commit_impl.hh revision 11877:5ea85692a53e
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2014 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44#ifndef __CPU_O3_COMMIT_IMPL_HH__
45#define __CPU_O3_COMMIT_IMPL_HH__
46
47#include <algorithm>
48#include <set>
49#include <string>
50
51#include "arch/utility.hh"
52#include "base/loader/symtab.hh"
53#include "base/cp_annotate.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/commit.hh"
57#include "cpu/o3/thread_state.hh"
58#include "cpu/base.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/timebuf.hh"
61#include "debug/Activity.hh"
62#include "debug/Commit.hh"
63#include "debug/CommitRate.hh"
64#include "debug/Drain.hh"
65#include "debug/ExecFaulting.hh"
66#include "debug/O3PipeView.hh"
67#include "params/DerivO3CPU.hh"
68#include "sim/faults.hh"
69#include "sim/full_system.hh"
70
71using namespace std;
72
73template <class Impl>
74DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
75                                          ThreadID _tid)
76    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
77{
78}
79
80template <class Impl>
81void
82DefaultCommit<Impl>::TrapEvent::process()
83{
84    // This will get reset by commit if it was switched out at the
85    // time of this event processing.
86    commit->trapSquash[tid] = true;
87}
88
89template <class Impl>
90const char *
91DefaultCommit<Impl>::TrapEvent::description() const
92{
93    return "Trap";
94}
95
96template <class Impl>
97DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
98    : cpu(_cpu),
99      iewToCommitDelay(params->iewToCommitDelay),
100      commitToIEWDelay(params->commitToIEWDelay),
101      renameToROBDelay(params->renameToROBDelay),
102      fetchToCommitDelay(params->commitToFetchDelay),
103      renameWidth(params->renameWidth),
104      commitWidth(params->commitWidth),
105      numThreads(params->numThreads),
106      drainPending(false),
107      drainImminent(false),
108      trapLatency(params->trapLatency),
109      canHandleInterrupts(true),
110      avoidQuiesceLiveLock(false)
111{
112    if (commitWidth > Impl::MaxWidth)
113        fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
114             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
115             commitWidth, static_cast<int>(Impl::MaxWidth));
116
117    _status = Active;
118    _nextStatus = Inactive;
119    std::string policy = params->smtCommitPolicy;
120
121    //Convert string to lowercase
122    std::transform(policy.begin(), policy.end(), policy.begin(),
123                   (int(*)(int)) tolower);
124
125    //Assign commit policy
126    if (policy == "aggressive"){
127        commitPolicy = Aggressive;
128
129        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
130    } else if (policy == "roundrobin"){
131        commitPolicy = RoundRobin;
132
133        //Set-Up Priority List
134        for (ThreadID tid = 0; tid < numThreads; tid++) {
135            priority_list.push_back(tid);
136        }
137
138        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
139    } else if (policy == "oldestready"){
140        commitPolicy = OldestReady;
141
142        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
143    } else {
144        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
145               "RoundRobin,OldestReady}");
146    }
147
148    for (ThreadID tid = 0; tid < numThreads; tid++) {
149        commitStatus[tid] = Idle;
150        changedROBNumEntries[tid] = false;
151        checkEmptyROB[tid] = false;
152        trapInFlight[tid] = false;
153        committedStores[tid] = false;
154        trapSquash[tid] = false;
155        tcSquash[tid] = false;
156        pc[tid].set(0);
157        lastCommitedSeqNum[tid] = 0;
158        squashAfterInst[tid] = NULL;
159    }
160    interrupt = NoFault;
161}
162
163template <class Impl>
164std::string
165DefaultCommit<Impl>::name() const
166{
167    return cpu->name() + ".commit";
168}
169
170template <class Impl>
171void
172DefaultCommit<Impl>::regProbePoints()
173{
174    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
175    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
176    ppSquash = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Squash");
177}
178
179template <class Impl>
180void
181DefaultCommit<Impl>::regStats()
182{
183    using namespace Stats;
184    commitSquashedInsts
185        .name(name() + ".commitSquashedInsts")
186        .desc("The number of squashed insts skipped by commit")
187        .prereq(commitSquashedInsts);
188
189    commitNonSpecStalls
190        .name(name() + ".commitNonSpecStalls")
191        .desc("The number of times commit has been forced to stall to "
192              "communicate backwards")
193        .prereq(commitNonSpecStalls);
194
195    branchMispredicts
196        .name(name() + ".branchMispredicts")
197        .desc("The number of times a branch was mispredicted")
198        .prereq(branchMispredicts);
199
200    numCommittedDist
201        .init(0,commitWidth,1)
202        .name(name() + ".committed_per_cycle")
203        .desc("Number of insts commited each cycle")
204        .flags(Stats::pdf)
205        ;
206
207    instsCommitted
208        .init(cpu->numThreads)
209        .name(name() + ".committedInsts")
210        .desc("Number of instructions committed")
211        .flags(total)
212        ;
213
214    opsCommitted
215        .init(cpu->numThreads)
216        .name(name() + ".committedOps")
217        .desc("Number of ops (including micro ops) committed")
218        .flags(total)
219        ;
220
221    statComSwp
222        .init(cpu->numThreads)
223        .name(name() + ".swp_count")
224        .desc("Number of s/w prefetches committed")
225        .flags(total)
226        ;
227
228    statComRefs
229        .init(cpu->numThreads)
230        .name(name() +  ".refs")
231        .desc("Number of memory references committed")
232        .flags(total)
233        ;
234
235    statComLoads
236        .init(cpu->numThreads)
237        .name(name() +  ".loads")
238        .desc("Number of loads committed")
239        .flags(total)
240        ;
241
242    statComMembars
243        .init(cpu->numThreads)
244        .name(name() +  ".membars")
245        .desc("Number of memory barriers committed")
246        .flags(total)
247        ;
248
249    statComBranches
250        .init(cpu->numThreads)
251        .name(name() + ".branches")
252        .desc("Number of branches committed")
253        .flags(total)
254        ;
255
256    statComFloating
257        .init(cpu->numThreads)
258        .name(name() + ".fp_insts")
259        .desc("Number of committed floating point instructions.")
