commit_impl.hh revision 10331:ed05298e8566
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43#ifndef __CPU_O3_COMMIT_IMPL_HH__
44#define __CPU_O3_COMMIT_IMPL_HH__
45
46#include <algorithm>
47#include <set>
48#include <string>
49
50#include "arch/utility.hh"
51#include "base/loader/symtab.hh"
52#include "base/cp_annotate.hh"
53#include "config/the_isa.hh"
54#include "cpu/checker/cpu.hh"
55#include "cpu/o3/commit.hh"
56#include "cpu/o3/thread_state.hh"
57#include "cpu/base.hh"
58#include "cpu/exetrace.hh"
59#include "cpu/timebuf.hh"
60#include "debug/Activity.hh"
61#include "debug/Commit.hh"
62#include "debug/CommitRate.hh"
63#include "debug/Drain.hh"
64#include "debug/ExecFaulting.hh"
65#include "debug/O3PipeView.hh"
66#include "params/DerivO3CPU.hh"
67#include "sim/faults.hh"
68#include "sim/full_system.hh"
69
70using namespace std;
71
72template <class Impl>
73DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74                                          ThreadID _tid)
75    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76{
77}
78
79template <class Impl>
80void
81DefaultCommit<Impl>::TrapEvent::process()
82{
83    // This will get reset by commit if it was switched out at the
84    // time of this event processing.
85    commit->trapSquash[tid] = true;
86}
87
88template <class Impl>
89const char *
90DefaultCommit<Impl>::TrapEvent::description() const
91{
92    return "Trap";
93}
94
95template <class Impl>
96DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97    : cpu(_cpu),
98      squashCounter(0),
99      iewToCommitDelay(params->iewToCommitDelay),
100      commitToIEWDelay(params->commitToIEWDelay),
101      renameToROBDelay(params->renameToROBDelay),
102      fetchToCommitDelay(params->commitToFetchDelay),
103      renameWidth(params->renameWidth),
104      commitWidth(params->commitWidth),
105      numThreads(params->numThreads),
106      drainPending(false),
107      trapLatency(params->trapLatency),
108      canHandleInterrupts(true),
109      avoidQuiesceLiveLock(false)
110{
111    if (commitWidth > Impl::MaxWidth)
112        fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
113             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
114             commitWidth, static_cast<int>(Impl::MaxWidth));
115
116    _status = Active;
117    _nextStatus = Inactive;
118    std::string policy = params->smtCommitPolicy;
119
120    //Convert string to lowercase
121    std::transform(policy.begin(), policy.end(), policy.begin(),
122                   (int(*)(int)) tolower);
123
124    //Assign commit policy
125    if (policy == "aggressive"){
126        commitPolicy = Aggressive;
127
128        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
129    } else if (policy == "roundrobin"){
130        commitPolicy = RoundRobin;
131
132        //Set-Up Priority List
133        for (ThreadID tid = 0; tid < numThreads; tid++) {
134            priority_list.push_back(tid);
135        }
136
137        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
138    } else if (policy == "oldestready"){
139        commitPolicy = OldestReady;
140
141        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
142    } else {
143        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
144               "RoundRobin,OldestReady}");
145    }
146
147    for (ThreadID tid = 0; tid < numThreads; tid++) {
148        commitStatus[tid] = Idle;
149        changedROBNumEntries[tid] = false;
150        checkEmptyROB[tid] = false;
151        trapInFlight[tid] = false;
152        committedStores[tid] = false;
153        trapSquash[tid] = false;
154        tcSquash[tid] = false;
155        pc[tid].set(0);
156        lastCommitedSeqNum[tid] = 0;
157        squashAfterInst[tid] = NULL;
158    }
159    interrupt = NoFault;
160}
161
162template <class Impl>
163std::string
164DefaultCommit<Impl>::name() const
165{
166    return cpu->name() + ".commit";
167}
168
169template <class Impl>
170void
171DefaultCommit<Impl>::regProbePoints()
172{
173    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
174    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
175}
176
177template <class Impl>
178void
179DefaultCommit<Impl>::regStats()
180{
181    using namespace Stats;
182    commitSquashedInsts
183        .name(name() + ".commitSquashedInsts")
184        .desc("The number of squashed insts skipped by commit")
185        .prereq(commitSquashedInsts);
186    commitSquashEvents
187        .name(name() + ".commitSquashEvents")
188        .desc("The number of times commit is told to squash")
189        .prereq(commitSquashEvents);
190    commitNonSpecStalls
191        .name(name() + ".commitNonSpecStalls")
192        .desc("The number of times commit has been forced to stall to "
193              "communicate backwards")
194        .prereq(commitNonSpecStalls);
195    branchMispredicts
196        .name(name() + ".branchMispredicts")
197        .desc("The number of times a branch was mispredicted")
198        .prereq(branchMispredicts);
199    numCommittedDist
200        .init(0,commitWidth,1)
201        .name(name() + ".committed_per_cycle")
202        .desc("Number of insts commited each cycle")
203        .flags(Stats::pdf)
204        ;
205
206    instsCommitted
207        .init(cpu->numThreads)
208        .name(name() + ".committedInsts")
209        .desc("Number of instructions committed")
210        .flags(total)
211        ;
212
213    opsCommitted
214        .init(cpu->numThreads)
215        .name(name() + ".committedOps")
216        .desc("Number of ops (including micro ops) committed")
217        .flags(total)
218        ;
219
220    statComSwp
221        .init(cpu->numThreads)
222        .name(name() + ".swp_count")
223        .desc("Number of s/w prefetches committed")
224        .flags(total)
225        ;
226
227    statComRefs
228        .init(cpu->numThreads)
229        .name(name() +  ".refs")
230        .desc("Number of memory references committed")
231        .flags(total)
232        ;
233
234    statComLoads
235        .init(cpu->numThreads)
236        .name(name() +  ".loads")
237        .desc("Number of loads committed")
238        .flags(total)
239        ;
240
241    statComMembars
242        .init(cpu->numThreads)
243        .name(name() +  ".membars")
244        .desc("Number of memory barriers committed")
245        .flags(total)
246        ;
247
248    statComBranches
249        .init(cpu->numThreads)
250        .name(name() + ".branches")
251        .desc("Number of branches committed")
252        .flags(total)
253        ;
254
255    statComFloating
256        .init(cpu->numThreads)
257        .name(name() + ".fp_insts")
258        .desc("Number of committed floating point instructions.")
