commit_impl.hh revision 12127:4207df055b0d
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2014 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44#ifndef __CPU_O3_COMMIT_IMPL_HH__
45#define __CPU_O3_COMMIT_IMPL_HH__
46
47#include <algorithm>
48#include <set>
49#include <string>
50
51#include "arch/utility.hh"
52#include "base/loader/symtab.hh"
53#include "base/cp_annotate.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/commit.hh"
57#include "cpu/o3/thread_state.hh"
58#include "cpu/base.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/timebuf.hh"
61#include "debug/Activity.hh"
62#include "debug/Commit.hh"
63#include "debug/CommitRate.hh"
64#include "debug/Drain.hh"
65#include "debug/ExecFaulting.hh"
66#include "debug/O3PipeView.hh"
67#include "params/DerivO3CPU.hh"
68#include "sim/faults.hh"
69#include "sim/full_system.hh"
70
71using namespace std;
72
73template <class Impl>
74void
75DefaultCommit<Impl>::processTrapEvent(ThreadID tid)
76{
77    // This will get reset by commit if it was switched out at the
78    // time of this event processing.
79    trapSquash[tid] = true;
80}
81
82template <class Impl>
83DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
84    : cpu(_cpu),
85      iewToCommitDelay(params->iewToCommitDelay),
86      commitToIEWDelay(params->commitToIEWDelay),
87      renameToROBDelay(params->renameToROBDelay),
88      fetchToCommitDelay(params->commitToFetchDelay),
89      renameWidth(params->renameWidth),
90      commitWidth(params->commitWidth),
91      numThreads(params->numThreads),
92      drainPending(false),
93      drainImminent(false),
94      trapLatency(params->trapLatency),
95      canHandleInterrupts(true),
96      avoidQuiesceLiveLock(false)
97{
98    if (commitWidth > Impl::MaxWidth)
99        fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
100             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101             commitWidth, static_cast<int>(Impl::MaxWidth));
102
103    _status = Active;
104    _nextStatus = Inactive;
105    std::string policy = params->smtCommitPolicy;
106
107    //Convert string to lowercase
108    std::transform(policy.begin(), policy.end(), policy.begin(),
109                   (int(*)(int)) tolower);
110
111    //Assign commit policy
112    if (policy == "aggressive"){
113        commitPolicy = Aggressive;
114
115        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
116    } else if (policy == "roundrobin"){
117        commitPolicy = RoundRobin;
118
119        //Set-Up Priority List
120        for (ThreadID tid = 0; tid < numThreads; tid++) {
121            priority_list.push_back(tid);
122        }
123
124        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
125    } else if (policy == "oldestready"){
126        commitPolicy = OldestReady;
127
128        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
129    } else {
130        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
131               "RoundRobin,OldestReady}");
132    }
133
134    for (ThreadID tid = 0; tid < numThreads; tid++) {
135        commitStatus[tid] = Idle;
136        changedROBNumEntries[tid] = false;
137        checkEmptyROB[tid] = false;
138        trapInFlight[tid] = false;
139        committedStores[tid] = false;
140        trapSquash[tid] = false;
141        tcSquash[tid] = false;
142        pc[tid].set(0);
143        lastCommitedSeqNum[tid] = 0;
144        squashAfterInst[tid] = NULL;
145    }
146    interrupt = NoFault;
147}
148
149template <class Impl>
150std::string
151DefaultCommit<Impl>::name() const
152{
153    return cpu->name() + ".commit";
154}
155
156template <class Impl>
157void
158DefaultCommit<Impl>::regProbePoints()
159{
160    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
161    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
162    ppSquash = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Squash");
163}
164
165template <class Impl>
166void
167DefaultCommit<Impl>::regStats()
168{
169    using namespace Stats;
170    commitSquashedInsts
171        .name(name() + ".commitSquashedInsts")
172        .desc("The number of squashed insts skipped by commit")
173        .prereq(commitSquashedInsts);
174
175    commitNonSpecStalls
176        .name(name() + ".commitNonSpecStalls")
177        .desc("The number of times commit has been forced to stall to "
178              "communicate backwards")
179        .prereq(commitNonSpecStalls);
180
181    branchMispredicts
182        .name(name() + ".branchMispredicts")
183        .desc("The number of times a branch was mispredicted")
184        .prereq(branchMispredicts);
185
186    numCommittedDist
187        .init(0,commitWidth,1)
188        .name(name() + ".committed_per_cycle")
189        .desc("Number of insts commited each cycle")
190        .flags(Stats::pdf)
191        ;
192
193    instsCommitted
194        .init(cpu->numThreads)
195        .name(name() + ".committedInsts")
196        .desc("Number of instructions committed")
197        .flags(total)
198        ;
199
200    opsCommitted
201        .init(cpu->numThreads)
202        .name(name() + ".committedOps")
203        .desc("Number of ops (including micro ops) committed")
204        .flags(total)
205        ;
206
207    statComSwp
208        .init(cpu->numThreads)
209        .name(name() + ".swp_count")
210        .desc("Number of s/w prefetches committed")
211        .flags(total)
212        ;
213
214    statComRefs
215        .init(cpu->numThreads)
216        .name(name() +  ".refs")
217        .desc("Number of memory references committed")
218        .flags(total)
219        ;
220
221    statComLoads
222        .init(cpu->numThreads)
223        .name(name() +  ".loads")
224        .desc("Number of loads committed")
225        .flags(total)
226        ;
227
228    statComMembars
229        .init(cpu->numThreads)
230        .name(name() +  ".membars")
231        .desc("Number of memory barriers committed")
232        .flags(total)
233        ;
234
235    statComBranches
236        .init(cpu->numThreads)
237        .name(name() + ".branches")
238        .desc("Number of branches committed")
239        .flags(total)
240        ;
241
242    statComFloating
243        .init(cpu->numThreads)
244        .name(name() + ".fp_insts")
245        .desc("Number of committed floating point instructions.")
