commit_impl.hh revision 8229:78bf55f23338
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <string>
46
47#include "arch/utility.hh"
48#include "base/loader/symtab.hh"
49#include "base/cp_annotate.hh"
50#include "config/full_system.hh"
51#include "config/the_isa.hh"
52#include "config/use_checker.hh"
53#include "cpu/o3/commit.hh"
54#include "cpu/o3/thread_state.hh"
55#include "cpu/exetrace.hh"
56#include "cpu/timebuf.hh"
57#include "params/DerivO3CPU.hh"
58
59#if USE_CHECKER
60#include "cpu/checker/cpu.hh"
61#endif
62
63using namespace std;
64
65template <class Impl>
66DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
67                                          ThreadID _tid)
68    : Event(CPU_Tick_Pri), commit(_commit), tid(_tid)
69{
70    this->setFlags(AutoDelete);
71}
72
73template <class Impl>
74void
75DefaultCommit<Impl>::TrapEvent::process()
76{
77    // This will get reset by commit if it was switched out at the
78    // time of this event processing.
79    commit->trapSquash[tid] = true;
80}
81
82template <class Impl>
83const char *
84DefaultCommit<Impl>::TrapEvent::description() const
85{
86    return "Trap";
87}
88
89template <class Impl>
90DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
91    : cpu(_cpu),
92      squashCounter(0),
93      iewToCommitDelay(params->iewToCommitDelay),
94      commitToIEWDelay(params->commitToIEWDelay),
95      renameToROBDelay(params->renameToROBDelay),
96      fetchToCommitDelay(params->commitToFetchDelay),
97      renameWidth(params->renameWidth),
98      commitWidth(params->commitWidth),
99      numThreads(params->numThreads),
100      drainPending(false),
101      switchedOut(false),
102      trapLatency(params->trapLatency)
103{
104    _status = Active;
105    _nextStatus = Inactive;
106    std::string policy = params->smtCommitPolicy;
107
108    //Convert string to lowercase
109    std::transform(policy.begin(), policy.end(), policy.begin(),
110                   (int(*)(int)) tolower);
111
112    //Assign commit policy
113    if (policy == "aggressive"){
114        commitPolicy = Aggressive;
115
116        DPRINTF(Commit,"Commit Policy set to Aggressive.");
117    } else if (policy == "roundrobin"){
118        commitPolicy = RoundRobin;
119
120        //Set-Up Priority List
121        for (ThreadID tid = 0; tid < numThreads; tid++) {
122            priority_list.push_back(tid);
123        }
124
125        DPRINTF(Commit,"Commit Policy set to Round Robin.");
126    } else if (policy == "oldestready"){
127        commitPolicy = OldestReady;
128
129        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
130    } else {
131        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
132               "RoundRobin,OldestReady}");
133    }
134
135    for (ThreadID tid = 0; tid < numThreads; tid++) {
136        commitStatus[tid] = Idle;
137        changedROBNumEntries[tid] = false;
138        checkEmptyROB[tid] = false;
139        trapInFlight[tid] = false;
140        committedStores[tid] = false;
141        trapSquash[tid] = false;
142        tcSquash[tid] = false;
143        pc[tid].set(0);
144        lastCommitedSeqNum[tid] = 0;
145    }
146#if FULL_SYSTEM
147    interrupt = NoFault;
148#endif
149}
150
151template <class Impl>
152std::string
153DefaultCommit<Impl>::name() const
154{
155    return cpu->name() + ".commit";
156}
157
158template <class Impl>
159void
160DefaultCommit<Impl>::regStats()
161{
162    using namespace Stats;
163    commitCommittedInsts
164        .name(name() + ".commitCommittedInsts")
165        .desc("The number of committed instructions")
166        .prereq(commitCommittedInsts);
167    commitSquashedInsts
168        .name(name() + ".commitSquashedInsts")
169        .desc("The number of squashed insts skipped by commit")
170        .prereq(commitSquashedInsts);
171    commitSquashEvents
172        .name(name() + ".commitSquashEvents")
173        .desc("The number of times commit is told to squash")
174        .prereq(commitSquashEvents);
175    commitNonSpecStalls
176        .name(name() + ".commitNonSpecStalls")
177        .desc("The number of times commit has been forced to stall to "
178              "communicate backwards")
179        .prereq(commitNonSpecStalls);
180    branchMispredicts
181        .name(name() + ".branchMispredicts")
182        .desc("The number of times a branch was mispredicted")
183        .prereq(branchMispredicts);
184    numCommittedDist
185        .init(0,commitWidth,1)
186        .name(name() + ".COM:committed_per_cycle")
187        .desc("Number of insts commited each cycle")
188        .flags(Stats::pdf)
189        ;
190
191    statComInst
192        .init(cpu->numThreads)
193        .name(name() + ".COM:count")
194        .desc("Number of instructions committed")
195        .flags(total)
196        ;
197
198    statComSwp
199        .init(cpu->numThreads)
200        .name(name() + ".COM:swp_count")
201        .desc("Number of s/w prefetches committed")
202        .flags(total)
203        ;
204
205    statComRefs
206        .init(cpu->numThreads)
207        .name(name() +  ".COM:refs")
208        .desc("Number of memory references committed")
209        .flags(total)
210        ;
211
212    statComLoads
213        .init(cpu->numThreads)
214        .name(name() +  ".COM:loads")
215        .desc("Number of loads committed")
216        .flags(total)
217        ;
218
219    statComMembars
220        .init(cpu->numThreads)
221        .name(name() +  ".COM:membars")
222        .desc("Number of memory barriers committed")
223        .flags(total)
224        ;
225
226    statComBranches
227        .init(cpu->numThreads)
228        .name(name() + ".COM:branches")
229        .desc("Number of branches committed")
230        .flags(total)
231        ;
232
233    statComFloating
234        .init(cpu->numThreads)
235        .name(name() + ".COM:fp_insts")
236        .desc("Number of committed floating point instructions.")