260        .flags(total)
261        ;
262
263    statComInteger
264        .init(cpu->numThreads)
265        .name(name()+".int_insts")
266        .desc("Number of committed integer instructions.")
267        .flags(total)
268        ;
269
270    statComFunctionCalls
271        .init(cpu->numThreads)
272        .name(name()+".function_calls")
273        .desc("Number of function calls committed.")
274        .flags(total)
275        ;
276
277    statCommittedInstType
278        .init(numThreads,Enums::Num_OpClass)
279        .name(name() + ".op_class")
280        .desc("Class of committed instruction")
281        .flags(total | pdf | dist)
282        ;
283    statCommittedInstType.ysubnames(Enums::OpClassStrings);
284
285    commitEligibleSamples
286        .name(name() + ".bw_lim_events")
287        .desc("number cycles where commit BW limit reached")
288        ;
289}
290
291template <class Impl>
292void
293DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
294{
295    thread = threads;
296}
297
298template <class Impl>
299void
300DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
301{
302    timeBuffer = tb_ptr;
303
304    // Setup wire to send information back to IEW.
305    toIEW = timeBuffer->getWire(0);
306
307    // Setup wire to read data from IEW (for the ROB).
308    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
309}
310
311template <class Impl>
312void
313DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
314{
315    fetchQueue = fq_ptr;
316
317    // Setup wire to get instructions from rename (for the ROB).
318    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
319}
320
321template <class Impl>
322void
323DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
324{
325    renameQueue = rq_ptr;
326
327    // Setup wire to get instructions from rename (for the ROB).
328    fromRename = renameQueue->getWire(-renameToROBDelay);
329}
330
331template <class Impl>
332void
333DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
334{
335    iewQueue = iq_ptr;
336
337    // Setup wire to get instructions from IEW.
338    fromIEW = iewQueue->getWire(-iewToCommitDelay);
339}
340
341template <class Impl>
342void
343DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
344{
345    iewStage = iew_stage;
346}
347
348template<class Impl>
349void
350DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
351{
352    activeThreads = at_ptr;
353}
354
355template <class Impl>
356void
357DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
358{
359    for (ThreadID tid = 0; tid < numThreads; tid++)
360        renameMap[tid] = &rm_ptr[tid];
361}
362
363template <class Impl>
364void
365DefaultCommit<Impl>::setROB(ROB *rob_ptr)
366{
367    rob = rob_ptr;
368}
369
370template <class Impl>
371void
372DefaultCommit<Impl>::startupStage()
373{
374    rob->setActiveThreads(activeThreads);
375    rob->resetEntries();
376
377    // Broadcast the number of free entries.
378    for (ThreadID tid = 0; tid < numThreads; tid++) {
379        toIEW->commitInfo[tid].usedROB = true;
380        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
381        toIEW->commitInfo[tid].emptyROB = true;
382    }
383
384    // Commit must broadcast the number of free entries it has at the
385    // start of the simulation, so it starts as active.
386    cpu->activateStage(O3CPU::CommitIdx);
387
388    cpu->activityThisCycle();
389}
390
391template <class Impl>
392void
393DefaultCommit<Impl>::drain()
394{
395    drainPending = true;
396}
397
398template <class Impl>
399void
400DefaultCommit<Impl>::drainResume()
401{
402    drainPending = false;
403    drainImminent = false;
404}
405
406template <class Impl>
407void
408DefaultCommit<Impl>::drainSanityCheck() const
409{
410    assert(isDrained());
411    rob->drainSanityCheck();
412}
413
414template <class Impl>
415bool
416DefaultCommit<Impl>::isDrained() const
417{
418    /* Make sure no one is executing microcode. There are two reasons
419     * for this:
420     * - Hardware virtualized CPUs can't switch into the middle of a
421     *   microcode sequence.
422     * - The current fetch implementation will most likely get very
423     *   confused if it tries to start fetching an instruction that
424     *   is executing in the middle of a ucode sequence that changes
425     *   address mappings. This can happen on for example x86.
426     */
427    for (ThreadID tid = 0; tid < numThreads; tid++) {
428        if (pc[tid].microPC() != 0)
429            return false;
430    }
431
432    /* Make sure that all instructions have finished committing before
433     * declaring the system as drained. We want the pipeline to be
434     * completely empty when we declare the CPU to be drained. This
435     * makes debugging easier since CPU handover and restoring from a
436     * checkpoint with a different CPU should have the same timing.