246        .flags(total)
247        ;
248
249    statComVector
250        .init(cpu->numThreads)
251        .name(name() + ".vec_insts")
252        .desc("Number of committed Vector instructions.")
253        .flags(total)
254        ;
255
256    statComInteger
257        .init(cpu->numThreads)
258        .name(name()+".int_insts")
259        .desc("Number of committed integer instructions.")
260        .flags(total)
261        ;
262
263    statComFunctionCalls
264        .init(cpu->numThreads)
265        .name(name()+".function_calls")
266        .desc("Number of function calls committed.")
267        .flags(total)
268        ;
269
270    statCommittedInstType
271        .init(numThreads,Enums::Num_OpClass)
272        .name(name() + ".op_class")
273        .desc("Class of committed instruction")
274        .flags(total | pdf | dist)
275        ;
276    statCommittedInstType.ysubnames(Enums::OpClassStrings);
277
278    commitEligibleSamples
279        .name(name() + ".bw_lim_events")
280        .desc("number cycles where commit BW limit reached")
281        ;
282}
283
284template <class Impl>
285void
286DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
287{
288    thread = threads;
289}
290
291template <class Impl>
292void
293DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
294{
295    timeBuffer = tb_ptr;
296
297    // Setup wire to send information back to IEW.
298    toIEW = timeBuffer->getWire(0);
299
300    // Setup wire to read data from IEW (for the ROB).
301    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
302}
303
304template <class Impl>
305void
306DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
307{
308    fetchQueue = fq_ptr;
309
310    // Setup wire to get instructions from rename (for the ROB).
311    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
312}
313
314template <class Impl>
315void
316DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
317{
318    renameQueue = rq_ptr;
319
320    // Setup wire to get instructions from rename (for the ROB).
321    fromRename = renameQueue->getWire(-renameToROBDelay);
322}
323
324template <class Impl>
325void
326DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    iewQueue = iq_ptr;
329
330    // Setup wire to get instructions from IEW.
331    fromIEW = iewQueue->getWire(-iewToCommitDelay);
332}
333
334template <class Impl>
335void
336DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
337{
338    iewStage = iew_stage;
339}
340
341template<class Impl>
342void
343DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
344{
345    activeThreads = at_ptr;
346}
347
348template <class Impl>
349void
350DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
351{
352    for (ThreadID tid = 0; tid < numThreads; tid++)
353        renameMap[tid] = &rm_ptr[tid];
354}
355
356template <class Impl>
357void
358DefaultCommit<Impl>::setROB(ROB *rob_ptr)
359{
360    rob = rob_ptr;
361}
362
363template <class Impl>
364void
365DefaultCommit<Impl>::startupStage()
366{
367    rob->setActiveThreads(activeThreads);
368    rob->resetEntries();
369
370    // Broadcast the number of free entries.
371    for (ThreadID tid = 0; tid < numThreads; tid++) {
372        toIEW->commitInfo[tid].usedROB = true;
373        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
374        toIEW->commitInfo[tid].emptyROB = true;
375    }
376
377    // Commit must broadcast the number of free entries it has at the
378    // start of the simulation, so it starts as active.
379    cpu->activateStage(O3CPU::CommitIdx);
380
381    cpu->activityThisCycle();
382}
383
384template <class Impl>
385void
386DefaultCommit<Impl>::drain()
387{
388    drainPending = true;
389}
390
391template <class Impl>
392void
393DefaultCommit<Impl>::drainResume()
394{
395    drainPending = false;
396    drainImminent = false;
397}
398
399template <class Impl>
400void
401DefaultCommit<Impl>::drainSanityCheck() const
402{
403    assert(isDrained());
404    rob->drainSanityCheck();
405}
406
407template <class Impl>
408bool
409DefaultCommit<Impl>::isDrained() const
410{
411    /* Make sure no one is executing microcode. There are two reasons
412     * for this:
413     * - Hardware virtualized CPUs can't switch into the middle of a
414     *   microcode sequence.
415     * - The current fetch implementation will most likely get very
416     *   confused if it tries to start fetching an instruction that
417     *   is executing in the middle of a ucode sequence that changes
418     *   address mappings. This can happen on for example x86.
419     */
420    for (ThreadID tid = 0; tid < numThreads; tid++) {
421        if (pc[tid].microPC() != 0)
422            return false;
423    }
424
425    /* Make sure that all instructions have finished committing before
426     * declaring the system as drained. We want the pipeline to be
427     * completely empty when we declare the CPU to be drained. This
428     * makes debugging easier since CPU handover and restoring from a
429     * checkpoint with a different CPU should have the same timing.