259        .flags(total)
260        ;
261
262    statComInteger
263        .init(cpu->numThreads)
264        .name(name()+".int_insts")
265        .desc("Number of committed integer instructions.")
266        .flags(total)
267        ;
268
269    statComFunctionCalls
270        .init(cpu->numThreads)
271        .name(name()+".function_calls")
272        .desc("Number of function calls committed.")
273        .flags(total)
274        ;
275
276    statCommittedInstType
277        .init(numThreads,Enums::Num_OpClass)
278        .name(name() + ".op_class")
279        .desc("Class of committed instruction")
280        .flags(total | pdf | dist)
281        ;
282    statCommittedInstType.ysubnames(Enums::OpClassStrings);
283
284    commitEligible
285        .init(cpu->numThreads)
286        .name(name() + ".bw_limited")
287        .desc("number of insts not committed due to BW limits")
288        .flags(total)
289        ;
290
291    commitEligibleSamples
292        .name(name() + ".bw_lim_events")
293        .desc("number cycles where commit BW limit reached")
294        ;
295}
296
297template <class Impl>
298void
299DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
300{
301    thread = threads;
302}
303
304template <class Impl>
305void
306DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
307{
308    timeBuffer = tb_ptr;
309
310    // Setup wire to send information back to IEW.
311    toIEW = timeBuffer->getWire(0);
312
313    // Setup wire to read data from IEW (for the ROB).
314    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
315}
316
317template <class Impl>
318void
319DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
320{
321    fetchQueue = fq_ptr;
322
323    // Setup wire to get instructions from rename (for the ROB).
324    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
325}
326
327template <class Impl>
328void
329DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
330{
331    renameQueue = rq_ptr;
332
333    // Setup wire to get instructions from rename (for the ROB).
334    fromRename = renameQueue->getWire(-renameToROBDelay);
335}
336
337template <class Impl>
338void
339DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
340{
341    iewQueue = iq_ptr;
342
343    // Setup wire to get instructions from IEW.
344    fromIEW = iewQueue->getWire(-iewToCommitDelay);
345}
346
347template <class Impl>
348void
349DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
350{
351    iewStage = iew_stage;
352}
353
354template<class Impl>
355void
356DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
357{
358    activeThreads = at_ptr;
359}
360
361template <class Impl>
362void
363DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
364{
365    for (ThreadID tid = 0; tid < numThreads; tid++)
366        renameMap[tid] = &rm_ptr[tid];
367}
368
369template <class Impl>
370void
371DefaultCommit<Impl>::setROB(ROB *rob_ptr)
372{
373    rob = rob_ptr;
374}
375
376template <class Impl>
377void
378DefaultCommit<Impl>::startupStage()
379{
380    rob->setActiveThreads(activeThreads);
381    rob->resetEntries();
382
383    // Broadcast the number of free entries.
384    for (ThreadID tid = 0; tid < numThreads; tid++) {
385        toIEW->commitInfo[tid].usedROB = true;
386        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
387        toIEW->commitInfo[tid].emptyROB = true;
388    }
389
390    // Commit must broadcast the number of free entries it has at the
391    // start of the simulation, so it starts as active.
392    cpu->activateStage(O3CPU::CommitIdx);
393
394    cpu->activityThisCycle();
395}
396
397template <class Impl>
398void
399DefaultCommit<Impl>::drain()
400{
401    drainPending = true;
402}
403
404template <class Impl>
405void
406DefaultCommit<Impl>::drainResume()
407{
408    drainPending = false;
409}
410
411template <class Impl>
412void
413DefaultCommit<Impl>::drainSanityCheck() const
414{
415    assert(isDrained());
416    rob->drainSanityCheck();
417}
418
419template <class Impl>
420bool
421DefaultCommit<Impl>::isDrained() const
422{
423    /* Make sure no one is executing microcode. There are two reasons
424     * for this:
425     * - Hardware virtualized CPUs can't switch into the middle of a
426     *   microcode sequence.
427     * - The current fetch implementation will most likely get very
428     *   confused if it tries to start fetching an instruction that
429     *   is executing in the middle of a ucode sequence that changes
430     *   address mappings. This can happen on for example x86.
431     */
432    for (ThreadID tid = 0; tid < numThreads; tid++) {
433        if (pc[tid].microPC() != 0)
434            return false;
435    }
436
437    /* Make sure that all instructions have finished committing before
438     * declaring the system as drained. We want the pipeline to be
439     * completely empty when we declare the CPU to be drained. This
440     * makes debugging easier since CPU handover and restoring from a
441     * checkpoint with a different CPU should have the same timing.