437     */
438    return rob->isEmpty() &&
439        interrupt == NoFault;
440}
441
442template <class Impl>
443void
444DefaultCommit<Impl>::takeOverFrom()
445{
446    _status = Active;
447    _nextStatus = Inactive;
448    for (ThreadID tid = 0; tid < numThreads; tid++) {
449        commitStatus[tid] = Idle;
450        changedROBNumEntries[tid] = false;
451        trapSquash[tid] = false;
452        tcSquash[tid] = false;
453        squashAfterInst[tid] = NULL;
454    }
455    rob->takeOverFrom();
456}
457
458template <class Impl>
459void
460DefaultCommit<Impl>::deactivateThread(ThreadID tid)
461{
462    list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
463            priority_list.end(), tid);
464
465    if (thread_it != priority_list.end()) {
466        priority_list.erase(thread_it);
467    }
468}
469
470
471template <class Impl>
472void
473DefaultCommit<Impl>::updateStatus()
474{
475    // reset ROB changed variable
476    list<ThreadID>::iterator threads = activeThreads->begin();
477    list<ThreadID>::iterator end = activeThreads->end();
478
479    while (threads != end) {
480        ThreadID tid = *threads++;
481
482        changedROBNumEntries[tid] = false;
483
484        // Also check if any of the threads has a trap pending
485        if (commitStatus[tid] == TrapPending ||
486            commitStatus[tid] == FetchTrapPending) {
487            _nextStatus = Active;
488        }
489    }
490
491    if (_nextStatus == Inactive && _status == Active) {
492        DPRINTF(Activity, "Deactivating stage.\n");
493        cpu->deactivateStage(O3CPU::CommitIdx);
494    } else if (_nextStatus == Active && _status == Inactive) {
495        DPRINTF(Activity, "Activating stage.\n");
496        cpu->activateStage(O3CPU::CommitIdx);
497    }
498
499    _status = _nextStatus;
500}
501
502template <class Impl>
503bool
504DefaultCommit<Impl>::changedROBEntries()
505{
506    list<ThreadID>::iterator threads = activeThreads->begin();
507    list<ThreadID>::iterator end = activeThreads->end();
508
509    while (threads != end) {
510        ThreadID tid = *threads++;
511
512        if (changedROBNumEntries[tid]) {
513            return true;
514        }
515    }
516
517    return false;
518}
519
520template <class Impl>
521size_t
522DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
523{
524    return rob->numFreeEntries(tid);
525}
526
527template <class Impl>
528void
529DefaultCommit<Impl>::generateTrapEvent(ThreadID tid, Fault inst_fault)
530{
531    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
532
533    TrapEvent *trap = new TrapEvent(this, tid);
534
535    Cycles latency = dynamic_pointer_cast<SyscallRetryFault>(inst_fault) ?
536                     cpu->syscallRetryLatency : trapLatency;
537
538    cpu->schedule(trap, cpu->clockEdge(latency));
539    trapInFlight[tid] = true;
540    thread[tid]->trapPending = true;
541}
542
543template <class Impl>
544void
545DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
546{
547    assert(!trapInFlight[tid]);
548    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
549
550    tcSquash[tid] = true;
551}
552
553template <class Impl>
554void
555DefaultCommit<Impl>::squashAll(ThreadID tid)
556{
557    // If we want to include the squashing instruction in the squash,
558    // then use one older sequence number.
559    // Hopefully this doesn't mess things up.  Basically I want to squash
560    // all instructions of this thread.
561    InstSeqNum squashed_inst = rob->isEmpty(tid) ?
562        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
563
564    // All younger instructions will be squashed. Set the sequence
565    // number as the youngest instruction in the ROB (0 in this case.
566    // Hopefully nothing breaks.)
567    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
568
569    rob->squash(squashed_inst, tid);
570    changedROBNumEntries[tid] = true;
571
572    // Send back the sequence number of the squashed instruction.
573    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
574
575    // Send back the squash signal to tell stages that they should
576    // squash.
577    toIEW->commitInfo[tid].squash = true;
578
579    // Send back the rob squashing signal so other stages know that
580    // the ROB is in the process of squashing.
581    toIEW->commitInfo[tid].robSquashing = true;
582
583    toIEW->commitInfo[tid].mispredictInst = NULL;
584    toIEW->commitInfo[tid].squashInst = NULL;
585
586    toIEW->commitInfo[tid].pc = pc[tid];
587}
588
589template <class Impl>
590void
591DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
592{
593    squashAll(tid);
594
595    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
596
597    thread[tid]->trapPending = false;
598    thread[tid]->noSquashFromTC = false;
599    trapInFlight[tid] = false;
600
601    trapSquash[tid] = false;
602
603    commitStatus[tid] = ROBSquashing;
604    cpu->activityThisCycle();
605}
606
607template <class Impl>
608void
609DefaultCommit<Impl>::squashFromTC(ThreadID tid)
610{
611    squashAll(tid);
612
613    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
614
615    thread[tid]->noSquashFromTC = false;
616    assert(!thread[tid]->trapPending);
617
618    commitStatus[tid] = ROBSquashing;
619    cpu->activityThisCycle();
620
621    tcSquash[tid] = false;
622}
623
624template <class Impl>
625void
626DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
627{
628    DPRINTF(Commit, "Squashing after squash after request, "
629            "restarting at PC %s\n", pc[tid]);
630
631    squashAll(tid);
632    // Make sure to inform the fetch stage of which instruction caused
633    // the squash. It'll try to re-fetch an instruction executing in
634    // microcode unless this is set.