430     */
431    return rob->isEmpty() &&
432        interrupt == NoFault;
433}
434
435template <class Impl>
436void
437DefaultCommit<Impl>::takeOverFrom()
438{
439    _status = Active;
440    _nextStatus = Inactive;
441    for (ThreadID tid = 0; tid < numThreads; tid++) {
442        commitStatus[tid] = Idle;
443        changedROBNumEntries[tid] = false;
444        trapSquash[tid] = false;
445        tcSquash[tid] = false;
446        squashAfterInst[tid] = NULL;
447    }
448    rob->takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultCommit<Impl>::deactivateThread(ThreadID tid)
454{
455    list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
456            priority_list.end(), tid);
457
458    if (thread_it != priority_list.end()) {
459        priority_list.erase(thread_it);
460    }
461}
462
463
464template <class Impl>
465void
466DefaultCommit<Impl>::updateStatus()
467{
468    // reset ROB changed variable
469    list<ThreadID>::iterator threads = activeThreads->begin();
470    list<ThreadID>::iterator end = activeThreads->end();
471
472    while (threads != end) {
473        ThreadID tid = *threads++;
474
475        changedROBNumEntries[tid] = false;
476
477        // Also check if any of the threads has a trap pending
478        if (commitStatus[tid] == TrapPending ||
479            commitStatus[tid] == FetchTrapPending) {
480            _nextStatus = Active;
481        }
482    }
483
484    if (_nextStatus == Inactive && _status == Active) {
485        DPRINTF(Activity, "Deactivating stage.\n");
486        cpu->deactivateStage(O3CPU::CommitIdx);
487    } else if (_nextStatus == Active && _status == Inactive) {
488        DPRINTF(Activity, "Activating stage.\n");
489        cpu->activateStage(O3CPU::CommitIdx);
490    }
491
492    _status = _nextStatus;
493}
494
495template <class Impl>
496bool
497DefaultCommit<Impl>::changedROBEntries()
498{
499    list<ThreadID>::iterator threads = activeThreads->begin();
500    list<ThreadID>::iterator end = activeThreads->end();
501
502    while (threads != end) {
503        ThreadID tid = *threads++;
504
505        if (changedROBNumEntries[tid]) {
506            return true;
507        }
508    }
509
510    return false;
511}
512
513template <class Impl>
514size_t
515DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
516{
517    return rob->numFreeEntries(tid);
518}
519
520template <class Impl>
521void
522DefaultCommit<Impl>::generateTrapEvent(ThreadID tid, Fault inst_fault)
523{
524    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
525
526    EventFunctionWrapper *trap = new EventFunctionWrapper(
527        [this, tid]{ processTrapEvent(tid); },
528        "Trap", true, Event::CPU_Tick_Pri);
529
530    Cycles latency = dynamic_pointer_cast<SyscallRetryFault>(inst_fault) ?
531                     cpu->syscallRetryLatency : trapLatency;
532
533    cpu->schedule(trap, cpu->clockEdge(latency));
534    trapInFlight[tid] = true;
535    thread[tid]->trapPending = true;
536}
537
538template <class Impl>
539void
540DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
541{
542    assert(!trapInFlight[tid]);
543    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
544
545    tcSquash[tid] = true;
546}
547
548template <class Impl>
549void
550DefaultCommit<Impl>::squashAll(ThreadID tid)
551{
552    // If we want to include the squashing instruction in the squash,
553    // then use one older sequence number.
554    // Hopefully this doesn't mess things up.  Basically I want to squash
555    // all instructions of this thread.
556    InstSeqNum squashed_inst = rob->isEmpty(tid) ?
557        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
558
559    // All younger instructions will be squashed. Set the sequence
560    // number as the youngest instruction in the ROB (0 in this case.
561    // Hopefully nothing breaks.)
562    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
563
564    rob->squash(squashed_inst, tid);
565    changedROBNumEntries[tid] = true;
566
567    // Send back the sequence number of the squashed instruction.
568    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
569
570    // Send back the squash signal to tell stages that they should
571    // squash.
572    toIEW->commitInfo[tid].squash = true;
573
574    // Send back the rob squashing signal so other stages know that
575    // the ROB is in the process of squashing.
576    toIEW->commitInfo[tid].robSquashing = true;
577
578    toIEW->commitInfo[tid].mispredictInst = NULL;
579    toIEW->commitInfo[tid].squashInst = NULL;
580
581    toIEW->commitInfo[tid].pc = pc[tid];
582}
583
584template <class Impl>
585void
586DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
587{
588    squashAll(tid);
589
590    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
591
592    thread[tid]->trapPending = false;
593    thread[tid]->noSquashFromTC = false;
594    trapInFlight[tid] = false;
595
596    trapSquash[tid] = false;
597
598    commitStatus[tid] = ROBSquashing;
599    cpu->activityThisCycle();
600}
601
602template <class Impl>
603void
604DefaultCommit<Impl>::squashFromTC(ThreadID tid)
605{
606    squashAll(tid);
607
608    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
609
610    thread[tid]->noSquashFromTC = false;
611    assert(!thread[tid]->trapPending);
612
613    commitStatus[tid] = ROBSquashing;
614    cpu->activityThisCycle();
615
616    tcSquash[tid] = false;
617}
618
619template <class Impl>
620void
621DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
622{
623    DPRINTF(Commit, "Squashing after squash after request, "
624            "restarting at PC %s\n", pc[tid]);
625
626    squashAll(tid);
627    // Make sure to inform the fetch stage of which instruction caused
628    // the squash. It'll try to re-fetch an instruction executing in
629    // microcode unless this is set.