237        .flags(total)
238        ;
239
240    statComInteger
241        .init(cpu->numThreads)
242        .name(name()+".COM:int_insts")
243        .desc("Number of committed integer instructions.")
244        .flags(total)
245        ;
246
247    statComFunctionCalls
248        .init(cpu->numThreads)
249        .name(name()+".COM:function_calls")
250        .desc("Number of function calls committed.")
251        .flags(total)
252        ;
253
254    commitEligible
255        .init(cpu->numThreads)
256        .name(name() + ".COM:bw_limited")
257        .desc("number of insts not committed due to BW limits")
258        .flags(total)
259        ;
260
261    commitEligibleSamples
262        .name(name() + ".COM:bw_lim_events")
263        .desc("number cycles where commit BW limit reached")
264        ;
265}
266
267template <class Impl>
268void
269DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
270{
271    thread = threads;
272}
273
274template <class Impl>
275void
276DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
277{
278    timeBuffer = tb_ptr;
279
280    // Setup wire to send information back to IEW.
281    toIEW = timeBuffer->getWire(0);
282
283    // Setup wire to read data from IEW (for the ROB).
284    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
285}
286
287template <class Impl>
288void
289DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
290{
291    fetchQueue = fq_ptr;
292
293    // Setup wire to get instructions from rename (for the ROB).
294    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
295}
296
297template <class Impl>
298void
299DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
300{
301    renameQueue = rq_ptr;
302
303    // Setup wire to get instructions from rename (for the ROB).
304    fromRename = renameQueue->getWire(-renameToROBDelay);
305}
306
307template <class Impl>
308void
309DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
310{
311    iewQueue = iq_ptr;
312
313    // Setup wire to get instructions from IEW.
314    fromIEW = iewQueue->getWire(-iewToCommitDelay);
315}
316
317template <class Impl>
318void
319DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
320{
321    iewStage = iew_stage;
322}
323
324template<class Impl>
325void
326DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
327{
328    activeThreads = at_ptr;
329}
330
331template <class Impl>
332void
333DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
334{
335    for (ThreadID tid = 0; tid < numThreads; tid++)
336        renameMap[tid] = &rm_ptr[tid];
337}
338
339template <class Impl>
340void
341DefaultCommit<Impl>::setROB(ROB *rob_ptr)
342{
343    rob = rob_ptr;
344}
345
346template <class Impl>
347void
348DefaultCommit<Impl>::initStage()
349{
350    rob->setActiveThreads(activeThreads);
351    rob->resetEntries();
352
353    // Broadcast the number of free entries.
354    for (ThreadID tid = 0; tid < numThreads; tid++) {
355        toIEW->commitInfo[tid].usedROB = true;
356        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
357        toIEW->commitInfo[tid].emptyROB = true;
358    }
359
360    // Commit must broadcast the number of free entries it has at the
361    // start of the simulation, so it starts as active.