635    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
636    squashAfterInst[tid] = NULL;
637
638    commitStatus[tid] = ROBSquashing;
639    cpu->activityThisCycle();
640}
641
642template <class Impl>
643void
644DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
645{
646    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
647            tid, head_inst->seqNum);
648
649    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
650    commitStatus[tid] = SquashAfterPending;
651    squashAfterInst[tid] = head_inst;
652}
653
654template <class Impl>
655void
656DefaultCommit<Impl>::tick()
657{
658    wroteToTimeBuffer = false;
659    _nextStatus = Inactive;
660
661    if (activeThreads->empty())
662        return;
663
664    list<ThreadID>::iterator threads = activeThreads->begin();
665    list<ThreadID>::iterator end = activeThreads->end();
666
667    // Check if any of the threads are done squashing.  Change the
668    // status if they are done.
669    while (threads != end) {
670        ThreadID tid = *threads++;
671
672        // Clear the bit saying if the thread has committed stores
673        // this cycle.
674        committedStores[tid] = false;
675
676        if (commitStatus[tid] == ROBSquashing) {
677
678            if (rob->isDoneSquashing(tid)) {
679                commitStatus[tid] = Running;
680            } else {
681                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
682                        " insts this cycle.\n", tid);
683                rob->doSquash(tid);
684                toIEW->commitInfo[tid].robSquashing = true;
685                wroteToTimeBuffer = true;
686            }
687        }
688    }
689
690    commit();
691
692    markCompletedInsts();
693
694    threads = activeThreads->begin();
695
696    while (threads != end) {
697        ThreadID tid = *threads++;
698
699        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
700            // The ROB has more instructions it can commit. Its next status
701            // will be active.
702            _nextStatus = Active;
703
704            DynInstPtr inst = rob->readHeadInst(tid);
705
706            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
707                    " ROB and ready to commit\n",
708                    tid, inst->seqNum, inst->pcState());
709
710        } else if (!rob->isEmpty(tid)) {
711            DynInstPtr inst = rob->readHeadInst(tid);
712
713            ppCommitStall->notify(inst);
714
715            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
716                    "%s is head of ROB and not ready\n",
717                    tid, inst->seqNum, inst->pcState());
718        }
719
720        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
721                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
722    }
723
724
725    if (wroteToTimeBuffer) {
726        DPRINTF(Activity, "Activity This Cycle.\n");
727        cpu->activityThisCycle();
728    }
729
730    updateStatus();
731}
732
733template <class Impl>
734void
735DefaultCommit<Impl>::handleInterrupt()
736{
737    // Verify that we still have an interrupt to handle
738    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
739        DPRINTF(Commit, "Pending interrupt is cleared by master before "
740                "it got handled. Restart fetching from the orig path.\n");
741        toIEW->commitInfo[0].clearInterrupt = true;
742        interrupt = NoFault;
743        avoidQuiesceLiveLock = true;
744        return;
745    }
746
747    // Wait until all in flight instructions are finished before enterring
748    // the interrupt.
749    if (canHandleInterrupts && cpu->instList.empty()) {
750        // Squash or record that I need to squash this cycle if
751        // an interrupt needed to be handled.
752        DPRINTF(Commit, "Interrupt detected.\n");
753
754        // Clear the interrupt now that it's going to be handled
755        toIEW->commitInfo[0].clearInterrupt = true;
756
757        assert(!thread[0]->noSquashFromTC);
758        thread[0]->noSquashFromTC = true;
759
760        if (cpu->checker) {
761            cpu->checker->handlePendingInt();
762        }
763
764        // CPU will handle interrupt. Note that we ignore the local copy of
765        // interrupt. This is because the local copy may no longer be the
766        // interrupt that the interrupt controller thinks is being handled.
767        cpu->processInterrupts(cpu->getInterrupts());
768
769        thread[0]->noSquashFromTC = false;
770
771        commitStatus[0] = TrapPending;
772
773        interrupt = NoFault;
774
775        // Generate trap squash event.
776        generateTrapEvent(0, interrupt);
777
778        avoidQuiesceLiveLock = false;
779    } else {
780        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
781                "flight, ROB is %sempty\n",
782                canHandleInterrupts ? "not " : "",
783                cpu->instList.empty() ? "" : "not " );
784    }
785}
786
787template <class Impl>
788void
789DefaultCommit<Impl>::propagateInterrupt()
790{
791    // Don't propagate intterupts if we are currently handling a trap or
792    // in draining and the last observable instruction has been committed.
793    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
794            tcSquash[0] || drainImminent)
795        return;
796
797    // Process interrupts if interrupts are enabled, not in PAL
798    // mode, and no other traps or external squashes are currently
799    // pending.
800    // @todo: Allow other threads to handle interrupts.
801
802    // Get any interrupt that happened
803    interrupt = cpu->getInterrupts();
804
805    // Tell fetch that there is an interrupt pending.  This
806    // will make fetch wait until it sees a non PAL-mode PC,
807    // at which point it stops fetching instructions.
808    if (interrupt != NoFault)
809        toIEW->commitInfo[0].interruptPending = true;
810}
811
812template <class Impl>
813void
814DefaultCommit<Impl>::commit()
815{
816    if (FullSystem) {
817        // Check if we have a interrupt and get read to handle it
818        if (cpu->checkInterrupts(cpu->tcBase(0)))
819            propagateInterrupt();
820    }
821
822    ////////////////////////////////////
823    // Check for any possible squashes, handle them first
824    ////////////////////////////////////
825    list<ThreadID>::iterator threads = activeThreads->begin();
826    list<ThreadID>::iterator end = activeThreads->end();
827
828    int num_squashing_threads = 0;
829
830    while (threads != end) {
831        ThreadID tid = *threads++;
832
833        // Not sure which one takes priority.  I think if we have
834        // both, that's a bad sign.