630    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
631    squashAfterInst[tid] = NULL;
632
633    commitStatus[tid] = ROBSquashing;
634    cpu->activityThisCycle();
635}
636
637template <class Impl>
638void
639DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
640{
641    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
642            tid, head_inst->seqNum);
643
644    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
645    commitStatus[tid] = SquashAfterPending;
646    squashAfterInst[tid] = head_inst;
647}
648
649template <class Impl>
650void
651DefaultCommit<Impl>::tick()
652{
653    wroteToTimeBuffer = false;
654    _nextStatus = Inactive;
655
656    if (activeThreads->empty())
657        return;
658
659    list<ThreadID>::iterator threads = activeThreads->begin();
660    list<ThreadID>::iterator end = activeThreads->end();
661
662    // Check if any of the threads are done squashing.  Change the
663    // status if they are done.
664    while (threads != end) {
665        ThreadID tid = *threads++;
666
667        // Clear the bit saying if the thread has committed stores
668        // this cycle.
669        committedStores[tid] = false;
670
671        if (commitStatus[tid] == ROBSquashing) {
672
673            if (rob->isDoneSquashing(tid)) {
674                commitStatus[tid] = Running;
675            } else {
676                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
677                        " insts this cycle.\n", tid);
678                rob->doSquash(tid);
679                toIEW->commitInfo[tid].robSquashing = true;
680                wroteToTimeBuffer = true;
681            }
682        }
683    }
684
685    commit();
686
687    markCompletedInsts();
688
689    threads = activeThreads->begin();
690
691    while (threads != end) {
692        ThreadID tid = *threads++;
693
694        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
695            // The ROB has more instructions it can commit. Its next status
696            // will be active.
697            _nextStatus = Active;
698
699            DynInstPtr inst = rob->readHeadInst(tid);
700
701            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
702                    " ROB and ready to commit\n",
703                    tid, inst->seqNum, inst->pcState());
704
705        } else if (!rob->isEmpty(tid)) {
706            DynInstPtr inst = rob->readHeadInst(tid);
707
708            ppCommitStall->notify(inst);
709
710            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
711                    "%s is head of ROB and not ready\n",
712                    tid, inst->seqNum, inst->pcState());
713        }
714
715        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
716                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
717    }
718
719
720    if (wroteToTimeBuffer) {
721        DPRINTF(Activity, "Activity This Cycle.\n");
722        cpu->activityThisCycle();
723    }
724
725    updateStatus();
726}
727
728template <class Impl>
729void
730DefaultCommit<Impl>::handleInterrupt()
731{
732    // Verify that we still have an interrupt to handle
733    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
734        DPRINTF(Commit, "Pending interrupt is cleared by master before "
735                "it got handled. Restart fetching from the orig path.\n");
736        toIEW->commitInfo[0].clearInterrupt = true;
737        interrupt = NoFault;
738        avoidQuiesceLiveLock = true;
739        return;
740    }
741
742    // Wait until all in flight instructions are finished before enterring
743    // the interrupt.
744    if (canHandleInterrupts && cpu->instList.empty()) {
745        // Squash or record that I need to squash this cycle if
746        // an interrupt needed to be handled.
747        DPRINTF(Commit, "Interrupt detected.\n");
748
749        // Clear the interrupt now that it's going to be handled
750        toIEW->commitInfo[0].clearInterrupt = true;
751
752        assert(!thread[0]->noSquashFromTC);
753        thread[0]->noSquashFromTC = true;
754
755        if (cpu->checker) {
756            cpu->checker->handlePendingInt();
757        }
758
759        // CPU will handle interrupt. Note that we ignore the local copy of
760        // interrupt. This is because the local copy may no longer be the
761        // interrupt that the interrupt controller thinks is being handled.
762        cpu->processInterrupts(cpu->getInterrupts());
763
764        thread[0]->noSquashFromTC = false;
765
766        commitStatus[0] = TrapPending;
767
768        interrupt = NoFault;
769
770        // Generate trap squash event.
771        generateTrapEvent(0, interrupt);
772
773        avoidQuiesceLiveLock = false;
774    } else {
775        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
776                "flight, ROB is %sempty\n",
777                canHandleInterrupts ? "not " : "",
778                cpu->instList.empty() ? "" : "not " );
779    }
780}
781
782template <class Impl>
783void
784DefaultCommit<Impl>::propagateInterrupt()
785{
786    // Don't propagate intterupts if we are currently handling a trap or
787    // in draining and the last observable instruction has been committed.
788    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
789            tcSquash[0] || drainImminent)
790        return;
791
792    // Process interrupts if interrupts are enabled, not in PAL
793    // mode, and no other traps or external squashes are currently
794    // pending.
795    // @todo: Allow other threads to handle interrupts.
796
797    // Get any interrupt that happened
798    interrupt = cpu->getInterrupts();
799
800    // Tell fetch that there is an interrupt pending.  This
801    // will make fetch wait until it sees a non PAL-mode PC,
802    // at which point it stops fetching instructions.
803    if (interrupt != NoFault)
804        toIEW->commitInfo[0].interruptPending = true;
805}
806
807template <class Impl>
808void
809DefaultCommit<Impl>::commit()
810{
811    if (FullSystem) {
812        // Check if we have a interrupt and get read to handle it
813        if (cpu->checkInterrupts(cpu->tcBase(0)))
814            propagateInterrupt();
815    }
816
817    ////////////////////////////////////
818    // Check for any possible squashes, handle them first
819    ////////////////////////////////////
820    list<ThreadID>::iterator threads = activeThreads->begin();
821    list<ThreadID>::iterator end = activeThreads->end();
822
823    int num_squashing_threads = 0;
824
825    while (threads != end) {
826        ThreadID tid = *threads++;
827
828        // Not sure which one takes priority.  I think if we have
829        // both, that's a bad sign.