442     */
443    return rob->isEmpty() &&
444        interrupt == NoFault;
445}
446
447template <class Impl>
448void
449DefaultCommit<Impl>::takeOverFrom()
450{
451    _status = Active;
452    _nextStatus = Inactive;
453    for (ThreadID tid = 0; tid < numThreads; tid++) {
454        commitStatus[tid] = Idle;
455        changedROBNumEntries[tid] = false;
456        trapSquash[tid] = false;
457        tcSquash[tid] = false;
458        squashAfterInst[tid] = NULL;
459    }
460    squashCounter = 0;
461    rob->takeOverFrom();
462}
463
464template <class Impl>
465void
466DefaultCommit<Impl>::deactivateThread(ThreadID tid)
467{
468    list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
469            priority_list.end(), tid);
470
471    if (thread_it != priority_list.end()) {
472        priority_list.erase(thread_it);
473    }
474}
475
476
477template <class Impl>
478void
479DefaultCommit<Impl>::updateStatus()
480{
481    // reset ROB changed variable
482    list<ThreadID>::iterator threads = activeThreads->begin();
483    list<ThreadID>::iterator end = activeThreads->end();
484
485    while (threads != end) {
486        ThreadID tid = *threads++;
487
488        changedROBNumEntries[tid] = false;
489
490        // Also check if any of the threads has a trap pending
491        if (commitStatus[tid] == TrapPending ||
492            commitStatus[tid] == FetchTrapPending) {
493            _nextStatus = Active;
494        }
495    }
496
497    if (_nextStatus == Inactive && _status == Active) {
498        DPRINTF(Activity, "Deactivating stage.\n");
499        cpu->deactivateStage(O3CPU::CommitIdx);
500    } else if (_nextStatus == Active && _status == Inactive) {
501        DPRINTF(Activity, "Activating stage.\n");
502        cpu->activateStage(O3CPU::CommitIdx);
503    }
504
505    _status = _nextStatus;
506}
507
508template <class Impl>
509void
510DefaultCommit<Impl>::setNextStatus()
511{
512    int squashes = 0;
513
514    list<ThreadID>::iterator threads = activeThreads->begin();
515    list<ThreadID>::iterator end = activeThreads->end();
516
517    while (threads != end) {
518        ThreadID tid = *threads++;
519
520        if (commitStatus[tid] == ROBSquashing) {
521            squashes++;
522        }
523    }
524
525    squashCounter = squashes;
526
527    // If commit is currently squashing, then it will have activity for the
528    // next cycle. Set its next status as active.
529    if (squashCounter) {
530        _nextStatus = Active;
531    }
532}
533
534template <class Impl>
535bool
536DefaultCommit<Impl>::changedROBEntries()
537{
538    list<ThreadID>::iterator threads = activeThreads->begin();
539    list<ThreadID>::iterator end = activeThreads->end();
540
541    while (threads != end) {
542        ThreadID tid = *threads++;
543
544        if (changedROBNumEntries[tid]) {
545            return true;
546        }
547    }
548
549    return false;
550}
551
552template <class Impl>
553size_t
554DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
555{
556    return rob->numFreeEntries(tid);
557}
558
559template <class Impl>
560void
561DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
562{
563    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
564
565    TrapEvent *trap = new TrapEvent(this, tid);
566
567    cpu->schedule(trap, cpu->clockEdge(trapLatency));
568    trapInFlight[tid] = true;
569    thread[tid]->trapPending = true;
570}
571
572template <class Impl>
573void
574DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
575{
576    assert(!trapInFlight[tid]);
577    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
578
579    tcSquash[tid] = true;
580}
581
582template <class Impl>
583void
584DefaultCommit<Impl>::squashAll(ThreadID tid)
585{
586    // If we want to include the squashing instruction in the squash,
587    // then use one older sequence number.
588    // Hopefully this doesn't mess things up.  Basically I want to squash
589    // all instructions of this thread.
590    InstSeqNum squashed_inst = rob->isEmpty(tid) ?
591        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
592
593    // All younger instructions will be squashed. Set the sequence
594    // number as the youngest instruction in the ROB (0 in this case.
595    // Hopefully nothing breaks.)
596    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
597
598    rob->squash(squashed_inst, tid);
599    changedROBNumEntries[tid] = true;
600
601    // Send back the sequence number of the squashed instruction.
602    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
603
604    // Send back the squash signal to tell stages that they should
605    // squash.
606    toIEW->commitInfo[tid].squash = true;
607
608    // Send back the rob squashing signal so other stages know that
609    // the ROB is in the process of squashing.
