commit_impl.hh revision 10034
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43#ifndef __CPU_O3_COMMIT_IMPL_HH__
44#define __CPU_O3_COMMIT_IMPL_HH__
45
46#include <algorithm>
47#include <set>
48#include <string>
49
50#include "arch/utility.hh"
51#include "base/loader/symtab.hh"
52#include "base/cp_annotate.hh"
53#include "config/the_isa.hh"
54#include "cpu/checker/cpu.hh"
55#include "cpu/o3/commit.hh"
56#include "cpu/o3/thread_state.hh"
57#include "cpu/base.hh"
58#include "cpu/exetrace.hh"
59#include "cpu/timebuf.hh"
60#include "debug/Activity.hh"
61#include "debug/Commit.hh"
62#include "debug/CommitRate.hh"
63#include "debug/Drain.hh"
64#include "debug/ExecFaulting.hh"
65#include "debug/O3PipeView.hh"
66#include "params/DerivO3CPU.hh"
67#include "sim/faults.hh"
68#include "sim/full_system.hh"
69
70using namespace std;
71
72template <class Impl>
73DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74                                          ThreadID _tid)
75    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76{
77}
78
79template <class Impl>
80void
81DefaultCommit<Impl>::TrapEvent::process()
82{
83    // This will get reset by commit if it was switched out at the
84    // time of this event processing.
85    commit->trapSquash[tid] = true;
86}
87
88template <class Impl>
89const char *
90DefaultCommit<Impl>::TrapEvent::description() const
91{
92    return "Trap";
93}
94
95template <class Impl>
96DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97    : cpu(_cpu),
98      squashCounter(0),
99      iewToCommitDelay(params->iewToCommitDelay),
100      commitToIEWDelay(params->commitToIEWDelay),
101      renameToROBDelay(params->renameToROBDelay),
102      fetchToCommitDelay(params->commitToFetchDelay),
103      renameWidth(params->renameWidth),
104      commitWidth(params->commitWidth),
105      numThreads(params->numThreads),
106      drainPending(false),
107      trapLatency(params->trapLatency),
108      canHandleInterrupts(true),
109      avoidQuiesceLiveLock(false)
110{
111    _status = Active;
112    _nextStatus = Inactive;
113    std::string policy = params->smtCommitPolicy;
114
115    //Convert string to lowercase
116    std::transform(policy.begin(), policy.end(), policy.begin(),
117                   (int(*)(int)) tolower);
118
119    //Assign commit policy
120    if (policy == "aggressive"){
121        commitPolicy = Aggressive;
122
123        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
124    } else if (policy == "roundrobin"){
125        commitPolicy = RoundRobin;
126
127        //Set-Up Priority List
128        for (ThreadID tid = 0; tid < numThreads; tid++) {
129            priority_list.push_back(tid);
130        }
131
132        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
133    } else if (policy == "oldestready"){
134        commitPolicy = OldestReady;
135
136        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
137    } else {
138        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
139               "RoundRobin,OldestReady}");
140    }
141
142    for (ThreadID tid = 0; tid < numThreads; tid++) {
143        commitStatus[tid] = Idle;
144        changedROBNumEntries[tid] = false;
145        checkEmptyROB[tid] = false;
146        trapInFlight[tid] = false;
147        committedStores[tid] = false;
148        trapSquash[tid] = false;
149        tcSquash[tid] = false;
150        pc[tid].set(0);
151        lastCommitedSeqNum[tid] = 0;
152        squashAfterInst[tid] = NULL;
153    }
154    interrupt = NoFault;
155}
156
157template <class Impl>
158std::string
159DefaultCommit<Impl>::name() const
160{
161    return cpu->name() + ".commit";
162}
163
164template <class Impl>
165void
166DefaultCommit<Impl>::regProbePoints()
167{
168    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
169    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
170}
171
172template <class Impl>
173void
174DefaultCommit<Impl>::regStats()
175{
176    using namespace Stats;
177    commitSquashedInsts
178        .name(name() + ".commitSquashedInsts")
179        .desc("The number of squashed insts skipped by commit")
180        .prereq(commitSquashedInsts);
181    commitSquashEvents
182        .name(name() + ".commitSquashEvents")
183        .desc("The number of times commit is told to squash")
184        .prereq(commitSquashEvents);
185    commitNonSpecStalls
186        .name(name() + ".commitNonSpecStalls")
187        .desc("The number of times commit has been forced to stall to "
188              "communicate backwards")
189        .prereq(commitNonSpecStalls);
190    branchMispredicts
191        .name(name() + ".branchMispredicts")
192        .desc("The number of times a branch was mispredicted")
193        .prereq(branchMispredicts);
194    numCommittedDist
195        .init(0,commitWidth,1)
196        .name(name() + ".committed_per_cycle")
197        .desc("Number of insts commited each cycle")
198        .flags(Stats::pdf)
199        ;
200
201    instsCommitted
202        .init(cpu->numThreads)
203        .name(name() + ".committedInsts")
204        .desc("Number of instructions committed")
205        .flags(total)
206        ;
207
208    opsCommitted
209        .init(cpu->numThreads)
210        .name(name() + ".committedOps")
211        .desc("Number of ops (including micro ops) committed")
212        .flags(total)
213        ;
214
215    statComSwp
216        .init(cpu->numThreads)
217        .name(name() + ".swp_count")
218        .desc("Number of s/w prefetches committed")
219        .flags(total)
220        ;
221
222    statComRefs
223        .init(cpu->numThreads)
224        .name(name() +  ".refs")
225        .desc("Number of memory references committed")
226        .flags(total)
227        ;
228
229    statComLoads
230        .init(cpu->numThreads)
231        .name(name() +  ".loads")
232        .desc("Number of loads committed")
233        .flags(total)
234        ;
235
236    statComMembars
237        .init(cpu->numThreads)
238        .name(name() +  ".membars")
239        .desc("Number of memory barriers committed")
240        .flags(total)
241        ;
242
243    statComBranches
244        .init(cpu->numThreads)
245        .name(name() + ".branches")
246        .desc("Number of branches committed")
247        .flags(total)
248        ;
249
250    statComFloating
251        .init(cpu->numThreads)
252        .name(name() + ".fp_insts")
253        .desc("Number of committed floating point instructions.")