830        if (trapSquash[tid]) {
831            assert(!tcSquash[tid]);
832            squashFromTrap(tid);
833        } else if (tcSquash[tid]) {
834            assert(commitStatus[tid] != TrapPending);
835            squashFromTC(tid);
836        } else if (commitStatus[tid] == SquashAfterPending) {
837            // A squash from the previous cycle of the commit stage (i.e.,
838            // commitInsts() called squashAfter) is pending. Squash the
839            // thread now.
840            squashFromSquashAfter(tid);
841        }
842
843        // Squashed sequence number must be older than youngest valid
844        // instruction in the ROB. This prevents squashes from younger
845        // instructions overriding squashes from older instructions.
846        if (fromIEW->squash[tid] &&
847            commitStatus[tid] != TrapPending &&
848            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
849
850            if (fromIEW->mispredictInst[tid]) {
851                DPRINTF(Commit,
852                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
853                    tid,
854                    fromIEW->mispredictInst[tid]->instAddr(),
855                    fromIEW->squashedSeqNum[tid]);
856            } else {
857                DPRINTF(Commit,
858                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
859                    tid, fromIEW->squashedSeqNum[tid]);
860            }
861
862            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
863                    tid,
864                    fromIEW->pc[tid].nextInstAddr());
865
866            commitStatus[tid] = ROBSquashing;
867
868            // If we want to include the squashing instruction in the squash,
869            // then use one older sequence number.
870            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
871
872            if (fromIEW->includeSquashInst[tid]) {
873                squashed_inst--;
874            }
875
876            // All younger instructions will be squashed. Set the sequence
877            // number as the youngest instruction in the ROB.
878            youngestSeqNum[tid] = squashed_inst;
879
880            rob->squash(squashed_inst, tid);
881            changedROBNumEntries[tid] = true;
882
883            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
884
885            toIEW->commitInfo[tid].squash = true;
886
887            // Send back the rob squashing signal so other stages know that
888            // the ROB is in the process of squashing.
889            toIEW->commitInfo[tid].robSquashing = true;
890
891            toIEW->commitInfo[tid].mispredictInst =
892                fromIEW->mispredictInst[tid];
893            toIEW->commitInfo[tid].branchTaken =
894                fromIEW->branchTaken[tid];
895            toIEW->commitInfo[tid].squashInst =
896                                    rob->findInst(tid, squashed_inst);
897            if (toIEW->commitInfo[tid].mispredictInst) {
898                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
899                     toIEW->commitInfo[tid].branchTaken = true;
900                }
901                ++branchMispredicts;
902            }
903
904            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
905        }
906
907        if (commitStatus[tid] == ROBSquashing) {
908            num_squashing_threads++;
909        }
910    }
911
912    // If commit is currently squashing, then it will have activity for the
913    // next cycle. Set its next status as active.
914    if (num_squashing_threads) {
915        _nextStatus = Active;
916    }
917
918    if (num_squashing_threads != numThreads) {
919        // If we're not currently squashing, then get instructions.
920        getInsts();
921
922        // Try to commit any instructions.
923        commitInsts();
924    }
925
926    //Check for any activity
927    threads = activeThreads->begin();
928
929    while (threads != end) {
930        ThreadID tid = *threads++;
931
932        if (changedROBNumEntries[tid]) {
933            toIEW->commitInfo[tid].usedROB = true;
934            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
935
936            wroteToTimeBuffer = true;
937            changedROBNumEntries[tid] = false;
938            if (rob->isEmpty(tid))
939                checkEmptyROB[tid] = true;
940        }
941
942        // ROB is only considered "empty" for previous stages if: a)
943        // ROB is empty, b) there are no outstanding stores, c) IEW
944        // stage has received any information regarding stores that
945        // committed.
946        // c) is checked by making sure to not consider the ROB empty
947        // on the same cycle as when stores have been committed.
948        // @todo: Make this handle multi-cycle communication between
949        // commit and IEW.
950        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
951            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
952            checkEmptyROB[tid] = false;
953            toIEW->commitInfo[tid].usedROB = true;
954            toIEW->commitInfo[tid].emptyROB = true;
955            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
956            wroteToTimeBuffer = true;
957        }
958
959    }
960}
961
962template <class Impl>
963void
964DefaultCommit<Impl>::commitInsts()
965{
966    ////////////////////////////////////
967    // Handle commit
968    // Note that commit will be handled prior to putting new
969    // instructions in the ROB so that the ROB only tries to commit
970    // instructions it has in this current cycle, and not instructions
971    // it is writing in during this cycle.  Can't commit and squash
972    // things at the same time...
973    ////////////////////////////////////
974
975    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
976
977    unsigned num_committed = 0;
978
979    DynInstPtr head_inst;
980
981    // Commit as many instructions as possible until the commit bandwidth
982    // limit is reached, or it becomes impossible to commit any more.
983    while (num_committed < commitWidth) {
984        // Check for any interrupt that we've already squashed for
985        // and start processing it.
986        if (interrupt != NoFault)
987            handleInterrupt();
988
989        ThreadID commit_thread = getCommittingThread();
990
991        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
992            break;
993
994        head_inst = rob->readHeadInst(commit_thread);
995
996        ThreadID tid = head_inst->threadNumber;
997
998        assert(tid == commit_thread);
999
1000        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1001                head_inst->seqNum, tid);
1002
1003        // If the head instruction is squashed, it is ready to retire
1004        // (be removed from the ROB) at any time.