362    cpu->activateStage(O3CPU::CommitIdx);
363
364    cpu->activityThisCycle();
365    trapLatency = cpu->ticks(trapLatency);
366}
367
368template <class Impl>
369bool
370DefaultCommit<Impl>::drain()
371{
372    drainPending = true;
373
374    return false;
375}
376
377template <class Impl>
378void
379DefaultCommit<Impl>::switchOut()
380{
381    switchedOut = true;
382    drainPending = false;
383    rob->switchOut();
384}
385
386template <class Impl>
387void
388DefaultCommit<Impl>::resume()
389{
390    drainPending = false;
391}
392
393template <class Impl>
394void
395DefaultCommit<Impl>::takeOverFrom()
396{
397    switchedOut = false;
398    _status = Active;
399    _nextStatus = Inactive;
400    for (ThreadID tid = 0; tid < numThreads; tid++) {
401        commitStatus[tid] = Idle;
402        changedROBNumEntries[tid] = false;
403        trapSquash[tid] = false;
404        tcSquash[tid] = false;
405    }
406    squashCounter = 0;
407    rob->takeOverFrom();
408}
409
410template <class Impl>
411void
412DefaultCommit<Impl>::updateStatus()
413{
414    // reset ROB changed variable
415    list<ThreadID>::iterator threads = activeThreads->begin();
416    list<ThreadID>::iterator end = activeThreads->end();
417
418    while (threads != end) {
419        ThreadID tid = *threads++;
420
421        changedROBNumEntries[tid] = false;
422
423        // Also check if any of the threads has a trap pending
424        if (commitStatus[tid] == TrapPending ||
425            commitStatus[tid] == FetchTrapPending) {
426            _nextStatus = Active;
427        }
428    }
429
430    if (_nextStatus == Inactive && _status == Active) {
431        DPRINTF(Activity, "Deactivating stage.\n");
432        cpu->deactivateStage(O3CPU::CommitIdx);
433    } else if (_nextStatus == Active && _status == Inactive) {
434        DPRINTF(Activity, "Activating stage.\n");
435        cpu->activateStage(O3CPU::CommitIdx);
436    }
437
438    _status = _nextStatus;
439}
440
441template <class Impl>
442void
443DefaultCommit<Impl>::setNextStatus()
444{
445    int squashes = 0;
446
447    list<ThreadID>::iterator threads = activeThreads->begin();
448    list<ThreadID>::iterator end = activeThreads->end();
449
450    while (threads != end) {
451        ThreadID tid = *threads++;
452
453        if (commitStatus[tid] == ROBSquashing) {
454            squashes++;
455        }
456    }
457
458    squashCounter = squashes;
459
460    // If commit is currently squashing, then it will have activity for the
461    // next cycle. Set its next status as active.
462    if (squashCounter) {
463        _nextStatus = Active;
464    }
465}
466
467template <class Impl>
468bool
469DefaultCommit<Impl>::changedROBEntries()
470{
471    list<ThreadID>::iterator threads = activeThreads->begin();
472    list<ThreadID>::iterator end = activeThreads->end();
473
474    while (threads != end) {
475        ThreadID tid = *threads++;
476
477        if (changedROBNumEntries[tid]) {
478            return true;
479        }
480    }
481
482    return false;
483}
484
485template <class Impl>
486size_t
487DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
488{
489    return rob->numFreeEntries(tid);
490}
491
492template <class Impl>
493void
494DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
495{
496    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
497
498    TrapEvent *trap = new TrapEvent(this, tid);
499
500    cpu->schedule(trap, curTick() + trapLatency);
501    trapInFlight[tid] = true;
502}
503
504template <class Impl>
505void
506DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
507{
508    assert(!trapInFlight[tid]);
509    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
510
511    tcSquash[tid] = true;
512}
513
514template <class Impl>
515void
516DefaultCommit<Impl>::squashAll(ThreadID tid)
517{
518    // If we want to include the squashing instruction in the squash,
519    // then use one older sequence number.
520    // Hopefully this doesn't mess things up.  Basically I want to squash
521    // all instructions of this thread.
522    InstSeqNum squashed_inst = rob->isEmpty() ?
523        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
524
525    // All younger instructions will be squashed. Set the sequence
526    // number as the youngest instruction in the ROB (0 in this case.
527    // Hopefully nothing breaks.)
528    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
529
530    rob->squash(squashed_inst, tid);
531    changedROBNumEntries[tid] = true;
532
533    // Send back the sequence number of the squashed instruction.
534    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
535
536    // Send back the squash signal to tell stages that they should
537    // squash.
538    toIEW->commitInfo[tid].squash = true;
539
540    // Send back the rob squashing signal so other stages know that
541    // the ROB is in the process of squashing.
542    toIEW->commitInfo[tid].robSquashing = true;
543
544    toIEW->commitInfo[tid].mispredictInst = NULL;
545    toIEW->commitInfo[tid].squashInst = NULL;
546
547    toIEW->commitInfo[tid].pc = pc[tid];
548}
549
550template <class Impl>
551void
552DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
553{
554    squashAll(tid);
555
556    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
557
558    thread[tid]->trapPending = false;
559    thread[tid]->inSyscall = false;
560    trapInFlight[tid] = false;
561
562    trapSquash[tid] = false;
563
564    commitStatus[tid] = ROBSquashing;
565    cpu->activityThisCycle();
566}
567
568template <class Impl>
569void
570DefaultCommit<Impl>::squashFromTC(ThreadID tid)
571{
572    squashAll(tid);
573
574    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
575
576    thread[tid]->inSyscall = false;
577    assert(!thread[tid]->trapPending);
578
579    commitStatus[tid] = ROBSquashing;
580    cpu->activityThisCycle();
581
582    tcSquash[tid] = false;
583}
584
585template <class Impl>
586void
587DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
588        uint64_t squash_after_seq_num)
589{
590    youngestSeqNum[tid] = squash_after_seq_num;
591
592    rob->squash(squash_after_seq_num, tid);
593    changedROBNumEntries[tid] = true;
594
595    // Send back the sequence number of the squashed instruction.
596    toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
597
598    toIEW->commitInfo[tid].squashInst = head_inst;
599    // Send back the squash signal to tell stages that they should squash.
600    toIEW->commitInfo[tid].squash = true;
601
602    // Send back the rob squashing signal so other stages know that
603    // the ROB is in the process of squashing.