254        .flags(total)
255        ;
256
257    statComInteger
258        .init(cpu->numThreads)
259        .name(name()+".int_insts")
260        .desc("Number of committed integer instructions.")
261        .flags(total)
262        ;
263
264    statComFunctionCalls
265        .init(cpu->numThreads)
266        .name(name()+".function_calls")
267        .desc("Number of function calls committed.")
268        .flags(total)
269        ;
270
271    commitEligible
272        .init(cpu->numThreads)
273        .name(name() + ".bw_limited")
274        .desc("number of insts not committed due to BW limits")
275        .flags(total)
276        ;
277
278    commitEligibleSamples
279        .name(name() + ".bw_lim_events")
280        .desc("number cycles where commit BW limit reached")
281        ;
282}
283
284template <class Impl>
285void
286DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
287{
288    thread = threads;
289}
290
291template <class Impl>
292void
293DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
294{
295    timeBuffer = tb_ptr;
296
297    // Setup wire to send information back to IEW.
298    toIEW = timeBuffer->getWire(0);
299
300    // Setup wire to read data from IEW (for the ROB).
301    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
302}
303
304template <class Impl>
305void
306DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
307{
308    fetchQueue = fq_ptr;
309
310    // Setup wire to get instructions from rename (for the ROB).
311    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
312}
313
314template <class Impl>
315void
316DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
317{
318    renameQueue = rq_ptr;
319
320    // Setup wire to get instructions from rename (for the ROB).
321    fromRename = renameQueue->getWire(-renameToROBDelay);
322}
323
324template <class Impl>
325void
326DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    iewQueue = iq_ptr;
329
330    // Setup wire to get instructions from IEW.
331    fromIEW = iewQueue->getWire(-iewToCommitDelay);
332}
333
334template <class Impl>
335void
336DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
337{
338    iewStage = iew_stage;
339}
340
341template<class Impl>
342void
343DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
344{
345    activeThreads = at_ptr;
346}
347
348template <class Impl>
349void
350DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
351{
352    for (ThreadID tid = 0; tid < numThreads; tid++)
353        renameMap[tid] = &rm_ptr[tid];
354}
355
356template <class Impl>
357void
358DefaultCommit<Impl>::setROB(ROB *rob_ptr)
359{
360    rob = rob_ptr;
361}
362
363template <class Impl>
364void
365DefaultCommit<Impl>::startupStage()
366{
367    rob->setActiveThreads(activeThreads);
368    rob->resetEntries();
369
370    // Broadcast the number of free entries.
371    for (ThreadID tid = 0; tid < numThreads; tid++) {
372        toIEW->commitInfo[tid].usedROB = true;
373        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
374        toIEW->commitInfo[tid].emptyROB = true;
375    }
376
377    // Commit must broadcast the number of free entries it has at the
378    // start of the simulation, so it starts as active.
379    cpu->activateStage(O3CPU::CommitIdx);
380
381    cpu->activityThisCycle();
382}
383
384template <class Impl>
385void
386DefaultCommit<Impl>::drain()
387{
388    drainPending = true;
389}
390
391template <class Impl>
392void
393DefaultCommit<Impl>::drainResume()
394{
395    drainPending = false;
396}
397
398template <class Impl>
399void
400DefaultCommit<Impl>::drainSanityCheck() const
401{
402    assert(isDrained());
403    rob->drainSanityCheck();
404}
405
406template <class Impl>
407bool
408DefaultCommit<Impl>::isDrained() const
409{
410    /* Make sure no one is executing microcode. There are two reasons
411     * for this:
412     * - Hardware virtualized CPUs can't switch into the middle of a
413     *   microcode sequence.
414     * - The current fetch implementation will most likely get very
415     *   confused if it tries to start fetching an instruction that
416     *   is executing in the middle of a ucode sequence that changes
417     *   address mappings. This can happen on for example x86.
418     */
419    for (ThreadID tid = 0; tid < numThreads; tid++) {
420        if (pc[tid].microPC() != 0)
421            return false;
422    }
423
424    /* Make sure that all instructions have finished committing before
425     * declaring the system as drained. We want the pipeline to be
426     * completely empty when we declare the CPU to be drained. This
427     * makes debugging easier since CPU handover and restoring from a
428     * checkpoint with a different CPU should have the same timing.
