base.cc revision 9983
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66volatile bool timerOverflowed = false; 67 68BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 69 : BaseCPU(params), 70 vm(*params->kvmVM), 71 _status(Idle), 72 dataPort(name() + ".dcache_port", this), 73 instPort(name() + ".icache_port", this), 74 threadContextDirty(true), 75 kvmStateDirty(false), 76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 77 _kvmRun(NULL), mmioRing(NULL), 78 pageSize(sysconf(_SC_PAGE_SIZE)), 79 tickEvent(*this), 80 activeInstPeriod(0), 81 perfControlledByTimer(params->usePerfOverflow), 82 hostFreq(params->hostFreq), 83 hostFactor(params->hostFactor), 84 drainManager(NULL), 85 ctrInsts(0) 86{ 87 if (pageSize == -1) 88 panic("KVM: Failed to determine host page size (%i)\n", 89 errno); 90 91 thread = new SimpleThread(this, 0, params->system, 92 params->itb, params->dtb, params->isa[0]); 93 thread->setStatus(ThreadContext::Halted); 94 tc = thread->getTC(); 95 threadContexts.push_back(tc); 96 97 setupCounters(); 98 99 if (params->usePerfOverflow) 100 runTimer.reset(new PerfKvmTimer(hwCycles, 101 KVM_TIMER_SIGNAL, 102 params->hostFactor, 103 params->hostFreq)); 104 else 105 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC, 106 params->hostFactor, 107 params->hostFreq)); 108} 109 110BaseKvmCPU::~BaseKvmCPU() 111{ 112 if (_kvmRun) 113 munmap(_kvmRun, vcpuMMapSize); 114 close(vcpuFD); 115} 116 117void 118BaseKvmCPU::init() 119{ 120 BaseCPU::init(); 121 122 if (numThreads != 1) 123 fatal("KVM: Multithreading not supported"); 124 125 tc->initMemProxies(tc); 126 127 // initialize CPU, including PC 128 if (FullSystem && !switchedOut()) 129 TheISA::initCPU(tc, tc->contextId()); 130 131 mmio_req.setThreadContext(tc->contextId(), 0); 132} 133 134void 135BaseKvmCPU::startup() 136{ 137 const BaseKvmCPUParams * const p( 138 dynamic_cast<const BaseKvmCPUParams *>(params())); 139 140 Kvm &kvm(vm.kvm); 141 142 BaseCPU::startup(); 143 144 assert(vcpuFD == -1); 145 146 // Tell the VM that a CPU is about to start. 147 vm.cpuStartup(); 148 149 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 150 // not guaranteed that the parent KVM VM has initialized at that 151 // point. Initialize virtual CPUs here instead. 152 vcpuFD = vm.createVCPU(vcpuID); 153 154 // Setup signal handlers. This has to be done after the vCPU is 155 // created since it manipulates the vCPU signal mask. 156 setupSignalHandler(); 157 158 // Map the KVM run structure */ 159 vcpuMMapSize = kvm.getVCPUMMapSize(); 160 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 161 PROT_READ | PROT_WRITE, MAP_SHARED, 162 vcpuFD, 0); 163 if (_kvmRun == MAP_FAILED) 164 panic("KVM: Failed to map run data structure\n"); 165 166 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 167 // available. The offset into the KVM's communication page is 168 // provided by the coalesced MMIO capability. 169 int mmioOffset(kvm.capCoalescedMMIO()); 170 if (!p->useCoalescedMMIO) { 171 inform("KVM: Coalesced MMIO disabled by config.\n"); 172 } else if (mmioOffset) { 173 inform("KVM: Coalesced IO available\n"); 174 mmioRing = (struct kvm_coalesced_mmio_ring *)( 175 (char *)_kvmRun + (mmioOffset * pageSize)); 176 } else { 177 inform("KVM: Coalesced not supported by host OS\n"); 178 } 179 180 thread->startup(); 181} 182 183void 184BaseKvmCPU::regStats() 185{ 186 using namespace Stats; 187 188 BaseCPU::regStats(); 189 190 numInsts 191 .name(name() + ".committedInsts") 192 .desc("Number of instructions committed") 193 ; 194 195 numVMExits 196 .name(name() + ".numVMExits") 197 .desc("total number of KVM exits") 198 ; 199 200 numVMHalfEntries 201 .name(name() + ".numVMHalfEntries") 202 .desc("number of KVM entries to finalize pending operations") 203 ; 204 205 numExitSignal 206 .name(name() + ".numExitSignal") 207 .desc("exits due to signal delivery") 208 ; 209 210 numMMIO 211 .name(name() + ".numMMIO") 212 .desc("number of VM exits due to memory mapped IO") 213 ; 214 215 numCoalescedMMIO 216 .name(name() + ".numCoalescedMMIO") 217 .desc("number of coalesced memory mapped IO requests") 218 ; 219 220 numIO 221 .name(name() + ".numIO") 222 .desc("number of VM exits due to legacy IO") 223 ; 224 225 numHalt 226 .name(name() + ".numHalt") 227 .desc("number of VM exits due to wait for interrupt instructions") 228 ; 229 230 numInterrupts 231 .name(name() + ".numInterrupts") 232 .desc("number of interrupts delivered") 233 ; 234 235 numHypercalls 236 .name(name() + ".numHypercalls") 237 .desc("number