604    toIEW->commitInfo[tid].robSquashing = true;
605
606    toIEW->commitInfo[tid].mispredictInst = NULL;
607
608    toIEW->commitInfo[tid].pc = pc[tid];
609    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
610            tid, squash_after_seq_num);
611    commitStatus[tid] = ROBSquashing;
612}
613
614template <class Impl>
615void
616DefaultCommit<Impl>::tick()
617{
618    wroteToTimeBuffer = false;
619    _nextStatus = Inactive;
620
621    if (drainPending && rob->isEmpty() && !iewStage->hasStoresToWB()) {
622        cpu->signalDrained();
623        drainPending = false;
624        return;
625    }
626
627    if (activeThreads->empty())
628        return;
629
630    list<ThreadID>::iterator threads = activeThreads->begin();
631    list<ThreadID>::iterator end = activeThreads->end();
632
633    // Check if any of the threads are done squashing.  Change the
634    // status if they are done.
635    while (threads != end) {
636        ThreadID tid = *threads++;
637
638        // Clear the bit saying if the thread has committed stores
639        // this cycle.
640        committedStores[tid] = false;
641
642        if (commitStatus[tid] == ROBSquashing) {
643
644            if (rob->isDoneSquashing(tid)) {
645                commitStatus[tid] = Running;
646            } else {
647                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
648                        " insts this cycle.\n", tid);
649                rob->doSquash(tid);
650                toIEW->commitInfo[tid].robSquashing = true;
651                wroteToTimeBuffer = true;
652            }
653        }
654    }
655
656    commit();
657
658    markCompletedInsts();
659
660    threads = activeThreads->begin();
661
662    while (threads != end) {
663        ThreadID tid = *threads++;
664
665        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
666            // The ROB has more instructions it can commit. Its next status
667            // will be active.
668            _nextStatus = Active;
669
670            DynInstPtr inst = rob->readHeadInst(tid);
671
672            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
673                    " ROB and ready to commit\n",
674                    tid, inst->seqNum, inst->pcState());
675
676        } else if (!rob->isEmpty(tid)) {
677            DynInstPtr inst = rob->readHeadInst(tid);
678
679            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
680                    "%s is head of ROB and not ready\n",
681                    tid, inst->seqNum, inst->pcState());
682        }
683
684        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
685                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
686    }
687
688
689    if (wroteToTimeBuffer) {
690        DPRINTF(Activity, "Activity This Cycle.\n");
691        cpu->activityThisCycle();
692    }
693
694    updateStatus();
695}
696
697#if FULL_SYSTEM
698template <class Impl>
699void
700DefaultCommit<Impl>::handleInterrupt()
701{
702    // Verify that we still have an interrupt to handle
703    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
704        DPRINTF(Commit, "Pending interrupt is cleared by master before "
705                "it got handled. Restart fetching from the orig path.\n");
706        toIEW->commitInfo[0].clearInterrupt = true;
707        interrupt = NoFault;
708        return;
709    }
710
711    // Wait until the ROB is empty and all stores have drained in
712    // order to enter the interrupt.
713    if (rob->isEmpty() && !iewStage->hasStoresToWB()) {
714        // Squash or record that I need to squash this cycle if
715        // an interrupt needed to be handled.
716        DPRINTF(Commit, "Interrupt detected.\n");
717
718        // Clear the interrupt now that it's going to be handled
719        toIEW->commitInfo[0].clearInterrupt = true;
720
721        assert(!thread[0]->inSyscall);
722        thread[0]->inSyscall = true;
723
724        // CPU will handle interrupt.
725        cpu->processInterrupts(interrupt);
726
727        thread[0]->inSyscall = false;
728
729        commitStatus[0] = TrapPending;
730
731        // Generate trap squash event.
732        generateTrapEvent(0);
733
734        interrupt = NoFault;
735    } else {
736        DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
737    }
738}
739
740template <class Impl>
741void
742DefaultCommit<Impl>::propagateInterrupt()
743{
744    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
745            tcSquash[0])
746        return;
747
748    // Process interrupts if interrupts are enabled, not in PAL
749    // mode, and no other traps or external squashes are currently
750    // pending.
751    // @todo: Allow other threads to handle interrupts.
752
753    // Get any interrupt that happened
754    interrupt = cpu->getInterrupts();
755
756    // Tell fetch that there is an interrupt pending.  This
757    // will make fetch wait until it sees a non PAL-mode PC,
758    // at which point it stops fetching instructions.
759    if (interrupt != NoFault)
760        toIEW->commitInfo[0].interruptPending = true;
761}
762
763#endif // FULL_SYSTEM
764
765template <class Impl>
766void
767DefaultCommit<Impl>::commit()
768{
769
770#if FULL_SYSTEM
771    // Check for any interrupt that we've already squashed for and start processing it.
772    if (interrupt != NoFault)
773        handleInterrupt();
774
775    // Check if we have a interrupt and get read to handle it
776    if (cpu->checkInterrupts(cpu->tcBase(0)))
777        propagateInterrupt();
778#endif // FULL_SYSTEM
779
780    ////////////////////////////////////
781    // Check for any possible squashes, handle them first
782    ////////////////////////////////////
783    list<ThreadID>::iterator threads = activeThreads->begin();
784    list<ThreadID>::iterator end = activeThreads->end();
785
786    while (threads != end) {
787        ThreadID tid = *threads++;
788
789        // Not sure which one takes priority.  I think if we have
790        // both, that's a bad sign.