429     */
430    return rob->isEmpty() &&
431        interrupt == NoFault;
432}
433
434template <class Impl>
435void
436DefaultCommit<Impl>::takeOverFrom()
437{
438    _status = Active;
439    _nextStatus = Inactive;
440    for (ThreadID tid = 0; tid < numThreads; tid++) {
441        commitStatus[tid] = Idle;
442        changedROBNumEntries[tid] = false;
443        trapSquash[tid] = false;
444        tcSquash[tid] = false;
445        squashAfterInst[tid] = NULL;
446    }
447    squashCounter = 0;
448    rob->takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultCommit<Impl>::updateStatus()
454{
455    // reset ROB changed variable
456    list<ThreadID>::iterator threads = activeThreads->begin();
457    list<ThreadID>::iterator end = activeThreads->end();
458
459    while (threads != end) {
460        ThreadID tid = *threads++;
461
462        changedROBNumEntries[tid] = false;
463
464        // Also check if any of the threads has a trap pending
465        if (commitStatus[tid] == TrapPending ||
466            commitStatus[tid] == FetchTrapPending) {
467            _nextStatus = Active;
468        }
469    }
470
471    if (_nextStatus == Inactive && _status == Active) {
472        DPRINTF(Activity, "Deactivating stage.\n");
473        cpu->deactivateStage(O3CPU::CommitIdx);
474    } else if (_nextStatus == Active && _status == Inactive) {
475        DPRINTF(Activity, "Activating stage.\n");
476        cpu->activateStage(O3CPU::CommitIdx);
477    }
478
479    _status = _nextStatus;
480}
481
482template <class Impl>
483void
484DefaultCommit<Impl>::setNextStatus()
485{
486    int squashes = 0;
487
488    list<ThreadID>::iterator threads = activeThreads->begin();
489    list<ThreadID>::iterator end = activeThreads->end();
490
491    while (threads != end) {
492        ThreadID tid = *threads++;
493
494        if (commitStatus[tid] == ROBSquashing) {
495            squashes++;
496        }
497    }
498
499    squashCounter = squashes;
500
501    // If commit is currently squashing, then it will have activity for the
502    // next cycle. Set its next status as active.
503    if (squashCounter) {
504        _nextStatus = Active;
505    }
506}
507
508template <class Impl>
509bool
510DefaultCommit<Impl>::changedROBEntries()
511{
512    list<ThreadID>::iterator threads = activeThreads->begin();
513    list<ThreadID>::iterator end = activeThreads->end();
514
515    while (threads != end) {
516        ThreadID tid = *threads++;
517
518        if (changedROBNumEntries[tid]) {
519            return true;
520        }
521    }
522
523    return false;
524}
525
526template <class Impl>
527size_t
528DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
529{
530    return rob->numFreeEntries(tid);
531}
532
533template <class Impl>
534void
535DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
536{
537    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
538
539    TrapEvent *trap = new TrapEvent(this, tid);
540
541    cpu->schedule(trap, cpu->clockEdge(trapLatency));
542    trapInFlight[tid] = true;
543    thread[tid]->trapPending = true;
544}
545
546template <class Impl>
547void
548DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
549{
550    assert(!trapInFlight[tid]);
551    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
552
553    tcSquash[tid] = true;
554}
555
556template <class Impl>
557void
558DefaultCommit<Impl>::squashAll(ThreadID tid)
559{
560    // If we want to include the squashing instruction in the squash,
561    // then use one older sequence number.
562    // Hopefully this doesn't mess things up.  Basically I want to squash
563    // all instructions of this thread.
564    InstSeqNum squashed_inst = rob->isEmpty() ?
565        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
566
567    // All younger instructions will be squashed. Set the sequence
568    // number as the youngest instruction in the ROB (0 in this case.
569    // Hopefully nothing breaks.)
570    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
571
572    rob->squash(squashed_inst, tid);
573    changedROBNumEntries[tid] = true;
574
575    // Send back the sequence number of the squashed instruction.
576    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
577
578    // Send back the squash signal to tell stages that they should
579    // squash.
580    toIEW->commitInfo[tid].squash = true;
581
582    // Send back the rob squashing signal so other stages know that
583    // the ROB is in the process of squashing.
584    toIEW->commitInfo[tid].robSquashing = true;
585
586    toIEW->commitInfo[tid].mispredictInst = NULL;
587    toIEW->commitInfo[tid].squashInst = NULL;
588
589    toIEW->commitInfo[tid].pc = pc[tid];
590}
591
592template <class Impl>
593void
594DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
595{
596    squashAll(tid);
597
598    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
599
600    thread[tid]->trapPending = false;
601    thread[tid]->noSquashFromTC = false;
602    trapInFlight[tid] = false;
603
604    trapSquash[tid] = false;
605
606    commitStatus[tid] = ROBSquashing;
607    cpu->activityThisCycle();
608}
609
610template <class Impl>
611void
612DefaultCommit<Impl>::squashFromTC(ThreadID tid)
613{
614    squashAll(tid);
615
616    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
617
618    thread[tid]->noSquashFromTC = false;
619    assert(!thread[tid]->trapPending);
620
621    commitStatus[tid] = ROBSquashing;
622    cpu->activityThisCycle();
623
624    tcSquash[tid] = false;
625}
626
627template <class Impl>
628void
629DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
630{
631    DPRINTF(Commit, "Squashing after squash after request, "
632            "restarting at PC %s\n", pc[tid]);
633
634    squashAll(tid);
635    // Make sure to inform the fetch stage of which instruction caused
636    // the squash. It'll try to re-fetch an instruction executing in
637    // microcode unless this is set.