610    toIEW->commitInfo[tid].robSquashing = true;
611
612    toIEW->commitInfo[tid].mispredictInst = NULL;
613    toIEW->commitInfo[tid].squashInst = NULL;
614
615    toIEW->commitInfo[tid].pc = pc[tid];
616}
617
618template <class Impl>
619void
620DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
621{
622    squashAll(tid);
623
624    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
625
626    thread[tid]->trapPending = false;
627    thread[tid]->noSquashFromTC = false;
628    trapInFlight[tid] = false;
629
630    trapSquash[tid] = false;
631
632    commitStatus[tid] = ROBSquashing;
633    cpu->activityThisCycle();
634}
635
636template <class Impl>
637void
638DefaultCommit<Impl>::squashFromTC(ThreadID tid)
639{
640    squashAll(tid);
641
642    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
643
644    thread[tid]->noSquashFromTC = false;
645    assert(!thread[tid]->trapPending);
646
647    commitStatus[tid] = ROBSquashing;
648    cpu->activityThisCycle();
649
650    tcSquash[tid] = false;
651}
652
653template <class Impl>
654void
655DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
656{
657    DPRINTF(Commit, "Squashing after squash after request, "
658            "restarting at PC %s\n", pc[tid]);
659
660    squashAll(tid);
661    // Make sure to inform the fetch stage of which instruction caused
662    // the squash. It'll try to re-fetch an instruction executing in
663    // microcode unless this is set.
664    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
665    squashAfterInst[tid] = NULL;
666
667    commitStatus[tid] = ROBSquashing;
668    cpu->activityThisCycle();
669}
670
671template <class Impl>
672void
673DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
674{
675    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
676            tid, head_inst->seqNum);
677
678    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
679    commitStatus[tid] = SquashAfterPending;
680    squashAfterInst[tid] = head_inst;
681}
682
683template <class Impl>
684void
685DefaultCommit<Impl>::tick()
686{
687    wroteToTimeBuffer = false;
688    _nextStatus = Inactive;
689
690    if (activeThreads->empty())
691        return;
692
693    list<ThreadID>::iterator threads = activeThreads->begin();
694    list<ThreadID>::iterator end = activeThreads->end();
695
696    // Check if any of the threads are done squashing.  Change the
697    // status if they are done.
698    while (threads != end) {
699        ThreadID tid = *threads++;
700
701        // Clear the bit saying if the thread has committed stores
702        // this cycle.
703        committedStores[tid] = false;
704
705        if (commitStatus[tid] == ROBSquashing) {
706
707            if (rob->isDoneSquashing(tid)) {
708                commitStatus[tid] = Running;
709            } else {
710                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
711                        " insts this cycle.\n", tid);
712                rob->doSquash(tid);
713                toIEW->commitInfo[tid].robSquashing = true;
714                wroteToTimeBuffer = true;
715            }
716        }
717    }
718
719    commit();
720
721    markCompletedInsts();
722
723    threads = activeThreads->begin();
724
725    while (threads != end) {
726        ThreadID tid = *threads++;
727
728        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
729            // The ROB has more instructions it can commit. Its next status
730            // will be active.
731            _nextStatus = Active;
732
733            DynInstPtr inst = rob->readHeadInst(tid);
734
735            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
736                    " ROB and ready to commit\n",
737                    tid, inst->seqNum, inst->pcState());
738
739        } else if (!rob->isEmpty(tid)) {
740            DynInstPtr inst = rob->readHeadInst(tid);
741
742            ppCommitStall->notify(inst);
743
744            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
745                    "%s is head of ROB and not ready\n",
746                    tid, inst->seqNum, inst->pcState());
747        }
748
749        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
750                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
751    }
752
753
754    if (wroteToTimeBuffer) {
755        DPRINTF(Activity, "Activity This Cycle.\n");
756        cpu->activityThisCycle();
757    }
758
759    updateStatus();
760}
761
762template <class Impl>
763void
764DefaultCommit<Impl>::handleInterrupt()
765{
766    // Verify that we still have an interrupt to handle
767    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
768        DPRINTF(Commit, "Pending interrupt is cleared by master before "
769                "it got handled. Restart fetching from the orig path.\n");
770        toIEW->commitInfo[0].clearInterrupt = true;
771        interrupt = NoFault;
772        avoidQuiesceLiveLock = true;
773        return;
774    }
775
776    // Wait until all in flight instructions are finished before enterring
777    // the interrupt.
778    if (canHandleInterrupts && cpu->instList.empty()) {
779        // Squash or record that I need to squash this cycle if
780        // an interrupt needed to be handled.
781        DPRINTF(Commit, "Interrupt detected.\n");
782
783        // Clear the interrupt now that it's going to be handled
784        toIEW->commitInfo[0].clearInterrupt = true;
785
786        assert(!thread[0]->noSquashFromTC);
787        thread[0]->noSquashFromTC = true;
788
789        if (cpu->checker) {
790            cpu->checker->handlePendingInt();
791        }
792
793        // CPU will handle interrupt. Note that we ignore the local copy of
794        // interrupt. This is because the local copy may no longer be the
795        // interrupt that the interrupt controller thinks is being handled.
796        cpu->processInterrupts(cpu->getInterrupts());
797
798        thread[0]->noSquashFromTC = false;
799
800        commitStatus[0] = TrapPending;
801
802        // Generate trap squash event.
803        generateTrapEvent(0);
804
805        interrupt = NoFault;
806        avoidQuiesceLiveLock = false;
807    } else {
808        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
809                "flight, ROB is %sempty\n",
810                canHandleInterrupts ? "not " : "",
811                cpu->instList.empty() ? "" : "not " );
812    }
813}
814
815template <class Impl>
816void
817DefaultCommit<Impl>::propagateInterrupt()
818{
819    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
820            tcSquash[0])
821        return;
822
823    // Process interrupts if interrupts are enabled, not in PAL
824    // mode, and no other traps or external squashes are currently
825    // pending.
826    // @todo: Allow other threads to handle interrupts.