791        if (trapSquash[tid] == true) {
792            assert(!tcSquash[tid]);
793            squashFromTrap(tid);
794        } else if (tcSquash[tid] == true) {
795            assert(commitStatus[tid] != TrapPending);
796            squashFromTC(tid);
797        }
798
799        // Squashed sequence number must be older than youngest valid
800        // instruction in the ROB. This prevents squashes from younger
801        // instructions overriding squashes from older instructions.
802        if (fromIEW->squash[tid] &&
803            commitStatus[tid] != TrapPending &&
804            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
805
806            if (fromIEW->mispredictInst[tid]) {
807                DPRINTF(Commit,
808                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
809                    tid,
810                    fromIEW->mispredictInst[tid]->instAddr(),
811                    fromIEW->squashedSeqNum[tid]);
812            } else {
813                DPRINTF(Commit,
814                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
815                    tid, fromIEW->squashedSeqNum[tid]);
816            }
817
818            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
819                    tid,
820                    fromIEW->pc[tid].nextInstAddr());
821
822            commitStatus[tid] = ROBSquashing;
823
824            // If we want to include the squashing instruction in the squash,
825            // then use one older sequence number.
826            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
827
828            if (fromIEW->includeSquashInst[tid] == true) {
829                squashed_inst--;
830            }
831
832            // All younger instructions will be squashed. Set the sequence
833            // number as the youngest instruction in the ROB.
834            youngestSeqNum[tid] = squashed_inst;
835
836            rob->squash(squashed_inst, tid);
837            changedROBNumEntries[tid] = true;
838
839            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
840
841            toIEW->commitInfo[tid].squash = true;
842
843            // Send back the rob squashing signal so other stages know that
844            // the ROB is in the process of squashing.
845            toIEW->commitInfo[tid].robSquashing = true;
846
847            toIEW->commitInfo[tid].mispredictInst =
848                fromIEW->mispredictInst[tid];
849            toIEW->commitInfo[tid].branchTaken =
850                fromIEW->branchTaken[tid];
851            toIEW->commitInfo[tid].squashInst = NULL;
852
853            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
854
855            if (toIEW->commitInfo[tid].mispredictInst) {
856                ++branchMispredicts;
857            }
858        }
859
860    }
861
862    setNextStatus();
863
864    if (squashCounter != numThreads) {
865        // If we're not currently squashing, then get instructions.
866        getInsts();
867
868        // Try to commit any instructions.
869        commitInsts();
870    }
871
872    //Check for any activity
873    threads = activeThreads->begin();
874
875    while (threads != end) {
876        ThreadID tid = *threads++;
877
878        if (changedROBNumEntries[tid]) {
879            toIEW->commitInfo[tid].usedROB = true;
880            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
881
882            wroteToTimeBuffer = true;
883            changedROBNumEntries[tid] = false;
884            if (rob->isEmpty(tid))
885                checkEmptyROB[tid] = true;
886        }
887
888        // ROB is only considered "empty" for previous stages if: a)
889        // ROB is empty, b) there are no outstanding stores, c) IEW
890        // stage has received any information regarding stores that
891        // committed.
892        // c) is checked by making sure to not consider the ROB empty
893        // on the same cycle as when stores have been committed.
894        // @todo: Make this handle multi-cycle communication between
895        // commit and IEW.
896        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
897            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
898            checkEmptyROB[tid] = false;
899            toIEW->commitInfo[tid].usedROB = true;
900            toIEW->commitInfo[tid].emptyROB = true;
901            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
902            wroteToTimeBuffer = true;
903        }
904
905    }
906}
907
908template <class Impl>
909void
910DefaultCommit<Impl>::commitInsts()
911{
912    ////////////////////////////////////
913    // Handle commit
914    // Note that commit will be handled prior to putting new
915    // instructions in the ROB so that the ROB only tries to commit
916    // instructions it has in this current cycle, and not instructions
917    // it is writing in during this cycle.  Can't commit and squash
918    // things at the same time...
919    ////////////////////////////////////
920
921    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
922
923    unsigned num_committed = 0;
924
925    DynInstPtr head_inst;
926
927    // Commit as many instructions as possible until the commit bandwidth
928    // limit is reached, or it becomes impossible to commit any more.
929    while (num_committed < commitWidth) {
930        int commit_thread = getCommittingThread();
931
932        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
933            break;
934
935        head_inst = rob->readHeadInst(commit_thread);
936
937        ThreadID tid = head_inst->threadNumber;
938
939        assert(tid == commit_thread);
940
941        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
942                head_inst->seqNum, tid);
943
944        // If the head instruction is squashed, it is ready to retire
945        // (be removed from the ROB) at any time.