835        if (trapSquash[tid]) {
836            assert(!tcSquash[tid]);
837            squashFromTrap(tid);
838        } else if (tcSquash[tid]) {
839            assert(commitStatus[tid] != TrapPending);
840            squashFromTC(tid);
841        } else if (commitStatus[tid] == SquashAfterPending) {
842            // A squash from the previous cycle of the commit stage (i.e.,
843            // commitInsts() called squashAfter) is pending. Squash the
844            // thread now.
845            squashFromSquashAfter(tid);
846        }
847
848        // Squashed sequence number must be older than youngest valid
849        // instruction in the ROB. This prevents squashes from younger
850        // instructions overriding squashes from older instructions.
851        if (fromIEW->squash[tid] &&
852            commitStatus[tid] != TrapPending &&
853            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
854
855            if (fromIEW->mispredictInst[tid]) {
856                DPRINTF(Commit,
857                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
858                    tid,
859                    fromIEW->mispredictInst[tid]->instAddr(),
860                    fromIEW->squashedSeqNum[tid]);
861            } else {
862                DPRINTF(Commit,
863                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
864                    tid, fromIEW->squashedSeqNum[tid]);
865            }
866
867            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
868                    tid,
869                    fromIEW->pc[tid].nextInstAddr());
870
871            commitStatus[tid] = ROBSquashing;
872
873            // If we want to include the squashing instruction in the squash,
874            // then use one older sequence number.
875            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
876
877            if (fromIEW->includeSquashInst[tid]) {
878                squashed_inst--;
879            }
880
881            // All younger instructions will be squashed. Set the sequence
882            // number as the youngest instruction in the ROB.
883            youngestSeqNum[tid] = squashed_inst;
884
885            rob->squash(squashed_inst, tid);
886            changedROBNumEntries[tid] = true;
887
888            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
889
890            toIEW->commitInfo[tid].squash = true;
891
892            // Send back the rob squashing signal so other stages know that
893            // the ROB is in the process of squashing.
894            toIEW->commitInfo[tid].robSquashing = true;
895
896            toIEW->commitInfo[tid].mispredictInst =
897                fromIEW->mispredictInst[tid];
898            toIEW->commitInfo[tid].branchTaken =
899                fromIEW->branchTaken[tid];
900            toIEW->commitInfo[tid].squashInst =
901                                    rob->findInst(tid, squashed_inst);
902            if (toIEW->commitInfo[tid].mispredictInst) {
903                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
904                     toIEW->commitInfo[tid].branchTaken = true;
905                }
906                ++branchMispredicts;
907            }
908
909            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
910        }
911
912        if (commitStatus[tid] == ROBSquashing) {
913            num_squashing_threads++;
914        }
915    }
916
917    // If commit is currently squashing, then it will have activity for the
918    // next cycle. Set its next status as active.
919    if (num_squashing_threads) {
920        _nextStatus = Active;
921    }
922
923    if (num_squashing_threads != numThreads) {
924        // If we're not currently squashing, then get instructions.
925        getInsts();
926
927        // Try to commit any instructions.
928        commitInsts();
929    }
930
931    //Check for any activity
932    threads = activeThreads->begin();
933
934    while (threads != end) {
935        ThreadID tid = *threads++;
936
937        if (changedROBNumEntries[tid]) {
938            toIEW->commitInfo[tid].usedROB = true;
939            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
940
941            wroteToTimeBuffer = true;
942            changedROBNumEntries[tid] = false;
943            if (rob->isEmpty(tid))
944                checkEmptyROB[tid] = true;
945        }
946
947        // ROB is only considered "empty" for previous stages if: a)
948        // ROB is empty, b) there are no outstanding stores, c) IEW
949        // stage has received any information regarding stores that
950        // committed.
951        // c) is checked by making sure to not consider the ROB empty
952        // on the same cycle as when stores have been committed.
953        // @todo: Make this handle multi-cycle communication between
954        // commit and IEW.
955        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
956            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
957            checkEmptyROB[tid] = false;
958            toIEW->commitInfo[tid].usedROB = true;
959            toIEW->commitInfo[tid].emptyROB = true;
960            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
961            wroteToTimeBuffer = true;
962        }
963
964    }
965}
966
967template <class Impl>
968void
969DefaultCommit<Impl>::commitInsts()
970{
971    ////////////////////////////////////
972    // Handle commit
973    // Note that commit will be handled prior to putting new
974    // instructions in the ROB so that the ROB only tries to commit
975    // instructions it has in this current cycle, and not instructions
976    // it is writing in during this cycle.  Can't commit and squash
977    // things at the same time...
978    ////////////////////////////////////
979
980    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
981
982    unsigned num_committed = 0;
983
984    DynInstPtr head_inst;
985
986    // Commit as many instructions as possible until the commit bandwidth
987    // limit is reached, or it becomes impossible to commit any more.
988    while (num_committed < commitWidth) {
989        // Check for any interrupt that we've already squashed for
990        // and start processing it.