827
828    // Get any interrupt that happened
829    interrupt = cpu->getInterrupts();
830
831    // Tell fetch that there is an interrupt pending.  This
832    // will make fetch wait until it sees a non PAL-mode PC,
833    // at which point it stops fetching instructions.
834    if (interrupt != NoFault)
835        toIEW->commitInfo[0].interruptPending = true;
836}
837
838template <class Impl>
839void
840DefaultCommit<Impl>::commit()
841{
842    if (FullSystem) {
843        // Check if we have a interrupt and get read to handle it
844        if (cpu->checkInterrupts(cpu->tcBase(0)))
845            propagateInterrupt();
846    }
847
848    ////////////////////////////////////
849    // Check for any possible squashes, handle them first
850    ////////////////////////////////////
851    list<ThreadID>::iterator threads = activeThreads->begin();
852    list<ThreadID>::iterator end = activeThreads->end();
853
854    while (threads != end) {
855        ThreadID tid = *threads++;
856
857        // Not sure which one takes priority.  I think if we have
858        // both, that's a bad sign.
859        if (trapSquash[tid]) {
860            assert(!tcSquash[tid]);
861            squashFromTrap(tid);
862        } else if (tcSquash[tid]) {
863            assert(commitStatus[tid] != TrapPending);
864            squashFromTC(tid);
865        } else if (commitStatus[tid] == SquashAfterPending) {
866            // A squash from the previous cycle of the commit stage (i.e.,
867            // commitInsts() called squashAfter) is pending. Squash the
868            // thread now.
869            squashFromSquashAfter(tid);
870        }
871
872        // Squashed sequence number must be older than youngest valid
873        // instruction in the ROB. This prevents squashes from younger
874        // instructions overriding squashes from older instructions.
875        if (fromIEW->squash[tid] &&
876            commitStatus[tid] != TrapPending &&
877            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
878
879            if (fromIEW->mispredictInst[tid]) {
880                DPRINTF(Commit,
881                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
882                    tid,
883                    fromIEW->mispredictInst[tid]->instAddr(),
884                    fromIEW->squashedSeqNum[tid]);
885            } else {
886                DPRINTF(Commit,
887                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
888                    tid, fromIEW->squashedSeqNum[tid]);
889            }
890
891            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
892                    tid,
893                    fromIEW->pc[tid].nextInstAddr());
894
895            commitStatus[tid] = ROBSquashing;
896
897            // If we want to include the squashing instruction in the squash,
898            // then use one older sequence number.
899            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
900
901            if (fromIEW->includeSquashInst[tid]) {
902                squashed_inst--;
903            }
904
905            // All younger instructions will be squashed. Set the sequence
906            // number as the youngest instruction in the ROB.
907            youngestSeqNum[tid] = squashed_inst;
908
909            rob->squash(squashed_inst, tid);
910            changedROBNumEntries[tid] = true;
911
912            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
913
914            toIEW->commitInfo[tid].squash = true;
915
916            // Send back the rob squashing signal so other stages know that
917            // the ROB is in the process of squashing.
918            toIEW->commitInfo[tid].robSquashing = true;
919
920            toIEW->commitInfo[tid].mispredictInst =
921                fromIEW->mispredictInst[tid];
922            toIEW->commitInfo[tid].branchTaken =
923                fromIEW->branchTaken[tid];
924            toIEW->commitInfo[tid].squashInst =
925                                    rob->findInst(tid, squashed_inst);
926            if (toIEW->commitInfo[tid].mispredictInst) {
927                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
928                     toIEW->commitInfo[tid].branchTaken = true;
929                }
930            }
931
932            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
933
934            if (toIEW->commitInfo[tid].mispredictInst) {
935                ++branchMispredicts;
936            }
937        }
938
939    }
940
941    setNextStatus();
942
943    if (squashCounter != numThreads) {
944        // If we're not currently squashing, then get instructions.
945        getInsts();
946
947        // Try to commit any instructions.
948        commitInsts();
949    }
950
951    //Check for any activity
952    threads = activeThreads->begin();
953
954    while (threads != end) {
955        ThreadID tid = *threads++;
956
957        if (changedROBNumEntries[tid]) {
958            toIEW->commitInfo[tid].usedROB = true;
959            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
960
961            wroteToTimeBuffer = true;
962            changedROBNumEntries[tid] = false;
963            if (rob->isEmpty(tid))
964                checkEmptyROB[tid] = true;
965        }
966
967        // ROB is only considered "empty" for previous stages if: a)
968        // ROB is empty, b) there are no outstanding stores, c) IEW
969        // stage has received any information regarding stores that
970        // committed.
971        // c) is checked by making sure to not consider the ROB empty
972        // on the same cycle as when stores have been committed.
973        // @todo: Make this handle multi-cycle communication between
974        // commit and IEW.
975        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
976            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
977            checkEmptyROB[tid] = false;
978            toIEW->commitInfo[tid].usedROB = true;
979            toIEW->commitInfo[tid].emptyROB = true;
980            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
981            wroteToTimeBuffer = true;
982        }
983
984    }
985}
986
987template <class Impl>
988void
989DefaultCommit<Impl>::commitInsts()
990{
991    ////////////////////////////////////
992    // Handle commit
993    // Note that commit will be handled prior to putting new
994    // instructions in the ROB so that the ROB only tries to commit
995    // instructions it has in this current cycle, and not instructions
996    // it is writing in during this cycle.  Can't commit and squash
997    // things at the same time...