638    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
639    squashAfterInst[tid] = NULL;
640
641    commitStatus[tid] = ROBSquashing;
642    cpu->activityThisCycle();
643}
644
645template <class Impl>
646void
647DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
648{
649    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
650            tid, head_inst->seqNum);
651
652    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
653    commitStatus[tid] = SquashAfterPending;
654    squashAfterInst[tid] = head_inst;
655}
656
657template <class Impl>
658void
659DefaultCommit<Impl>::tick()
660{
661    wroteToTimeBuffer = false;
662    _nextStatus = Inactive;
663
664    if (activeThreads->empty())
665        return;
666
667    list<ThreadID>::iterator threads = activeThreads->begin();
668    list<ThreadID>::iterator end = activeThreads->end();
669
670    // Check if any of the threads are done squashing.  Change the
671    // status if they are done.
672    while (threads != end) {
673        ThreadID tid = *threads++;
674
675        // Clear the bit saying if the thread has committed stores
676        // this cycle.
677        committedStores[tid] = false;
678
679        if (commitStatus[tid] == ROBSquashing) {
680
681            if (rob->isDoneSquashing(tid)) {
682                commitStatus[tid] = Running;
683            } else {
684                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
685                        " insts this cycle.\n", tid);
686                rob->doSquash(tid);
687                toIEW->commitInfo[tid].robSquashing = true;
688                wroteToTimeBuffer = true;
689            }
690        }
691    }
692
693    commit();
694
695    markCompletedInsts();
696
697    threads = activeThreads->begin();
698
699    while (threads != end) {
700        ThreadID tid = *threads++;
701
702        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
703            // The ROB has more instructions it can commit. Its next status
704            // will be active.
705            _nextStatus = Active;
706
707            DynInstPtr inst = rob->readHeadInst(tid);
708
709            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
710                    " ROB and ready to commit\n",
711                    tid, inst->seqNum, inst->pcState());
712
713        } else if (!rob->isEmpty(tid)) {
714            DynInstPtr inst = rob->readHeadInst(tid);
715
716            ppCommitStall->notify(inst);
717
718            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
719                    "%s is head of ROB and not ready\n",
720                    tid, inst->seqNum, inst->pcState());
721        }
722
723        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
724                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
725    }
726
727
728    if (wroteToTimeBuffer) {
729        DPRINTF(Activity, "Activity This Cycle.\n");
730        cpu->activityThisCycle();
731    }
732
733    updateStatus();
734}
735
736template <class Impl>
737void
738DefaultCommit<Impl>::handleInterrupt()
739{
740    // Verify that we still have an interrupt to handle
741    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
742        DPRINTF(Commit, "Pending interrupt is cleared by master before "
743                "it got handled. Restart fetching from the orig path.\n");
744        toIEW->commitInfo[0].clearInterrupt = true;
745        interrupt = NoFault;
746        avoidQuiesceLiveLock = true;
747        return;
748    }
749
750    // Wait until all in flight instructions are finished before enterring
751    // the interrupt.
752    if (canHandleInterrupts && cpu->instList.empty()) {
753        // Squash or record that I need to squash this cycle if
754        // an interrupt needed to be handled.
755        DPRINTF(Commit, "Interrupt detected.\n");
756
757        // Clear the interrupt now that it's going to be handled
758        toIEW->commitInfo[0].clearInterrupt = true;
759
760        assert(!thread[0]->noSquashFromTC);
761        thread[0]->noSquashFromTC = true;
762
763        if (cpu->checker) {
764            cpu->checker->handlePendingInt();
765        }
766
767        // CPU will handle interrupt. Note that we ignore the local copy of
768        // interrupt. This is because the local copy may no longer be the
769        // interrupt that the interrupt controller thinks is being handled.
770        cpu->processInterrupts(cpu->getInterrupts());
771
772        thread[0]->noSquashFromTC = false;
773
774        commitStatus[0] = TrapPending;
775
776        // Generate trap squash event.
777        generateTrapEvent(0);
778
779        interrupt = NoFault;
780        avoidQuiesceLiveLock = false;
781    } else {
782        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
783                "flight, ROB is %sempty\n",
784                canHandleInterrupts ? "not " : "",
785                cpu->instList.empty() ? "" : "not " );
786    }
787}
788
789template <class Impl>
790void
791DefaultCommit<Impl>::propagateInterrupt()
792{
793    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
794            tcSquash[0])
795        return;
796
797    // Process interrupts if interrupts are enabled, not in PAL
798    // mode, and no other traps or external squashes are currently
799    // pending.
800    // @todo: Allow other threads to handle interrupts.
801
802    // Get any interrupt that happened
803    interrupt = cpu->getInterrupts();
804
805    // Tell fetch that there is an interrupt pending.  This
806    // will make fetch wait until it sees a non PAL-mode PC,
807    // at which point it stops fetching instructions.
808    if (interrupt != NoFault)
809        toIEW->commitInfo[0].interruptPending = true;
810}
811
812template <class Impl>
813void
814DefaultCommit<Impl>::commit()
815{
816    if (FullSystem) {
817        // Check if we have a interrupt and get read to handle it
818        if (cpu->checkInterrupts(cpu->tcBase(0)))
819            propagateInterrupt();
820    }
821
822    ////////////////////////////////////
823    // Check for any possible squashes, handle them first
824    ////////////////////////////////////
825    list<ThreadID>::iterator threads = activeThreads->begin();
826    list<ThreadID>::iterator end = activeThreads->end();
827
828    while (threads != end) {
829        ThreadID tid = *threads++;
830
831        // Not sure which one takes priority.  I think if we have
832        // both, that's a bad sign.