991        if (interrupt != NoFault)
992            handleInterrupt();
993
994        ThreadID commit_thread = getCommittingThread();
995
996        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
997            break;
998
999        head_inst = rob->readHeadInst(commit_thread);
1000
1001        ThreadID tid = head_inst->threadNumber;
1002
1003        assert(tid == commit_thread);
1004
1005        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1006                head_inst->seqNum, tid);
1007
1008        // If the head instruction is squashed, it is ready to retire
1009        // (be removed from the ROB) at any time.
1010        if (head_inst->isSquashed()) {
1011
1012            DPRINTF(Commit, "Retiring squashed instruction from "
1013                    "ROB.\n");
1014
1015            rob->retireHead(commit_thread);
1016
1017            ++commitSquashedInsts;
1018            // Notify potential listeners that this instruction is squashed
1019            ppSquash->notify(head_inst);
1020
1021            // Record that the number of ROB entries has changed.
1022            changedROBNumEntries[tid] = true;
1023        } else {
1024            pc[tid] = head_inst->pcState();
1025
1026            // Increment the total number of non-speculative instructions
1027            // executed.
1028            // Hack for now: it really shouldn't happen until after the
1029            // commit is deemed to be successful, but this count is needed
1030            // for syscalls.
1031            thread[tid]->funcExeInst++;
1032
1033            // Try to commit the head instruction.
1034            bool commit_success = commitHead(head_inst, num_committed);
1035
1036            if (commit_success) {
1037                ++num_committed;
1038                statCommittedInstType[tid][head_inst->opClass()]++;
1039                ppCommit->notify(head_inst);
1040
1041                changedROBNumEntries[tid] = true;
1042
1043                // Set the doneSeqNum to the youngest committed instruction.
1044                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1045
1046                if (tid == 0) {
1047                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1048                                           ((THE_ISA != ALPHA_ISA) ||
1049                                             (!(pc[0].instAddr() & 0x3)));
1050                }
1051
1052                // Updates misc. registers.
1053                head_inst->updateMiscRegs();
1054
1055                // Check instruction execution if it successfully commits and
1056                // is not carrying a fault.
1057                if (cpu->checker) {
1058                    cpu->checker->verify(head_inst);
1059                }
1060
1061                cpu->traceFunctions(pc[tid].instAddr());
1062
1063                TheISA::advancePC(pc[tid], head_inst->staticInst);
1064
1065                // Keep track of the last sequence number commited
1066                lastCommitedSeqNum[tid] = head_inst->seqNum;
1067
1068                // If this is an instruction that doesn't play nicely with
1069                // others squash everything and restart fetch
1070                if (head_inst->isSquashAfter())
1071                    squashAfter(tid, head_inst);
1072
1073                if (drainPending) {
1074                    if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1075                        !thread[tid]->trapPending) {
1076                        // Last architectually committed instruction.
1077                        // Squash the pipeline, stall fetch, and use
1078                        // drainImminent to disable interrupts
1079                        DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1080                        squashAfter(tid, head_inst);
1081                        cpu->commitDrained(tid);
1082                        drainImminent = true;
1083                    }
1084                }
1085
1086                bool onInstBoundary = !head_inst->isMicroop() ||
1087                                      head_inst->isLastMicroop() ||
1088                                      !head_inst->isDelayedCommit();
1089
1090                if (onInstBoundary) {
1091                    int count = 0;
1092                    Addr oldpc;
1093                    // Make sure we're not currently updating state while
1094                    // handling PC events.
1095                    assert(!thread[tid]->noSquashFromTC &&
1096                           !thread[tid]->trapPending);
1097                    do {
1098                        oldpc = pc[tid].instAddr();
1099                        cpu->system->pcEventQueue.service(thread[tid]->getTC());
1100                        count++;
1101                    } while (oldpc != pc[tid].instAddr());
1102                    if (count > 1) {
1103                        DPRINTF(Commit,
1104                                "PC skip function event, stopping commit\n");
1105                        break;
1106                    }
1107                }
1108
1109                // Check if an instruction just enabled interrupts and we've
1110                // previously had an interrupt pending that was not handled
1111                // because interrupts were subsequently disabled before the
1112                // pipeline reached a place to handle the interrupt. In that
1113                // case squash now to make sure the interrupt is handled.
1114                //
1115                // If we don't do this, we might end up in a live lock situation
1116                if (!interrupt && avoidQuiesceLiveLock &&
1117                    onInstBoundary && cpu->checkInterrupts(cpu->tcBase(0)))
1118                    squashAfter(tid, head_inst);
1119            } else {
1120                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1121                        "[tid:%i] [sn:%i].\n",
1122                        head_inst->pcState(), tid ,head_inst->seqNum);
1123                break;
1124            }
1125        }
1126    }
1127
1128    DPRINTF(CommitRate, "%i\n", num_committed);
1129    numCommittedDist.sample(num_committed);
1130
1131    if (num_committed == commitWidth) {
1132        commitEligibleSamples++;
1133    }
1134}
1135
1136template <class Impl>
1137bool
1138DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1139{
1140    assert(head_inst);
1141
1142    ThreadID tid = head_inst->threadNumber;
1143
1144    // If the instruction is not executed yet, then it will need extra
1145    // handling.  Signal backwards that it should be executed.
1146    if (!head_inst->isExecuted()) {
1147        // Keep this number correct.  We have not yet actually executed
1148        // and committed this instruction.
1149        thread[tid]->funcExeInst--;
1150
1151        // Make sure we are only trying to commit un-executed instructions we
1152        // think are possible.