946        if (head_inst->isSquashed()) {
947
948            DPRINTF(Commit, "Retiring squashed instruction from "
949                    "ROB.\n");
950
951            rob->retireHead(commit_thread);
952
953            ++commitSquashedInsts;
954
955            // Record that the number of ROB entries has changed.
956            changedROBNumEntries[tid] = true;
957        } else {
958            pc[tid] = head_inst->pcState();
959
960            // Increment the total number of non-speculative instructions
961            // executed.
962            // Hack for now: it really shouldn't happen until after the
963            // commit is deemed to be successful, but this count is needed
964            // for syscalls.
965            thread[tid]->funcExeInst++;
966
967            // Try to commit the head instruction.
968            bool commit_success = commitHead(head_inst, num_committed);
969
970            if (commit_success) {
971                ++num_committed;
972
973                changedROBNumEntries[tid] = true;
974
975                // Set the doneSeqNum to the youngest committed instruction.
976                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
977
978                ++commitCommittedInsts;
979
980                // To match the old model, don't count nops and instruction
981                // prefetches towards the total commit count.
982                if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
983                    cpu->instDone(tid);
984                }
985
986                // Updates misc. registers.
987                head_inst->updateMiscRegs();
988
989                TheISA::advancePC(pc[tid], head_inst->staticInst);
990
991                // Keep track of the last sequence number commited
992                lastCommitedSeqNum[tid] = head_inst->seqNum;
993
994                // If this is an instruction that doesn't play nicely with
995                // others squash everything and restart fetch
996                if (head_inst->isSquashAfter())
997                    squashAfter(tid, head_inst, head_inst->seqNum);
998
999                int count = 0;
1000                Addr oldpc;
1001                // Debug statement.  Checks to make sure we're not
1002                // currently updating state while handling PC events.
1003                assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1004                do {
1005                    oldpc = pc[tid].instAddr();
1006                    cpu->system->pcEventQueue.service(thread[tid]->getTC());
1007                    count++;
1008                } while (oldpc != pc[tid].instAddr());
1009                if (count > 1) {
1010                    DPRINTF(Commit,
1011                            "PC skip function event, stopping commit\n");
1012                    break;
1013                }
1014            } else {
1015                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1016                        "[tid:%i] [sn:%i].\n",
1017                        head_inst->pcState(), tid ,head_inst->seqNum);
1018                break;
1019            }
1020        }
1021    }
1022
1023    DPRINTF(CommitRate, "%i\n", num_committed);
1024    numCommittedDist.sample(num_committed);
1025
1026    if (num_committed == commitWidth) {
1027        commitEligibleSamples++;
1028    }
1029}
1030
1031template <class Impl>
1032bool
1033DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1034{
1035    assert(head_inst);
1036
1037    ThreadID tid = head_inst->threadNumber;
1038
1039    // If the instruction is not executed yet, then it will need extra
1040    // handling.  Signal backwards that it should be executed.
1041    if (!head_inst->isExecuted()) {
1042        // Keep this number correct.  We have not yet actually executed
1043        // and committed this instruction.
1044        thread[tid]->funcExeInst--;
1045
1046        if (head_inst->isNonSpeculative() ||
1047            head_inst->isStoreConditional() ||
1048            head_inst->isMemBarrier() ||
1049            head_inst->isWriteBarrier()) {
1050
1051            DPRINTF(Commit, "Encountered a barrier or non-speculative "
1052                    "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1053                    head_inst->seqNum, head_inst->pcState());
1054
1055            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1056                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1057                return false;
1058            }
1059
1060            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1061
1062            // Change the instruction so it won't try to commit again until
1063            // it is executed.
1064            head_inst->clearCanCommit();
1065
1066            ++commitNonSpecStalls;
1067
1068            return false;
1069        } else if (head_inst->isLoad()) {
1070            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1071                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1072                return false;
1073            }
1074
1075            assert(head_inst->uncacheable());
1076            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1077                    head_inst->seqNum, head_inst->pcState());
1078
1079            // Send back the non-speculative instruction's sequence
1080            // number.  Tell the lsq to re-execute the load.
1081            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1082            toIEW->commitInfo[tid].uncached = true;
1083            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1084
1085            head_inst->clearCanCommit();
1086
1087            return false;
1088        } else {
1089            panic("Trying to commit un-executed instruction "
1090                  "of unknown type!\n");
1091        }
1092    }
1093
1094    if (head_inst->isThreadSync()) {
1095        // Not handled for now.
1096        panic("Thread sync instructions are not handled yet.\n");
1097    }
1098
1099    // Check if the instruction caused a fault.  If so, trap.
1100    Fault inst_fault = head_inst->getFault();
1101
1102    // Stores mark themselves as completed.
1103    if (!head_inst->isStore() && inst_fault == NoFault) {
1104        head_inst->setCompleted();
1105    }
1106
1107#if USE_CHECKER
1108    // Use checker prior to updating anything due to traps or PC
1109    // based events.