833        if (trapSquash[tid] == true) {
834            assert(!tcSquash[tid]);
835            squashFromTrap(tid);
836        } else if (tcSquash[tid] == true) {
837            assert(commitStatus[tid] != TrapPending);
838            squashFromTC(tid);
839        } else if (commitStatus[tid] == SquashAfterPending) {
840            // A squash from the previous cycle of the commit stage (i.e.,
841            // commitInsts() called squashAfter) is pending. Squash the
842            // thread now.
843            squashFromSquashAfter(tid);
844        }
845
846        // Squashed sequence number must be older than youngest valid
847        // instruction in the ROB. This prevents squashes from younger
848        // instructions overriding squashes from older instructions.
849        if (fromIEW->squash[tid] &&
850            commitStatus[tid] != TrapPending &&
851            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
852
853            if (fromIEW->mispredictInst[tid]) {
854                DPRINTF(Commit,
855                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
856                    tid,
857                    fromIEW->mispredictInst[tid]->instAddr(),
858                    fromIEW->squashedSeqNum[tid]);
859            } else {
860                DPRINTF(Commit,
861                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
862                    tid, fromIEW->squashedSeqNum[tid]);
863            }
864
865            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
866                    tid,
867                    fromIEW->pc[tid].nextInstAddr());
868
869            commitStatus[tid] = ROBSquashing;
870
871            // If we want to include the squashing instruction in the squash,
872            // then use one older sequence number.
873            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
874
875            if (fromIEW->includeSquashInst[tid] == true) {
876                squashed_inst--;
877            }
878
879            // All younger instructions will be squashed. Set the sequence
880            // number as the youngest instruction in the ROB.
881            youngestSeqNum[tid] = squashed_inst;
882
883            rob->squash(squashed_inst, tid);
884            changedROBNumEntries[tid] = true;
885
886            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
887
888            toIEW->commitInfo[tid].squash = true;
889
890            // Send back the rob squashing signal so other stages know that
891            // the ROB is in the process of squashing.
892            toIEW->commitInfo[tid].robSquashing = true;
893
894            toIEW->commitInfo[tid].mispredictInst =
895                fromIEW->mispredictInst[tid];
896            toIEW->commitInfo[tid].branchTaken =
897                fromIEW->branchTaken[tid];
898            toIEW->commitInfo[tid].squashInst =
899                                    rob->findInst(tid, squashed_inst);
900            if (toIEW->commitInfo[tid].mispredictInst) {
901                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
902                     toIEW->commitInfo[tid].branchTaken = true;
903                }
904            }
905
906            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
907
908            if (toIEW->commitInfo[tid].mispredictInst) {
909                ++branchMispredicts;
910            }
911        }
912
913    }
914
915    setNextStatus();
916
917    if (squashCounter != numThreads) {
918        // If we're not currently squashing, then get instructions.
919        getInsts();
920
921        // Try to commit any instructions.
922        commitInsts();
923    }
924
925    //Check for any activity
926    threads = activeThreads->begin();
927
928    while (threads != end) {
929        ThreadID tid = *threads++;
930
931        if (changedROBNumEntries[tid]) {
932            toIEW->commitInfo[tid].usedROB = true;
933            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
934
935            wroteToTimeBuffer = true;
936            changedROBNumEntries[tid] = false;
937            if (rob->isEmpty(tid))
938                checkEmptyROB[tid] = true;
939        }
940
941        // ROB is only considered "empty" for previous stages if: a)
942        // ROB is empty, b) there are no outstanding stores, c) IEW
943        // stage has received any information regarding stores that
944        // committed.
945        // c) is checked by making sure to not consider the ROB empty
946        // on the same cycle as when stores have been committed.
947        // @todo: Make this handle multi-cycle communication between
948        // commit and IEW.
949        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
950            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
951            checkEmptyROB[tid] = false;
952            toIEW->commitInfo[tid].usedROB = true;
953            toIEW->commitInfo[tid].emptyROB = true;
954            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
955            wroteToTimeBuffer = true;
956        }
957
958    }
959}
960
961template <class Impl>
962void
963DefaultCommit<Impl>::commitInsts()
964{
965    ////////////////////////////////////
966    // Handle commit
967    // Note that commit will be handled prior to putting new
968    // instructions in the ROB so that the ROB only tries to commit
969    // instructions it has in this current cycle, and not instructions
970    // it is writing in during this cycle.  Can't commit and squash
971    // things at the same time...
972    ////////////////////////////////////
973
974    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
975
976    unsigned num_committed = 0;
977
978    DynInstPtr head_inst;
979
980    // Commit as many instructions as possible until the commit bandwidth
981    // limit is reached, or it becomes impossible to commit any more.
982    while (num_committed < commitWidth) {
983        // Check for any interrupt that we've already squashed for
984        // and start processing it.
985        if (interrupt != NoFault)
986            handleInterrupt();
987
988        int commit_thread = getCommittingThread();
989
990        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
991            break;
992
993        head_inst = rob->readHeadInst(commit_thread);
994
995        ThreadID tid = head_inst->threadNumber;
996
997        assert(tid == commit_thread);
998
999        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1000                head_inst->seqNum, tid);
1001
1002        // If the head instruction is squashed, it is ready to retire
1003        // (be removed from the ROB) at any time.