1153        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1154               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1155               (head_inst->isLoad() && head_inst->strictlyOrdered()));
1156
1157        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1158                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1159                head_inst->seqNum, head_inst->pcState());
1160
1161        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1162            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1163            return false;
1164        }
1165
1166        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1167
1168        // Change the instruction so it won't try to commit again until
1169        // it is executed.
1170        head_inst->clearCanCommit();
1171
1172        if (head_inst->isLoad() && head_inst->strictlyOrdered()) {
1173            DPRINTF(Commit, "[sn:%lli]: Strictly ordered load, PC %s.\n",
1174                    head_inst->seqNum, head_inst->pcState());
1175            toIEW->commitInfo[tid].strictlyOrdered = true;
1176            toIEW->commitInfo[tid].strictlyOrderedLoad = head_inst;
1177        } else {
1178            ++commitNonSpecStalls;
1179        }
1180
1181        return false;
1182    }
1183
1184    if (head_inst->isThreadSync()) {
1185        // Not handled for now.
1186        panic("Thread sync instructions are not handled yet.\n");
1187    }
1188
1189    // Check if the instruction caused a fault.  If so, trap.
1190    Fault inst_fault = head_inst->getFault();
1191
1192    // Stores mark themselves as completed.
1193    if (!head_inst->isStore() && inst_fault == NoFault) {
1194        head_inst->setCompleted();
1195    }
1196
1197    if (inst_fault != NoFault) {
1198        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1199                head_inst->seqNum, head_inst->pcState());
1200
1201        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1202            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1203            return false;
1204        }
1205
1206        head_inst->setCompleted();
1207
1208        // If instruction has faulted, let the checker execute it and
1209        // check if it sees the same fault and control flow.
1210        if (cpu->checker) {
1211            // Need to check the instruction before its fault is processed
1212            cpu->checker->verify(head_inst);
1213        }
1214
1215        assert(!thread[tid]->noSquashFromTC);
1216
1217        // Mark that we're in state update mode so that the trap's
1218        // execution doesn't generate extra squashes.
1219        thread[tid]->noSquashFromTC = true;
1220
1221        // Execute the trap.  Although it's slightly unrealistic in
1222        // terms of timing (as it doesn't wait for the full timing of
1223        // the trap event to complete before updating state), it's
1224        // needed to update the state as soon as possible.  This
1225        // prevents external agents from changing any specific state
1226        // that the trap need.
1227        cpu->trap(inst_fault, tid, head_inst->staticInst);
1228
1229        // Exit state update mode to avoid accidental updating.
1230        thread[tid]->noSquashFromTC = false;
1231
1232        commitStatus[tid] = TrapPending;
1233
1234        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1235            head_inst->seqNum);
1236        if (head_inst->traceData) {
1237            if (DTRACE(ExecFaulting)) {
1238                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1239                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1240                head_inst->traceData->dump();
1241            }
1242            delete head_inst->traceData;
1243            head_inst->traceData = NULL;
1244        }
1245
1246        // Generate trap squash event.
1247        generateTrapEvent(tid, inst_fault);
1248        return false;
1249    }
1250
1251    updateComInstStats(head_inst);
1252
1253    if (FullSystem) {
1254        if (thread[tid]->profile) {
1255            thread[tid]->profilePC = head_inst->instAddr();
1256            ProfileNode *node = thread[tid]->profile->consume(
1257                    thread[tid]->getTC(), head_inst->staticInst);
1258
1259            if (node)
1260                thread[tid]->profileNode = node;
1261        }
1262        if (CPA::available()) {
1263            if (head_inst->isControl()) {
1264                ThreadContext *tc = thread[tid]->getTC();
1265                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1266            }
1267        }
1268    }
1269    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1270            head_inst->seqNum, head_inst->pcState());
1271    if (head_inst->traceData) {
1272        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1273        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1274        head_inst->traceData->dump();
1275        delete head_inst->traceData;
1276        head_inst->traceData = NULL;
1277    }
1278    if (head_inst->isReturn()) {
1279        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1280                        head_inst->seqNum, head_inst->pcState());
1281    }
1282
1283    // Update the commit rename map
1284    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1285        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1286                                 head_inst->renamedDestRegIdx(i));
1287    }
1288
1289    // Finally clear the head ROB entry.
1290    rob->retireHead(tid);
1291
1292#if TRACING_ON
1293    if (DTRACE(O3PipeView)) {
1294        head_inst->commitTick = curTick() - head_inst->fetchTick;
1295    }
1296#endif
1297
1298    // If this was a store, record it for this cycle.
1299    if (head_inst->isStore())
1300        committedStores[tid] = true;
1301
1302    // Return true to indicate that we have committed an instruction.
1303    return true;
1304}
1305
1306template <class Impl>
1307void
1308DefaultCommit<Impl>::getInsts()
1309{
1310    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1311
1312    // Read any renamed instructions and place them into the ROB.
1313    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1314
1315    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1316        DynInstPtr inst;
1317
1318        inst = fromRename->insts[inst_num];
1319        ThreadID tid = inst->threadNumber;
1320
1321        if (!inst->isSquashed() &&
1322            commitStatus[tid] != ROBSquashing &&
1323            commitStatus[tid] != TrapPending) {
1324            changedROBNumEntries[tid] = true;
1325
1326            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1327                    inst->pcState(), inst->seqNum, tid);
1328
1329            rob->insertInst(inst);
1330
1331            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1332
1333            youngestSeqNum[tid] = inst->seqNum;
1334        } else {
1335            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1336                    "squashed, skipping.\n",
1337                    inst->pcState(), inst->seqNum, tid);
1338        }
1339    }
1340}
1341
1342template <class Impl>
1343void
1344DefaultCommit<Impl>::markCompletedInsts()
1345{
1346    // Grab completed insts out of the IEW instruction queue, and mark
1347    // instructions completed within the ROB.