998    ////////////////////////////////////
999
1000    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
1001
1002    unsigned num_committed = 0;
1003
1004    DynInstPtr head_inst;
1005
1006    // Commit as many instructions as possible until the commit bandwidth
1007    // limit is reached, or it becomes impossible to commit any more.
1008    while (num_committed < commitWidth) {
1009        // Check for any interrupt that we've already squashed for
1010        // and start processing it.
1011        if (interrupt != NoFault)
1012            handleInterrupt();
1013
1014        int commit_thread = getCommittingThread();
1015
1016        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
1017            break;
1018
1019        head_inst = rob->readHeadInst(commit_thread);
1020
1021        ThreadID tid = head_inst->threadNumber;
1022
1023        assert(tid == commit_thread);
1024
1025        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1026                head_inst->seqNum, tid);
1027
1028        // If the head instruction is squashed, it is ready to retire
1029        // (be removed from the ROB) at any time.
1030        if (head_inst->isSquashed()) {
1031
1032            DPRINTF(Commit, "Retiring squashed instruction from "
1033                    "ROB.\n");
1034
1035            rob->retireHead(commit_thread);
1036
1037            ++commitSquashedInsts;
1038
1039            // Record that the number of ROB entries has changed.
1040            changedROBNumEntries[tid] = true;
1041        } else {
1042            pc[tid] = head_inst->pcState();
1043
1044            // Increment the total number of non-speculative instructions
1045            // executed.
1046            // Hack for now: it really shouldn't happen until after the
1047            // commit is deemed to be successful, but this count is needed
1048            // for syscalls.
1049            thread[tid]->funcExeInst++;
1050
1051            // Try to commit the head instruction.
1052            bool commit_success = commitHead(head_inst, num_committed);
1053
1054            if (commit_success) {
1055                ++num_committed;
1056                statCommittedInstType[tid][head_inst->opClass()]++;
1057                ppCommit->notify(head_inst);
1058
1059                changedROBNumEntries[tid] = true;
1060
1061                // Set the doneSeqNum to the youngest committed instruction.
1062                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1063
1064                if (tid == 0) {
1065                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1066                                           ((THE_ISA != ALPHA_ISA) ||
1067                                             (!(pc[0].instAddr() & 0x3)));
1068                }
1069
1070                // Updates misc. registers.
1071                head_inst->updateMiscRegs();
1072
1073                // Check instruction execution if it successfully commits and
1074                // is not carrying a fault.
1075                if (cpu->checker) {
1076                    cpu->checker->verify(head_inst);
1077                }
1078
1079                cpu->traceFunctions(pc[tid].instAddr());
1080
1081                TheISA::advancePC(pc[tid], head_inst->staticInst);
1082
1083                // Keep track of the last sequence number commited
1084                lastCommitedSeqNum[tid] = head_inst->seqNum;
1085
1086                // If this is an instruction that doesn't play nicely with
1087                // others squash everything and restart fetch
1088                if (head_inst->isSquashAfter())
1089                    squashAfter(tid, head_inst);
1090
1091                if (drainPending) {
1092                    DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1093                    if (pc[tid].microPC() == 0 && interrupt == NoFault) {
1094                        squashAfter(tid, head_inst);
1095                        cpu->commitDrained(tid);
1096                    }
1097                }
1098
1099                int count = 0;
1100                Addr oldpc;
1101                // Debug statement.  Checks to make sure we're not
1102                // currently updating state while handling PC events.
1103                assert(!thread[tid]->noSquashFromTC && !thread[tid]->trapPending);
1104                do {
1105                    oldpc = pc[tid].instAddr();
1106                    cpu->system->pcEventQueue.service(thread[tid]->getTC());
1107                    count++;
1108                } while (oldpc != pc[tid].instAddr());
1109                if (count > 1) {
1110                    DPRINTF(Commit,
1111                            "PC skip function event, stopping commit\n");
1112                    break;
1113                }
1114
1115                // Check if an instruction just enabled interrupts and we've
1116                // previously had an interrupt pending that was not handled
1117                // because interrupts were subsequently disabled before the
1118                // pipeline reached a place to handle the interrupt. In that
1119                // case squash now to make sure the interrupt is handled.
1120                //
1121                // If we don't do this, we might end up in a live lock situation
1122                if (!interrupt  && avoidQuiesceLiveLock &&
1123                   (!head_inst->isMicroop() || head_inst->isLastMicroop()) &&
1124                   cpu->checkInterrupts(cpu->tcBase(0)))
1125                    squashAfter(tid, head_inst);
1126            } else {
1127                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1128                        "[tid:%i] [sn:%i].\n",
1129                        head_inst->pcState(), tid ,head_inst->seqNum);
1130                break;
1131            }
1132        }
1133    }
1134
1135    DPRINTF(CommitRate, "%i\n", num_committed);
1136    numCommittedDist.sample(num_committed);
1137
1138    if (num_committed == commitWidth) {
1139        commitEligibleSamples++;
1140    }
1141}
1142
1143template <class Impl>
1144bool
1145DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1146{
1147    assert(head_inst);
1148
1149    ThreadID tid = head_inst->threadNumber;
1150
1151    // If the instruction is not executed yet, then it will need extra
1152    // handling.  Signal backwards that it should be executed.
1153    if (!head_inst->isExecuted()) {
1154        // Keep this number correct.  We have not yet actually executed
1155        // and committed this instruction.