1005        if (head_inst->isSquashed()) {
1006
1007            DPRINTF(Commit, "Retiring squashed instruction from "
1008                    "ROB.\n");
1009
1010            rob->retireHead(commit_thread);
1011
1012            ++commitSquashedInsts;
1013            // Notify potential listeners that this instruction is squashed
1014            ppSquash->notify(head_inst);
1015
1016            // Record that the number of ROB entries has changed.
1017            changedROBNumEntries[tid] = true;
1018        } else {
1019            pc[tid] = head_inst->pcState();
1020
1021            // Increment the total number of non-speculative instructions
1022            // executed.
1023            // Hack for now: it really shouldn't happen until after the
1024            // commit is deemed to be successful, but this count is needed
1025            // for syscalls.
1026            thread[tid]->funcExeInst++;
1027
1028            // Try to commit the head instruction.
1029            bool commit_success = commitHead(head_inst, num_committed);
1030
1031            if (commit_success) {
1032                ++num_committed;
1033                statCommittedInstType[tid][head_inst->opClass()]++;
1034                ppCommit->notify(head_inst);
1035
1036                changedROBNumEntries[tid] = true;
1037
1038                // Set the doneSeqNum to the youngest committed instruction.
1039                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1040
1041                if (tid == 0) {
1042                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1043                                           ((THE_ISA != ALPHA_ISA) ||
1044                                             (!(pc[0].instAddr() & 0x3)));
1045                }
1046
1047                // Updates misc. registers.
1048                head_inst->updateMiscRegs();
1049
1050                // Check instruction execution if it successfully commits and
1051                // is not carrying a fault.
1052                if (cpu->checker) {
1053                    cpu->checker->verify(head_inst);
1054                }
1055
1056                cpu->traceFunctions(pc[tid].instAddr());
1057
1058                TheISA::advancePC(pc[tid], head_inst->staticInst);
1059
1060                // Keep track of the last sequence number commited
1061                lastCommitedSeqNum[tid] = head_inst->seqNum;
1062
1063                // If this is an instruction that doesn't play nicely with
1064                // others squash everything and restart fetch
1065                if (head_inst->isSquashAfter())
1066                    squashAfter(tid, head_inst);
1067
1068                if (drainPending) {
1069                    if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1070                        !thread[tid]->trapPending) {
1071                        // Last architectually committed instruction.
1072                        // Squash the pipeline, stall fetch, and use
1073                        // drainImminent to disable interrupts
1074                        DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1075                        squashAfter(tid, head_inst);
1076                        cpu->commitDrained(tid);
1077                        drainImminent = true;
1078                    }
1079                }
1080
1081                bool onInstBoundary = !head_inst->isMicroop() ||
1082                                      head_inst->isLastMicroop() ||
1083                                      !head_inst->isDelayedCommit();
1084
1085                if (onInstBoundary) {
1086                    int count = 0;
1087                    Addr oldpc;
1088                    // Make sure we're not currently updating state while
1089                    // handling PC events.
1090                    assert(!thread[tid]->noSquashFromTC &&
1091                           !thread[tid]->trapPending);
1092                    do {
1093                        oldpc = pc[tid].instAddr();
1094                        cpu->system->pcEventQueue.service(thread[tid]->getTC());
1095                        count++;
1096                    } while (oldpc != pc[tid].instAddr());
1097                    if (count > 1) {
1098                        DPRINTF(Commit,
1099                                "PC skip function event, stopping commit\n");
1100                        break;
1101                    }
1102                }
1103
1104                // Check if an instruction just enabled interrupts and we've
1105                // previously had an interrupt pending that was not handled
1106                // because interrupts were subsequently disabled before the
1107                // pipeline reached a place to handle the interrupt. In that
1108                // case squash now to make sure the interrupt is handled.
1109                //
1110                // If we don't do this, we might end up in a live lock situation
1111                if (!interrupt && avoidQuiesceLiveLock &&
1112                    onInstBoundary && cpu->checkInterrupts(cpu->tcBase(0)))
1113                    squashAfter(tid, head_inst);
1114            } else {
1115                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1116                        "[tid:%i] [sn:%i].\n",
1117                        head_inst->pcState(), tid ,head_inst->seqNum);
1118                break;
1119            }
1120        }
1121    }
1122
1123    DPRINTF(CommitRate, "%i\n", num_committed);
1124    numCommittedDist.sample(num_committed);
1125
1126    if (num_committed == commitWidth) {
1127        commitEligibleSamples++;
1128    }
1129}
1130
1131template <class Impl>
1132bool
1133DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1134{
1135    assert(head_inst);
1136
1137    ThreadID tid = head_inst->threadNumber;
1138
1139    // If the instruction is not executed yet, then it will need extra
1140    // handling.  Signal backwards that it should be executed.
1141    if (!head_inst->isExecuted()) {
1142        // Keep this number correct.  We have not yet actually executed
1143        // and committed this instruction.
1144        thread[tid]->funcExeInst--;
1145
1146        // Make sure we are only trying to commit un-executed instructions we
1147        // think are possible.
1148        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1149               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1150               (head_inst->isLoad() && head_inst->strictlyOrdered()));
1151
1152        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1153                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1154                head_inst->seqNum, head_inst->pcState());
1155
1156        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1157            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1158            return false;
1159        }
1160
1161        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1162
1163        // Change the instruction so it won't try to commit again until
1164        // it is executed.