1004        if (head_inst->isSquashed()) {
1005
1006            DPRINTF(Commit, "Retiring squashed instruction from "
1007                    "ROB.\n");
1008
1009            rob->retireHead(commit_thread);
1010
1011            ++commitSquashedInsts;
1012
1013            // Record that the number of ROB entries has changed.
1014            changedROBNumEntries[tid] = true;
1015        } else {
1016            pc[tid] = head_inst->pcState();
1017
1018            // Increment the total number of non-speculative instructions
1019            // executed.
1020            // Hack for now: it really shouldn't happen until after the
1021            // commit is deemed to be successful, but this count is needed
1022            // for syscalls.
1023            thread[tid]->funcExeInst++;
1024
1025            // Try to commit the head instruction.
1026            bool commit_success = commitHead(head_inst, num_committed);
1027
1028            if (commit_success) {
1029                ++num_committed;
1030                ppCommit->notify(head_inst);
1031
1032                changedROBNumEntries[tid] = true;
1033
1034                // Set the doneSeqNum to the youngest committed instruction.
1035                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1036
1037                if (tid == 0) {
1038                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1039                                           ((THE_ISA != ALPHA_ISA) ||
1040                                             (!(pc[0].instAddr() & 0x3)));
1041                }
1042
1043                // Updates misc. registers.
1044                head_inst->updateMiscRegs();
1045
1046                // Check instruction execution if it successfully commits and
1047                // is not carrying a fault.
1048                if (cpu->checker) {
1049                    cpu->checker->verify(head_inst);
1050                }
1051
1052                cpu->traceFunctions(pc[tid].instAddr());
1053
1054                TheISA::advancePC(pc[tid], head_inst->staticInst);
1055
1056                // Keep track of the last sequence number commited
1057                lastCommitedSeqNum[tid] = head_inst->seqNum;
1058
1059                // If this is an instruction that doesn't play nicely with
1060                // others squash everything and restart fetch
1061                if (head_inst->isSquashAfter())
1062                    squashAfter(tid, head_inst);
1063
1064                if (drainPending) {
1065                    DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1066                    if (pc[tid].microPC() == 0 && interrupt == NoFault) {
1067                        squashAfter(tid, head_inst);
1068                        cpu->commitDrained(tid);
1069                    }
1070                }
1071
1072                int count = 0;
1073                Addr oldpc;
1074                // Debug statement.  Checks to make sure we're not
1075                // currently updating state while handling PC events.
1076                assert(!thread[tid]->noSquashFromTC && !thread[tid]->trapPending);
1077                do {
1078                    oldpc = pc[tid].instAddr();
1079                    cpu->system->pcEventQueue.service(thread[tid]->getTC());
1080                    count++;
1081                } while (oldpc != pc[tid].instAddr());
1082                if (count > 1) {
1083                    DPRINTF(Commit,
1084                            "PC skip function event, stopping commit\n");
1085                    break;
1086                }
1087
1088                // Check if an instruction just enabled interrupts and we've
1089                // previously had an interrupt pending that was not handled
1090                // because interrupts were subsequently disabled before the
1091                // pipeline reached a place to handle the interrupt. In that
1092                // case squash now to make sure the interrupt is handled.
1093                //
1094                // If we don't do this, we might end up in a live lock situation
1095                if (!interrupt  && avoidQuiesceLiveLock &&
1096                   (!head_inst->isMicroop() || head_inst->isLastMicroop()) &&
1097                   cpu->checkInterrupts(cpu->tcBase(0)))
1098                    squashAfter(tid, head_inst);
1099            } else {
1100                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1101                        "[tid:%i] [sn:%i].\n",
1102                        head_inst->pcState(), tid ,head_inst->seqNum);
1103                break;
1104            }
1105        }
1106    }
1107
1108    DPRINTF(CommitRate, "%i\n", num_committed);
1109    numCommittedDist.sample(num_committed);
1110
1111    if (num_committed == commitWidth) {
1112        commitEligibleSamples++;
1113    }
1114}
1115
1116template <class Impl>
1117bool
1118DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1119{
1120    assert(head_inst);
1121
1122    ThreadID tid = head_inst->threadNumber;
1123
1124    // If the instruction is not executed yet, then it will need extra
1125    // handling.  Signal backwards that it should be executed.
1126    if (!head_inst->isExecuted()) {
1127        // Keep this number correct.  We have not yet actually executed
1128        // and committed this instruction.
1129        thread[tid]->funcExeInst--;
1130
1131        // Make sure we are only trying to commit un-executed instructions we
1132        // think are possible.
1133        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1134               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1135               (head_inst->isLoad() && head_inst->uncacheable()));
1136
1137        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1138                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1139                head_inst->seqNum, head_inst->pcState());
1140
1141        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1142            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1143            return false;
1144        }
1145
1146        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1147
1148        // Change the instruction so it won't try to commit again until
1149        // it is executed.
1150        head_inst->clearCanCommit();
1151
1152        if (head_inst->isLoad() && head_inst->uncacheable()) {
1153            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1154                    head_inst->seqNum, head_inst->pcState());
1155            toIEW->commitInfo[tid].uncached = true;
1156            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1157        } else {
1158            ++commitNonSpecStalls;
1159        }
1160
1161        return false;
1162    }
1163
1164    if (head_inst->isThreadSync()) {
1165        // Not handled for now.
1166        panic("Thread sync instructions are not handled yet.\n");
1167    }
1168
1169    // Check if the instruction caused a fault.  If so, trap.