1156        thread[tid]->funcExeInst--;
1157
1158        // Make sure we are only trying to commit un-executed instructions we
1159        // think are possible.
1160        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1161               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1162               (head_inst->isLoad() && head_inst->uncacheable()));
1163
1164        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1165                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1166                head_inst->seqNum, head_inst->pcState());
1167
1168        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1169            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1170            return false;
1171        }
1172
1173        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1174
1175        // Change the instruction so it won't try to commit again until
1176        // it is executed.
1177        head_inst->clearCanCommit();
1178
1179        if (head_inst->isLoad() && head_inst->uncacheable()) {
1180            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1181                    head_inst->seqNum, head_inst->pcState());
1182            toIEW->commitInfo[tid].uncached = true;
1183            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1184        } else {
1185            ++commitNonSpecStalls;
1186        }
1187
1188        return false;
1189    }
1190
1191    if (head_inst->isThreadSync()) {
1192        // Not handled for now.
1193        panic("Thread sync instructions are not handled yet.\n");
1194    }
1195
1196    // Check if the instruction caused a fault.  If so, trap.
1197    Fault inst_fault = head_inst->getFault();
1198
1199    // Stores mark themselves as completed.
1200    if (!head_inst->isStore() && inst_fault == NoFault) {
1201        head_inst->setCompleted();
1202    }
1203
1204    if (inst_fault != NoFault) {
1205        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1206                head_inst->seqNum, head_inst->pcState());
1207
1208        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1209            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1210            return false;
1211        }
1212
1213        head_inst->setCompleted();
1214
1215        // If instruction has faulted, let the checker execute it and
1216        // check if it sees the same fault and control flow.
1217        if (cpu->checker) {
1218            // Need to check the instruction before its fault is processed
1219            cpu->checker->verify(head_inst);
1220        }
1221
1222        assert(!thread[tid]->noSquashFromTC);
1223
1224        // Mark that we're in state update mode so that the trap's
1225        // execution doesn't generate extra squashes.
1226        thread[tid]->noSquashFromTC = true;
1227
1228        // Execute the trap.  Although it's slightly unrealistic in
1229        // terms of timing (as it doesn't wait for the full timing of
1230        // the trap event to complete before updating state), it's
1231        // needed to update the state as soon as possible.  This
1232        // prevents external agents from changing any specific state
1233        // that the trap need.
1234        cpu->trap(inst_fault, tid, head_inst->staticInst);
1235
1236        // Exit state update mode to avoid accidental updating.
1237        thread[tid]->noSquashFromTC = false;
1238
1239        commitStatus[tid] = TrapPending;
1240
1241        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1242            head_inst->seqNum);
1243        if (head_inst->traceData) {
1244            if (DTRACE(ExecFaulting)) {
1245                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1246                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1247                head_inst->traceData->dump();
1248            }
1249            delete head_inst->traceData;
1250            head_inst->traceData = NULL;
1251        }
1252
1253        // Generate trap squash event.
1254        generateTrapEvent(tid);
1255        return false;
1256    }
1257
1258    updateComInstStats(head_inst);
1259
1260    if (FullSystem) {
1261        if (thread[tid]->profile) {
1262            thread[tid]->profilePC = head_inst->instAddr();
1263            ProfileNode *node = thread[tid]->profile->consume(
1264                    thread[tid]->getTC(), head_inst->staticInst);
1265
1266            if (node)
1267                thread[tid]->profileNode = node;
1268        }
1269        if (CPA::available()) {
1270            if (head_inst->isControl()) {
1271                ThreadContext *tc = thread[tid]->getTC();
1272                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1273            }
1274        }
1275    }
1276    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1277            head_inst->seqNum, head_inst->pcState());
1278    if (head_inst->traceData) {
1279        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1280        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1281        head_inst->traceData->dump();
1282        delete head_inst->traceData;
1283        head_inst->traceData = NULL;
1284    }
1285    if (head_inst->isReturn()) {
1286        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1287                        head_inst->seqNum, head_inst->pcState());
1288    }
1289
1290    // Update the commit rename map
1291    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1292        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1293                                 head_inst->renamedDestRegIdx(i));
1294    }
1295
1296    // Finally clear the head ROB entry.
1297    rob->retireHead(tid);
1298
1299#if TRACING_ON
1300    if (DTRACE(O3PipeView)) {
1301        head_inst->commitTick = curTick() - head_inst->fetchTick;
1302    }
1303#endif
1304
1305    // If this was a store, record it for this cycle.
1306    if (head_inst->isStore())
1307        committedStores[tid] = true;
1308
1309    // Return true to indicate that we have committed an instruction.
1310    return true;
1311}
1312
1313template <class Impl>
1314void
1315DefaultCommit<Impl>::getInsts()
1316{
1317    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1318
1319    // Read any renamed instructions and place them into the ROB.
1320    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1321
1322    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1323        DynInstPtr inst;
1324
1325        inst = fromRename->insts[inst_num];
1326        ThreadID tid = inst->threadNumber;
1327
1328        if (!inst->isSquashed() &&
1329            commitStatus[tid] != ROBSquashing &&
1330            commitStatus[tid] != TrapPending) {
1331            changedROBNumEntries[tid] = true;
1332
1333            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1334                    inst->pcState(), inst->seqNum, tid);
1335
1336            rob->insertInst(inst);
1337
1338            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1339
1340            youngestSeqNum[tid] = inst->seqNum;
1341        } else {
1342            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1343                    "squashed, skipping.\n",
1344                    inst->pcState(), inst->seqNum, tid);
1345        }
1346    }
1347}
1348
1349template <class Impl>
1350void
1351DefaultCommit<Impl>::markCompletedInsts()
1352{
1353    // Grab completed insts out of the IEW instruction queue, and mark
1354    // instructions completed within the ROB.