1165        head_inst->clearCanCommit();
1166
1167        if (head_inst->isLoad() && head_inst->strictlyOrdered()) {
1168            DPRINTF(Commit, "[sn:%lli]: Strictly ordered load, PC %s.\n",
1169                    head_inst->seqNum, head_inst->pcState());
1170            toIEW->commitInfo[tid].strictlyOrdered = true;
1171            toIEW->commitInfo[tid].strictlyOrderedLoad = head_inst;
1172        } else {
1173            ++commitNonSpecStalls;
1174        }
1175
1176        return false;
1177    }
1178
1179    if (head_inst->isThreadSync()) {
1180        // Not handled for now.
1181        panic("Thread sync instructions are not handled yet.\n");
1182    }
1183
1184    // Check if the instruction caused a fault.  If so, trap.
1185    Fault inst_fault = head_inst->getFault();
1186
1187    // Stores mark themselves as completed.
1188    if (!head_inst->isStore() && inst_fault == NoFault) {
1189        head_inst->setCompleted();
1190    }
1191
1192    if (inst_fault != NoFault) {
1193        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1194                head_inst->seqNum, head_inst->pcState());
1195
1196        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1197            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1198            return false;
1199        }
1200
1201        head_inst->setCompleted();
1202
1203        // If instruction has faulted, let the checker execute it and
1204        // check if it sees the same fault and control flow.
1205        if (cpu->checker) {
1206            // Need to check the instruction before its fault is processed
1207            cpu->checker->verify(head_inst);
1208        }
1209
1210        assert(!thread[tid]->noSquashFromTC);
1211
1212        // Mark that we're in state update mode so that the trap's
1213        // execution doesn't generate extra squashes.
1214        thread[tid]->noSquashFromTC = true;
1215
1216        // Execute the trap.  Although it's slightly unrealistic in
1217        // terms of timing (as it doesn't wait for the full timing of
1218        // the trap event to complete before updating state), it's
1219        // needed to update the state as soon as possible.  This
1220        // prevents external agents from changing any specific state
1221        // that the trap need.
1222        cpu->trap(inst_fault, tid, head_inst->staticInst);
1223
1224        // Exit state update mode to avoid accidental updating.
1225        thread[tid]->noSquashFromTC = false;
1226
1227        commitStatus[tid] = TrapPending;
1228
1229        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1230            head_inst->seqNum);
1231        if (head_inst->traceData) {
1232            if (DTRACE(ExecFaulting)) {
1233                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1234                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1235                head_inst->traceData->dump();
1236            }
1237            delete head_inst->traceData;
1238            head_inst->traceData = NULL;
1239        }
1240
1241        // Generate trap squash event.
1242        generateTrapEvent(tid, inst_fault);
1243        return false;
1244    }
1245
1246    updateComInstStats(head_inst);
1247
1248    if (FullSystem) {
1249        if (thread[tid]->profile) {
1250            thread[tid]->profilePC = head_inst->instAddr();
1251            ProfileNode *node = thread[tid]->profile->consume(
1252                    thread[tid]->getTC(), head_inst->staticInst);
1253
1254            if (node)
1255                thread[tid]->profileNode = node;
1256        }
1257        if (CPA::available()) {
1258            if (head_inst->isControl()) {
1259                ThreadContext *tc = thread[tid]->getTC();
1260                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1261            }
1262        }
1263    }
1264    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1265            head_inst->seqNum, head_inst->pcState());
1266    if (head_inst->traceData) {
1267        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1268        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1269        head_inst->traceData->dump();
1270        delete head_inst->traceData;
1271        head_inst->traceData = NULL;
1272    }
1273    if (head_inst->isReturn()) {
1274        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1275                        head_inst->seqNum, head_inst->pcState());
1276    }
1277
1278    // Update the commit rename map
1279    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1280        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1281                                 head_inst->renamedDestRegIdx(i));
1282    }
1283
1284    // Finally clear the head ROB entry.
1285    rob->retireHead(tid);
1286
1287#if TRACING_ON
1288    if (DTRACE(O3PipeView)) {
1289        head_inst->commitTick = curTick() - head_inst->fetchTick;
1290    }
1291#endif
1292
1293    // If this was a store, record it for this cycle.
1294    if (head_inst->isStore())
1295        committedStores[tid] = true;
1296
1297    // Return true to indicate that we have committed an instruction.
1298    return true;
1299}
1300
1301template <class Impl>
1302void
1303DefaultCommit<Impl>::getInsts()
1304{
1305    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1306
1307    // Read any renamed instructions and place them into the ROB.
1308    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1309
1310    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1311        DynInstPtr inst;
1312
1313        inst = fromRename->insts[inst_num];
1314        ThreadID tid = inst->threadNumber;
1315
1316        if (!inst->isSquashed() &&
1317            commitStatus[tid] != ROBSquashing &&
1318            commitStatus[tid] != TrapPending) {
1319            changedROBNumEntries[tid] = true;
1320
1321            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1322                    inst->pcState(), inst->seqNum, tid);
1323
1324            rob->insertInst(inst);
1325
1326            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1327
1328            youngestSeqNum[tid] = inst->seqNum;
1329        } else {
1330            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1331                    "squashed, skipping.\n",
1332                    inst->pcState(), inst->seqNum, tid);
1333        }
1334    }
1335}
1336
1337template <class Impl>
1338void
1339DefaultCommit<Impl>::markCompletedInsts()
1340{
1341    // Grab completed insts out of the IEW instruction queue, and mark
1342    // instructions completed within the ROB.
