427     *  has been woken up recently, and 0 if the register has been added
428     *  to the dependency graph and has not yet received its value.  It
429     *  is basically a secondary scoreboard, and should pretty much mirror
430     *  the scoreboard that exists in the rename map.
431     */
432    std::vector<bool> regScoreboard;
433
434    /** Adds an instruction to the dependency graph, as a consumer. */
435    bool addToDependents(DynInstPtr &new_inst);
436
437    /** Adds an instruction to the dependency graph, as a producer. */
438    void addToProducers(DynInstPtr &new_inst);
439
440    /** Moves an instruction to the ready queue if it is ready. */
441    void addIfReady(DynInstPtr &inst);
442
443    /** Debugging function to count how many entries are in the IQ.  It does
444     *  a linear walk through the instructions, so do not call this function
445     *  during normal execution.
446     */
447    int countInsts();
448
449    /** Debugging function to dump all the list sizes, as well as print
450     *  out the list of nonspeculative instructions.  Should not be used
451     *  in any other capacity, but it has no harmful sideaffects.
452     */
453    void dumpLists();
454
455    /** Debugging function to dump out all instructions that are in the
456     *  IQ.
457     */
458    void dumpInsts();
459
460    /** Stat for number of instructions added. */
461    Stats::Scalar iqInstsAdded;
462    /** Stat for number of non-speculative instructions added. */
463    Stats::Scalar iqNonSpecInstsAdded;
464
465    Stats::Scalar iqInstsIssued;
466    /** Stat for number of integer instructions issued. */
467    Stats::Scalar iqIntInstsIssued;
468    /** Stat for number of floating point instructions issued. */
469    Stats::Scalar iqFloatInstsIssued;
470    /** Stat for number of branch instructions issued. */
471    Stats::Scalar iqBranchInstsIssued;
472    /** Stat for number of memory instructions issued. */
473    Stats::Scalar iqMemInstsIssued;
474    /** Stat for number of miscellaneous instructions issued. */
475    Stats::Scalar iqMiscInstsIssued;
476    /** Stat for number of squashed instructions that were ready to issue. */
477    Stats::Scalar iqSquashedInstsIssued;
478    /** Stat for number of squashed instructions examined when squashing. */
479    Stats::Scalar iqSquashedInstsExamined;
480    /** Stat for number of squashed instruction operands examined when
481     * squashing.
482     */
483    Stats::Scalar iqSquashedOperandsExamined;
484    /** Stat for number of non-speculative instructions removed due to a squash.
485     */
486    Stats::Scalar iqSquashedNonSpecRemoved;
487    // Also include number of instructions rescheduled and replayed.
488
489    /** Distribution of number of instructions in the queue.
490     * @todo: Need to create struct to track the entry time for each
491     * instruction. */
492//    Stats::VectorDistribution queueResDist;
493    /** Distribution of the number of instructions issued. */
494    Stats::Distribution numIssuedDist;
495    /** Distribution of the cycles it takes to issue an instruction.
496     * @todo: Need to create struct to track the ready time for each
497     * instruction. */
498//    Stats::VectorDistribution issueDelayDist;
499
500    /** Number of times an instruction could not be issued because a
501     * FU was busy.
502     */
503    Stats::Vector statFuBusy;
504//    Stats::Vector dist_unissued;
505    /** Stat for total number issued for each instruction type. */
506    Stats::Vector2d statIssuedInstType;
507
508    /** Number of instructions issued per cycle. */
509    Stats::Formula issueRate;
510
511    /** Number of times the FU was busy. */
512    Stats::Vector fuBusy;
513    /** Number of times the FU was busy per instruction issued. */
514    Stats::Formula fuBusyRate;
515   public:
516    Stats::Scalar intInstQueueReads;
517    Stats::Scalar intInstQueueWrites;
518    Stats::Scalar intInstQueueWakeupAccesses;
519    Stats::Scalar fpInstQueueReads;
520    Stats::Scalar fpInstQueueWrites;
521    Stats::Scalar fpInstQueueWakeupQccesses;
522
523    Stats::Scalar intAluAccesses;
524    Stats::Scalar fpAluAccesses;
525};
526
527#endif //__CPU_O3_INST_QUEUE_HH__
528