1355    for (int inst_num = 0;
1356         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1357         ++inst_num)
1358    {
1359        if (!fromIEW->insts[inst_num]->isSquashed()) {
1360            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1361                    "within ROB.\n",
1362                    fromIEW->insts[inst_num]->threadNumber,
1363                    fromIEW->insts[inst_num]->pcState(),
1364                    fromIEW->insts[inst_num]->seqNum);
1365
1366            // Mark the instruction as ready to commit.
1367            fromIEW->insts[inst_num]->setCanCommit();
1368        }
1369    }
1370}
1371
1372template <class Impl>
1373void
1374DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1375{
1376    ThreadID tid = inst->threadNumber;
1377
1378    if (!inst->isMicroop() || inst->isLastMicroop())
1379        instsCommitted[tid]++;
1380    opsCommitted[tid]++;
1381
1382    // To match the old model, don't count nops and instruction
1383    // prefetches towards the total commit count.
1384    if (!inst->isNop() && !inst->isInstPrefetch()) {
1385        cpu->instDone(tid, inst);
1386    }
1387
1388    //
1389    //  Control Instructions
1390    //
1391    if (inst->isControl())
1392        statComBranches[tid]++;
1393
1394    //
1395    //  Memory references
1396    //
1397    if (inst->isMemRef()) {
1398        statComRefs[tid]++;
1399
1400        if (inst->isLoad()) {
1401            statComLoads[tid]++;
1402        }
1403    }
1404
1405    if (inst->isMemBarrier()) {
1406        statComMembars[tid]++;
1407    }
1408
1409    // Integer Instruction
1410    if (inst->isInteger())
1411        statComInteger[tid]++;
1412
1413    // Floating Point Instruction
1414    if (inst->isFloating())
1415        statComFloating[tid]++;
1416
1417    // Function Calls
1418    if (inst->isCall())
1419        statComFunctionCalls[tid]++;
1420
1421}
1422
1423////////////////////////////////////////
1424//                                    //
1425//  SMT COMMIT POLICY MAINTAINED HERE //
1426//                                    //
1427////////////////////////////////////////
1428template <class Impl>
1429ThreadID
1430DefaultCommit<Impl>::getCommittingThread()
1431{
1432    if (numThreads > 1) {
1433        switch (commitPolicy) {
1434
1435          case Aggressive:
1436            //If Policy is Aggressive, commit will call
1437            //this function multiple times per
1438            //cycle
1439            return oldestReady();
1440
1441          case RoundRobin:
1442            return roundRobin();
1443
1444          case OldestReady:
1445            return oldestReady();
1446
1447          default:
1448            return InvalidThreadID;
1449        }
1450    } else {
1451        assert(!activeThreads->empty());
1452        ThreadID tid = activeThreads->front();
1453
1454        if (commitStatus[tid] == Running ||
1455            commitStatus[tid] == Idle ||
1456            commitStatus[tid] == FetchTrapPending) {
1457            return tid;
1458        } else {
1459            return InvalidThreadID;
1460        }
1461    }
1462}
1463
1464template<class Impl>
1465ThreadID
1466DefaultCommit<Impl>::roundRobin()
1467{
1468    list<ThreadID>::iterator pri_iter = priority_list.begin();
1469    list<ThreadID>::iterator end      = priority_list.end();
1470
1471    while (pri_iter != end) {
1472        ThreadID tid = *pri_iter;
1473
1474        if (commitStatus[tid] == Running ||
1475            commitStatus[tid] == Idle ||
1476            commitStatus[tid] == FetchTrapPending) {
1477
1478            if (rob->isHeadReady(tid)) {
1479                priority_list.erase(pri_iter);
1480                priority_list.push_back(tid);
1481
1482                return tid;
1483            }
1484        }
1485
1486        pri_iter++;
1487    }
1488
1489    return InvalidThreadID;
1490}
1491
1492template<class Impl>
1493ThreadID
1494DefaultCommit<Impl>::oldestReady()
1495{
1496    unsigned oldest = 0;
1497    bool first = true;
1498
1499    list<ThreadID>::iterator threads = activeThreads->begin();
1500    list<ThreadID>::iterator end = activeThreads->end();
1501
1502    while (threads != end) {
1503        ThreadID tid = *threads++;
1504
1505        if (!rob->isEmpty(tid) &&
1506            (commitStatus[tid] == Running ||
1507             commitStatus[tid] == Idle ||
1508             commitStatus[tid] == FetchTrapPending)) {
1509
1510            if (rob->isHeadReady(tid)) {
1511
1512                DynInstPtr head_inst = rob->readHeadInst(tid);
1513
1514                if (first) {
1515                    oldest = tid;
1516                    first = false;
1517                } else if (head_inst->seqNum < oldest) {
1518                    oldest = tid;
1519                }
1520            }
1521        }
1522    }
1523
1524    if (!first) {
1525        return oldest;
1526    } else {
1527        return InvalidThreadID;
1528    }
1529}
1530
1531#endif//__CPU_O3_COMMIT_IMPL_HH__
1532