1348    for (int inst_num = 0; inst_num < fromIEW->size; ++inst_num) {
1349        assert(fromIEW->insts[inst_num]);
1350        if (!fromIEW->insts[inst_num]->isSquashed()) {
1351            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1352                    "within ROB.\n",
1353                    fromIEW->insts[inst_num]->threadNumber,
1354                    fromIEW->insts[inst_num]->pcState(),
1355                    fromIEW->insts[inst_num]->seqNum);
1356
1357            // Mark the instruction as ready to commit.
1358            fromIEW->insts[inst_num]->setCanCommit();
1359        }
1360    }
1361}
1362
1363template <class Impl>
1364void
1365DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1366{
1367    ThreadID tid = inst->threadNumber;
1368
1369    if (!inst->isMicroop() || inst->isLastMicroop())
1370        instsCommitted[tid]++;
1371    opsCommitted[tid]++;
1372
1373    // To match the old model, don't count nops and instruction
1374    // prefetches towards the total commit count.
1375    if (!inst->isNop() && !inst->isInstPrefetch()) {
1376        cpu->instDone(tid, inst);
1377    }
1378
1379    //
1380    //  Control Instructions
1381    //
1382    if (inst->isControl())
1383        statComBranches[tid]++;
1384
1385    //
1386    //  Memory references
1387    //
1388    if (inst->isMemRef()) {
1389        statComRefs[tid]++;
1390
1391        if (inst->isLoad()) {
1392            statComLoads[tid]++;
1393        }
1394    }
1395
1396    if (inst->isMemBarrier()) {
1397        statComMembars[tid]++;
1398    }
1399
1400    // Integer Instruction
1401    if (inst->isInteger())
1402        statComInteger[tid]++;
1403
1404    // Floating Point Instruction
1405    if (inst->isFloating())
1406        statComFloating[tid]++;
1407
1408    // Function Calls
1409    if (inst->isCall())
1410        statComFunctionCalls[tid]++;
1411
1412}
1413
1414////////////////////////////////////////
1415//                                    //
1416//  SMT COMMIT POLICY MAINTAINED HERE //
1417//                                    //
1418////////////////////////////////////////
1419template <class Impl>
1420ThreadID
1421DefaultCommit<Impl>::getCommittingThread()
1422{
1423    if (numThreads > 1) {
1424        switch (commitPolicy) {
1425
1426          case Aggressive:
1427            //If Policy is Aggressive, commit will call
1428            //this function multiple times per
1429            //cycle
1430            return oldestReady();
1431
1432          case RoundRobin:
1433            return roundRobin();
1434
1435          case OldestReady:
1436            return oldestReady();
1437
1438          default:
1439            return InvalidThreadID;
1440        }
1441    } else {
1442        assert(!activeThreads->empty());
1443        ThreadID tid = activeThreads->front();
1444
1445        if (commitStatus[tid] == Running ||
1446            commitStatus[tid] == Idle ||
1447            commitStatus[tid] == FetchTrapPending) {
1448            return tid;
1449        } else {
1450            return InvalidThreadID;
1451        }
1452    }
1453}
1454
1455template<class Impl>
1456ThreadID
1457DefaultCommit<Impl>::roundRobin()
1458{
1459    list<ThreadID>::iterator pri_iter = priority_list.begin();
1460    list<ThreadID>::iterator end      = priority_list.end();
1461
1462    while (pri_iter != end) {
1463        ThreadID tid = *pri_iter;
1464
1465        if (commitStatus[tid] == Running ||
1466            commitStatus[tid] == Idle ||
1467            commitStatus[tid] == FetchTrapPending) {
1468
1469            if (rob->isHeadReady(tid)) {
1470                priority_list.erase(pri_iter);
1471                priority_list.push_back(tid);
1472
1473                return tid;
1474            }
1475        }
1476
1477        pri_iter++;
1478    }
1479
1480    return InvalidThreadID;
1481}
1482
1483template<class Impl>
1484ThreadID
1485DefaultCommit<Impl>::oldestReady()
1486{
1487    unsigned oldest = 0;
1488    bool first = true;
1489
1490    list<ThreadID>::iterator threads = activeThreads->begin();
1491    list<ThreadID>::iterator end = activeThreads->end();
1492
1493    while (threads != end) {
1494        ThreadID tid = *threads++;
1495
1496        if (!rob->isEmpty(tid) &&
1497            (commitStatus[tid] == Running ||
1498             commitStatus[tid] == Idle ||
1499             commitStatus[tid] == FetchTrapPending)) {
1500
1501            if (rob->isHeadReady(tid)) {
1502
1503                DynInstPtr head_inst = rob->readHeadInst(tid);
1504
1505                if (first) {
1506                    oldest = tid;
1507                    first = false;
1508                } else if (head_inst->seqNum < oldest) {
1509                    oldest = tid;
1510                }
1511            }
1512        }
1513    }
1514
1515    if (!first) {
1516        return oldest;
1517    } else {
1518        return InvalidThreadID;
1519    }
1520}
1521
1522#endif//__CPU_O3_COMMIT_IMPL_HH__
1523