1110    if (cpu->checker) {
1111        cpu->checker->verify(head_inst);
1112    }
1113#endif
1114
1115    if (inst_fault != NoFault) {
1116        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1117                head_inst->seqNum, head_inst->pcState());
1118
1119        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1120            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1121            return false;
1122        }
1123
1124        head_inst->setCompleted();
1125
1126#if USE_CHECKER
1127        if (cpu->checker && head_inst->isStore()) {
1128            cpu->checker->verify(head_inst);
1129        }
1130#endif
1131
1132        assert(!thread[tid]->inSyscall);
1133
1134        // Mark that we're in state update mode so that the trap's
1135        // execution doesn't generate extra squashes.
1136        thread[tid]->inSyscall = true;
1137
1138        // Execute the trap.  Although it's slightly unrealistic in
1139        // terms of timing (as it doesn't wait for the full timing of
1140        // the trap event to complete before updating state), it's
1141        // needed to update the state as soon as possible.  This
1142        // prevents external agents from changing any specific state
1143        // that the trap need.
1144        cpu->trap(inst_fault, tid, head_inst->staticInst);
1145
1146        // Exit state update mode to avoid accidental updating.
1147        thread[tid]->inSyscall = false;
1148
1149        commitStatus[tid] = TrapPending;
1150
1151        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1152            head_inst->seqNum);
1153        if (head_inst->traceData) {
1154            if (DTRACE(ExecFaulting)) {
1155                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1156                head_inst->traceData->setCPSeq(thread[tid]->numInst);
1157                head_inst->traceData->dump();
1158            }
1159            delete head_inst->traceData;
1160            head_inst->traceData = NULL;
1161        }
1162
1163        // Generate trap squash event.
1164        generateTrapEvent(tid);
1165        return false;
1166    }
1167
1168    updateComInstStats(head_inst);
1169
1170#if FULL_SYSTEM
1171    if (thread[tid]->profile) {
1172        thread[tid]->profilePC = head_inst->instAddr();
1173        ProfileNode *node = thread[tid]->profile->consume(thread[tid]->getTC(),
1174                                                          head_inst->staticInst);
1175
1176        if (node)
1177            thread[tid]->profileNode = node;
1178    }
1179    if (CPA::available()) {
1180        if (head_inst->isControl()) {
1181            ThreadContext *tc = thread[tid]->getTC();
1182            CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1183        }
1184    }
1185#endif
1186    DPRINTF(Commit, "Committing instruction with [sn:%lli]\n",
1187            head_inst->seqNum);
1188    if (head_inst->traceData) {
1189        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1190        head_inst->traceData->setCPSeq(thread[tid]->numInst);
1191        head_inst->traceData->dump();
1192        delete head_inst->traceData;
1193        head_inst->traceData = NULL;
1194    }
1195
1196    // Update the commit rename map
1197    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1198        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1199                                 head_inst->renamedDestRegIdx(i));
1200    }
1201
1202    // Finally clear the head ROB entry.
1203    rob->retireHead(tid);
1204
1205    // If this was a store, record it for this cycle.
1206    if (head_inst->isStore())
1207        committedStores[tid] = true;
1208
1209    // Return true to indicate that we have committed an instruction.
1210    return true;
1211}
1212
1213template <class Impl>
1214void
1215DefaultCommit<Impl>::getInsts()
1216{
1217    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1218
1219    // Read any renamed instructions and place them into the ROB.
1220    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1221
1222    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1223        DynInstPtr inst;
1224
1225        inst = fromRename->insts[inst_num];
1226        ThreadID tid = inst->threadNumber;
1227
1228        if (!inst->isSquashed() &&
1229            commitStatus[tid] != ROBSquashing &&
1230            commitStatus[tid] != TrapPending) {
1231            changedROBNumEntries[tid] = true;
1232
1233            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1234                    inst->pcState(), inst->seqNum, tid);
1235
1236            rob->insertInst(inst);
1237
1238            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1239
1240            youngestSeqNum[tid] = inst->seqNum;
1241        } else {
1242            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1243                    "squashed, skipping.\n",
1244                    inst->pcState(), inst->seqNum, tid);
1245        }
1246    }
1247}
1248
1249template <class Impl>
1250void
1251DefaultCommit<Impl>::skidInsert()
1252{
1253    DPRINTF(Commit, "Attempting to any instructions from rename into "
1254            "skidBuffer.\n");
1255
1256    for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1257        DynInstPtr inst = fromRename->insts[inst_num];
1258
1259        if (!inst->isSquashed()) {
1260            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1261                    "skidBuffer.\n", inst->pcState(), inst->seqNum,
1262                    inst->threadNumber);
1263            skidBuffer.push(inst);
1264        } else {
1265            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1266                    "squashed, skipping.\n",
1267                    inst->pcState(), inst->seqNum, inst->threadNumber);
1268        }
1269    }
1270}
1271
1272template <class Impl>
1273void
1274DefaultCommit<Impl>::markCompletedInsts()
1275{
1276    // Grab completed insts out of the IEW instruction queue, and mark
1277    // instructions completed within the ROB.
1278    for (int inst_num = 0;
1279         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1280         ++inst_num)
1281    {
1282        if (!fromIEW->insts[inst_num]->isSquashed()) {
1283            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1284                    "within ROB.\n",
1285                    fromIEW->insts[inst_num]->threadNumber,
1286                    fromIEW->insts[inst_num]->pcState(),
1287                    fromIEW->insts[inst_num]->seqNum);
1288
1289            // Mark the instruction as ready to commit.