1170    Fault inst_fault = head_inst->getFault();
1171
1172    // Stores mark themselves as completed.
1173    if (!head_inst->isStore() && inst_fault == NoFault) {
1174        head_inst->setCompleted();
1175    }
1176
1177    if (inst_fault != NoFault) {
1178        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1179                head_inst->seqNum, head_inst->pcState());
1180
1181        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1182            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1183            return false;
1184        }
1185
1186        head_inst->setCompleted();
1187
1188        // If instruction has faulted, let the checker execute it and
1189        // check if it sees the same fault and control flow.
1190        if (cpu->checker) {
1191            // Need to check the instruction before its fault is processed
1192            cpu->checker->verify(head_inst);
1193        }
1194
1195        assert(!thread[tid]->noSquashFromTC);
1196
1197        // Mark that we're in state update mode so that the trap's
1198        // execution doesn't generate extra squashes.
1199        thread[tid]->noSquashFromTC = true;
1200
1201        // Execute the trap.  Although it's slightly unrealistic in
1202        // terms of timing (as it doesn't wait for the full timing of
1203        // the trap event to complete before updating state), it's
1204        // needed to update the state as soon as possible.  This
1205        // prevents external agents from changing any specific state
1206        // that the trap need.
1207        cpu->trap(inst_fault, tid, head_inst->staticInst);
1208
1209        // Exit state update mode to avoid accidental updating.
1210        thread[tid]->noSquashFromTC = false;
1211
1212        commitStatus[tid] = TrapPending;
1213
1214        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1215            head_inst->seqNum);
1216        if (head_inst->traceData) {
1217            if (DTRACE(ExecFaulting)) {
1218                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1219                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1220                head_inst->traceData->dump();
1221            }
1222            delete head_inst->traceData;
1223            head_inst->traceData = NULL;
1224        }
1225
1226        // Generate trap squash event.
1227        generateTrapEvent(tid);
1228        return false;
1229    }
1230
1231    updateComInstStats(head_inst);
1232
1233    if (FullSystem) {
1234        if (thread[tid]->profile) {
1235            thread[tid]->profilePC = head_inst->instAddr();
1236            ProfileNode *node = thread[tid]->profile->consume(
1237                    thread[tid]->getTC(), head_inst->staticInst);
1238
1239            if (node)
1240                thread[tid]->profileNode = node;
1241        }
1242        if (CPA::available()) {
1243            if (head_inst->isControl()) {
1244                ThreadContext *tc = thread[tid]->getTC();
1245                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1246            }
1247        }
1248    }
1249    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1250            head_inst->seqNum, head_inst->pcState());
1251    if (head_inst->traceData) {
1252        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1253        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1254        head_inst->traceData->dump();
1255        delete head_inst->traceData;
1256        head_inst->traceData = NULL;
1257    }
1258    if (head_inst->isReturn()) {
1259        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1260                        head_inst->seqNum, head_inst->pcState());
1261    }
1262
1263    // Update the commit rename map
1264    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1265        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1266                                 head_inst->renamedDestRegIdx(i));
1267    }
1268
1269    // Finally clear the head ROB entry.
1270    rob->retireHead(tid);
1271
1272#if TRACING_ON
1273    if (DTRACE(O3PipeView)) {
1274        head_inst->commitTick = curTick() - head_inst->fetchTick;
1275    }
1276#endif
1277
1278    // If this was a store, record it for this cycle.
1279    if (head_inst->isStore())
1280        committedStores[tid] = true;
1281
1282    // Return true to indicate that we have committed an instruction.
1283    return true;
1284}
1285
1286template <class Impl>
1287void
1288DefaultCommit<Impl>::getInsts()
1289{
1290    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1291
1292    // Read any renamed instructions and place them into the ROB.
1293    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1294
1295    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1296        DynInstPtr inst;
1297
1298        inst = fromRename->insts[inst_num];
1299        ThreadID tid = inst->threadNumber;
1300
1301        if (!inst->isSquashed() &&
1302            commitStatus[tid] != ROBSquashing &&
1303            commitStatus[tid] != TrapPending) {
1304            changedROBNumEntries[tid] = true;
1305
1306            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1307                    inst->pcState(), inst->seqNum, tid);
1308
1309            rob->insertInst(inst);
1310
1311            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1312
1313            youngestSeqNum[tid] = inst->seqNum;
1314        } else {
1315            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1316                    "squashed, skipping.\n",
1317                    inst->pcState(), inst->seqNum, tid);
1318        }
1319    }
1320}
1321
1322template <class Impl>
1323void
1324DefaultCommit<Impl>::skidInsert()
1325{
1326    DPRINTF(Commit, "Attempting to any instructions from rename into "
1327            "skidBuffer.\n");
1328
1329    for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1330        DynInstPtr inst = fromRename->insts[inst_num];
1331
1332        if (!inst->isSquashed()) {
1333            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1334                    "skidBuffer.\n", inst->pcState(), inst->seqNum,
1335                    inst->threadNumber);
1336            skidBuffer.push(inst);
1337        } else {
1338            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1339                    "squashed, skipping.\n",
1340                    inst->pcState(), inst->seqNum, inst->threadNumber);
1341        }
1342    }
1343}
1344
1345template <class Impl>
1346void
1347DefaultCommit<Impl>::markCompletedInsts()
1348{
1349    // Grab completed insts out of the IEW instruction queue, and mark
1350    // instructions completed within the ROB.