1343    for (int inst_num = 0; inst_num < fromIEW->size; ++inst_num) {
1344        assert(fromIEW->insts[inst_num]);
1345        if (!fromIEW->insts[inst_num]->isSquashed()) {
1346            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1347                    "within ROB.\n",
1348                    fromIEW->insts[inst_num]->threadNumber,
1349                    fromIEW->insts[inst_num]->pcState(),
1350                    fromIEW->insts[inst_num]->seqNum);
1351
1352            // Mark the instruction as ready to commit.
1353            fromIEW->insts[inst_num]->setCanCommit();
1354        }
1355    }
1356}
1357
1358template <class Impl>
1359void
1360DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1361{
1362    ThreadID tid = inst->threadNumber;
1363
1364    if (!inst->isMicroop() || inst->isLastMicroop())
1365        instsCommitted[tid]++;
1366    opsCommitted[tid]++;
1367
1368    // To match the old model, don't count nops and instruction
1369    // prefetches towards the total commit count.
1370    if (!inst->isNop() && !inst->isInstPrefetch()) {
1371        cpu->instDone(tid, inst);
1372    }
1373
1374    //
1375    //  Control Instructions
1376    //
1377    if (inst->isControl())
1378        statComBranches[tid]++;
1379
1380    //
1381    //  Memory references
1382    //
1383    if (inst->isMemRef()) {
1384        statComRefs[tid]++;
1385
1386        if (inst->isLoad()) {
1387            statComLoads[tid]++;
1388        }
1389    }
1390
1391    if (inst->isMemBarrier()) {
1392        statComMembars[tid]++;
1393    }
1394
1395    // Integer Instruction
1396    if (inst->isInteger())
1397        statComInteger[tid]++;
1398
1399    // Floating Point Instruction
1400    if (inst->isFloating())
1401        statComFloating[tid]++;
1402    // Vector Instruction
1403    if (inst->isVector())
1404        statComVector[tid]++;
1405
1406    // Function Calls
1407    if (inst->isCall())
1408        statComFunctionCalls[tid]++;
1409
1410}
1411
1412////////////////////////////////////////
1413//                                    //
1414//  SMT COMMIT POLICY MAINTAINED HERE //
1415//                                    //
1416////////////////////////////////////////
1417template <class Impl>
1418ThreadID
1419DefaultCommit<Impl>::getCommittingThread()
1420{
1421    if (numThreads > 1) {
1422        switch (commitPolicy) {
1423
1424          case Aggressive:
1425            //If Policy is Aggressive, commit will call
1426            //this function multiple times per
1427            //cycle
1428            return oldestReady();
1429
1430          case RoundRobin:
1431            return roundRobin();
1432
1433          case OldestReady:
1434            return oldestReady();
1435
1436          default:
1437            return InvalidThreadID;
1438        }
1439    } else {
1440        assert(!activeThreads->empty());
1441        ThreadID tid = activeThreads->front();
1442
1443        if (commitStatus[tid] == Running ||
1444            commitStatus[tid] == Idle ||
1445            commitStatus[tid] == FetchTrapPending) {
1446            return tid;
1447        } else {
1448            return InvalidThreadID;
1449        }
1450    }
1451}
1452
1453template<class Impl>
1454ThreadID
1455DefaultCommit<Impl>::roundRobin()
1456{
1457    list<ThreadID>::iterator pri_iter = priority_list.begin();
1458    list<ThreadID>::iterator end      = priority_list.end();
1459
1460    while (pri_iter != end) {
1461        ThreadID tid = *pri_iter;
1462
1463        if (commitStatus[tid] == Running ||
1464            commitStatus[tid] == Idle ||
1465            commitStatus[tid] == FetchTrapPending) {
1466
1467            if (rob->isHeadReady(tid)) {
1468                priority_list.erase(pri_iter);
1469                priority_list.push_back(tid);
1470
1471                return tid;
1472            }
1473        }
1474
1475        pri_iter++;
1476    }
1477
1478    return InvalidThreadID;
1479}
1480
1481template<class Impl>
1482ThreadID
1483DefaultCommit<Impl>::oldestReady()
1484{
1485    unsigned oldest = 0;
1486    bool first = true;
1487
1488    list<ThreadID>::iterator threads = activeThreads->begin();
1489    list<ThreadID>::iterator end = activeThreads->end();
1490
1491    while (threads != end) {
1492        ThreadID tid = *threads++;
1493
1494        if (!rob->isEmpty(tid) &&
1495            (commitStatus[tid] == Running ||
1496             commitStatus[tid] == Idle ||
1497             commitStatus[tid] == FetchTrapPending)) {
1498
1499            if (rob->isHeadReady(tid)) {
1500
1501                DynInstPtr head_inst = rob->readHeadInst(tid);
1502
1503                if (first) {
1504                    oldest = tid;
1505                    first = false;
1506                } else if (head_inst->seqNum < oldest) {
1507                    oldest = tid;
1508                }
1509            }
1510        }
1511    }
1512
1513    if (!first) {
1514        return oldest;
1515    } else {
1516        return InvalidThreadID;
1517    }
1518}
1519
1520#endif//__CPU_O3_COMMIT_IMPL_HH__
1521