1290            fromIEW->insts[inst_num]->setCanCommit();
1291        }
1292    }
1293}
1294
1295template <class Impl>
1296bool
1297DefaultCommit<Impl>::robDoneSquashing()
1298{
1299    list<ThreadID>::iterator threads = activeThreads->begin();
1300    list<ThreadID>::iterator end = activeThreads->end();
1301
1302    while (threads != end) {
1303        ThreadID tid = *threads++;
1304
1305        if (!rob->isDoneSquashing(tid))
1306            return false;
1307    }
1308
1309    return true;
1310}
1311
1312template <class Impl>
1313void
1314DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1315{
1316    ThreadID tid = inst->threadNumber;
1317
1318    //
1319    //  Pick off the software prefetches
1320    //
1321#ifdef TARGET_ALPHA
1322    if (inst->isDataPrefetch()) {
1323        statComSwp[tid]++;
1324    } else {
1325        statComInst[tid]++;
1326    }
1327#else
1328    statComInst[tid]++;
1329#endif
1330
1331    //
1332    //  Control Instructions
1333    //
1334    if (inst->isControl())
1335        statComBranches[tid]++;
1336
1337    //
1338    //  Memory references
1339    //
1340    if (inst->isMemRef()) {
1341        statComRefs[tid]++;
1342
1343        if (inst->isLoad()) {
1344            statComLoads[tid]++;
1345        }
1346    }
1347
1348    if (inst->isMemBarrier()) {
1349        statComMembars[tid]++;
1350    }
1351
1352    // Integer Instruction
1353    if (inst->isInteger())
1354        statComInteger[tid]++;
1355
1356    // Floating Point Instruction
1357    if (inst->isFloating())
1358        statComFloating[tid]++;
1359
1360    // Function Calls
1361    if (inst->isCall())
1362        statComFunctionCalls[tid]++;
1363
1364}
1365
1366////////////////////////////////////////
1367//                                    //
1368//  SMT COMMIT POLICY MAINTAINED HERE //
1369//                                    //
1370////////////////////////////////////////
1371template <class Impl>
1372ThreadID
1373DefaultCommit<Impl>::getCommittingThread()
1374{
1375    if (numThreads > 1) {
1376        switch (commitPolicy) {
1377
1378          case Aggressive:
1379            //If Policy is Aggressive, commit will call
1380            //this function multiple times per
1381            //cycle
1382            return oldestReady();
1383
1384          case RoundRobin:
1385            return roundRobin();
1386
1387          case OldestReady:
1388            return oldestReady();
1389
1390          default:
1391            return InvalidThreadID;
1392        }
1393    } else {
1394        assert(!activeThreads->empty());
1395        ThreadID tid = activeThreads->front();
1396
1397        if (commitStatus[tid] == Running ||
1398            commitStatus[tid] == Idle ||
1399            commitStatus[tid] == FetchTrapPending) {
1400            return tid;
1401        } else {
1402            return InvalidThreadID;
1403        }
1404    }
1405}
1406
1407template<class Impl>
1408ThreadID
1409DefaultCommit<Impl>::roundRobin()
1410{
1411    list<ThreadID>::iterator pri_iter = priority_list.begin();
1412    list<ThreadID>::iterator end      = priority_list.end();
1413
1414    while (pri_iter != end) {
1415        ThreadID tid = *pri_iter;
1416
1417        if (commitStatus[tid] == Running ||
1418            commitStatus[tid] == Idle ||
1419            commitStatus[tid] == FetchTrapPending) {
1420
1421            if (rob->isHeadReady(tid)) {
1422                priority_list.erase(pri_iter);
1423                priority_list.push_back(tid);
1424
1425                return tid;
1426            }
1427        }
1428
1429        pri_iter++;
1430    }
1431
1432    return InvalidThreadID;
1433}
1434
1435template<class Impl>
1436ThreadID
1437DefaultCommit<Impl>::oldestReady()
1438{
1439    unsigned oldest = 0;
1440    bool first = true;
1441
1442    list<ThreadID>::iterator threads = activeThreads->begin();
1443    list<ThreadID>::iterator end = activeThreads->end();
1444
1445    while (threads != end) {
1446        ThreadID tid = *threads++;
1447
1448        if (!rob->isEmpty(tid) &&
1449            (commitStatus[tid] == Running ||
1450             commitStatus[tid] == Idle ||
1451             commitStatus[tid] == FetchTrapPending)) {
1452
1453            if (rob->isHeadReady(tid)) {
1454
1455                DynInstPtr head_inst = rob->readHeadInst(tid);
1456
1457                if (first) {
1458                    oldest = tid;
1459                    first = false;
1460                } else if (head_inst->seqNum < oldest) {
1461                    oldest = tid;
1462                }
1463            }
1464        }
1465    }
1466
1467    if (!first) {
1468        return oldest;
1469    } else {
1470        return InvalidThreadID;
1471    }
1472}
1473