1351    for (int inst_num = 0;
1352         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1353         ++inst_num)
1354    {
1355        if (!fromIEW->insts[inst_num]->isSquashed()) {
1356            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1357                    "within ROB.\n",
1358                    fromIEW->insts[inst_num]->threadNumber,
1359                    fromIEW->insts[inst_num]->pcState(),
1360                    fromIEW->insts[inst_num]->seqNum);
1361
1362            // Mark the instruction as ready to commit.
1363            fromIEW->insts[inst_num]->setCanCommit();
1364        }
1365    }
1366}
1367
1368template <class Impl>
1369bool
1370DefaultCommit<Impl>::robDoneSquashing()
1371{
1372    list<ThreadID>::iterator threads = activeThreads->begin();
1373    list<ThreadID>::iterator end = activeThreads->end();
1374
1375    while (threads != end) {
1376        ThreadID tid = *threads++;
1377
1378        if (!rob->isDoneSquashing(tid))
1379            return false;
1380    }
1381
1382    return true;
1383}
1384
1385template <class Impl>
1386void
1387DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1388{
1389    ThreadID tid = inst->threadNumber;
1390
1391    if (!inst->isMicroop() || inst->isLastMicroop())
1392        instsCommitted[tid]++;
1393    opsCommitted[tid]++;
1394
1395    // To match the old model, don't count nops and instruction
1396    // prefetches towards the total commit count.
1397    if (!inst->isNop() && !inst->isInstPrefetch()) {
1398        cpu->instDone(tid, inst);
1399    }
1400
1401    //
1402    //  Control Instructions
1403    //
1404    if (inst->isControl())
1405        statComBranches[tid]++;
1406
1407    //
1408    //  Memory references
1409    //
1410    if (inst->isMemRef()) {
1411        statComRefs[tid]++;
1412
1413        if (inst->isLoad()) {
1414            statComLoads[tid]++;
1415        }
1416    }
1417
1418    if (inst->isMemBarrier()) {
1419        statComMembars[tid]++;
1420    }
1421
1422    // Integer Instruction
1423    if (inst->isInteger())
1424        statComInteger[tid]++;
1425
1426    // Floating Point Instruction
1427    if (inst->isFloating())
1428        statComFloating[tid]++;
1429
1430    // Function Calls
1431    if (inst->isCall())
1432        statComFunctionCalls[tid]++;
1433
1434}
1435
1436////////////////////////////////////////
1437//                                    //
1438//  SMT COMMIT POLICY MAINTAINED HERE //
1439//                                    //
1440////////////////////////////////////////
1441template <class Impl>
1442ThreadID
1443DefaultCommit<Impl>::getCommittingThread()
1444{
1445    if (numThreads > 1) {
1446        switch (commitPolicy) {
1447
1448          case Aggressive:
1449            //If Policy is Aggressive, commit will call
1450            //this function multiple times per
1451            //cycle
1452            return oldestReady();
1453
1454          case RoundRobin:
1455            return roundRobin();
1456
1457          case OldestReady:
1458            return oldestReady();
1459
1460          default:
1461            return InvalidThreadID;
1462        }
1463    } else {
1464        assert(!activeThreads->empty());
1465        ThreadID tid = activeThreads->front();
1466
1467        if (commitStatus[tid] == Running ||
1468            commitStatus[tid] == Idle ||
1469            commitStatus[tid] == FetchTrapPending) {
1470            return tid;
1471        } else {
1472            return InvalidThreadID;
1473        }
1474    }
1475}
1476
1477template<class Impl>
1478ThreadID
1479DefaultCommit<Impl>::roundRobin()
1480{
1481    list<ThreadID>::iterator pri_iter = priority_list.begin();
1482    list<ThreadID>::iterator end      = priority_list.end();
1483
1484    while (pri_iter != end) {
1485        ThreadID tid = *pri_iter;
1486
1487        if (commitStatus[tid] == Running ||
1488            commitStatus[tid] == Idle ||
1489            commitStatus[tid] == FetchTrapPending) {
1490
1491            if (rob->isHeadReady(tid)) {
1492                priority_list.erase(pri_iter);
1493                priority_list.push_back(tid);
1494
1495                return tid;
1496            }
1497        }
1498
1499        pri_iter++;
1500    }
1501
1502    return InvalidThreadID;
1503}
1504
1505template<class Impl>
1506ThreadID
1507DefaultCommit<Impl>::oldestReady()
1508{
1509    unsigned oldest = 0;
1510    bool first = true;
1511
1512    list<ThreadID>::iterator threads = activeThreads->begin();
1513    list<ThreadID>::iterator end = activeThreads->end();
1514
1515    while (threads != end) {
1516        ThreadID tid = *threads++;
1517
1518        if (!rob->isEmpty(tid) &&
1519            (commitStatus[tid] == Running ||
1520             commitStatus[tid] == Idle ||
1521             commitStatus[tid] == FetchTrapPending)) {
1522
1523            if (rob->isHeadReady(tid)) {
1524
1525                DynInstPtr head_inst = rob->readHeadInst(tid);
1526
1527                if (first) {
1528                    oldest = tid;
1529                    first = false;
1530                } else if (head_inst->seqNum < oldest) {
1531                    oldest = tid;
1532                }
1533            }
1534        }
1535    }
1536
1537    if (!first) {
1538        return oldest;
1539    } else {
1540        return InvalidThreadID;
1541    }
1542}
1543
1544#endif//__CPU_O3_COMMIT_IMPL_HH__
1545