of hypercalls") 238 ; 239} 240 241void 242BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid) 243{ 244 if (DTRACE(Checkpoint)) { 245 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 246 dump(); 247 } 248 249 assert(tid == 0); 250 assert(_status == Idle); 251 thread->serialize(os); 252} 253 254void 255BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string §ion, 256 ThreadID tid) 257{ 258 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 259 260 assert(tid == 0); 261 assert(_status == Idle); 262 thread->unserialize(cp, section); 263 threadContextDirty = true; 264} 265 266unsigned int 267BaseKvmCPU::drain(DrainManager *dm) 268{ 269 if (switchedOut()) 270 return 0; 271 272 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 273 switch (_status) { 274 case Running: 275 // The base KVM code is normally ready when it is in the 276 // Running state, but the architecture specific code might be 277 // of a different opinion. This may happen when the CPU been 278 // notified of an event that hasn't been accepted by the vCPU 279 // yet. 280 if (!archIsDrained()) { 281 drainManager = dm; 282 return 1; 283 } 284 285 // The state of the CPU is consistent, so we don't need to do 286 // anything special to drain it. We simply de-schedule the 287 // tick event and enter the Idle state to prevent nasty things 288 // like MMIOs from happening. 289 if (tickEvent.scheduled()) 290 deschedule(tickEvent); 291 _status = Idle; 292 293 /** FALLTHROUGH */ 294 case Idle: 295 // Idle, no need to drain 296 assert(!tickEvent.scheduled()); 297 298 // Sync the thread context here since we'll need it when we 299 // switch CPUs or checkpoint the CPU. 300 syncThreadContext(); 301 302 return 0; 303 304 case RunningServiceCompletion: 305 // The CPU has just requested a service that was handled in 306 // the RunningService state, but the results have still not 307 // been reported to the CPU. Now, we /could/ probably just 308 // update the register state ourselves instead of letting KVM 309 // handle it, but that would be tricky. Instead, we enter KVM 310 // and let it do its stuff. 311 drainManager = dm; 312 313 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 314 "requesting drain.\n"); 315 return 1; 316 317 case RunningService: 318 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 319 drainManager = dm; 320 321 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 322 return 1; 323 324 default: 325 panic("KVM: Unhandled CPU state in drain()\n"); 326 return 0; 327 } 328} 329 330void 331BaseKvmCPU::drainResume() 332{ 333 assert(!tickEvent.scheduled()); 334 335 // We might have been switched out. In that case, we don't need to 336 // do anything. 337 if (switchedOut()) 338 return; 339 340 DPRINTF(Kvm, "drainResume\n"); 341 verifyMemoryMode(); 342 343 // The tick event is de-scheduled as a part of the draining 344 // process. Re-schedule it if the thread context is active. 345 if (tc->status() == ThreadContext::Active) { 346 schedule(tickEvent, nextCycle()); 347 _status = Running; 348 } else { 349 _status = Idle; 350 } 351} 352 353void 354BaseKvmCPU::switchOut() 355{ 356 DPRINTF(Kvm, "switchOut\n"); 357 358 BaseCPU::switchOut(); 359 360 // We should have drained prior to executing a switchOut, which 361 // means that the tick event shouldn't be scheduled and the CPU is 362 // idle. 363 assert(!tickEvent.scheduled()); 364 assert(_status == Idle); 365} 366 367void 368BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 369{ 370 DPRINTF(Kvm, "takeOverFrom\n"); 371 372 BaseCPU::takeOverFrom(cpu); 373 374 // We should have drained prior to executing a switchOut, which 375 // means that the tick event shouldn't be scheduled and the CPU is 376 // idle. 377 assert(!tickEvent.scheduled()); 378 assert(_status == Idle); 379 assert(threadContexts.size() == 1); 380 381 // Force an update of the KVM state here instead of flagging the 382 // TC as dirty. This is not ideal from a performance point of 383 // view, but it makes debugging easier as it allows meaningful KVM 384 // state to be dumped before and after a takeover. 385 updateKvmState(); 386 threadContextDirty = false; 387} 388 389void 390BaseKvmCPU::verifyMemoryMode() const 391{ 392 if (!(system->isAtomicMode() && system->bypassCaches())) { 393 fatal("The KVM-based CPUs requires the memory system to be in the " 394 "'atomic_noncaching' mode.\n"); 395 } 396} 397 398void 399BaseKvmCPU::wakeup() 400{ 401 DPRINTF(Kvm, "wakeup()\n"); 402 403 if (thread->status() != ThreadContext::Suspended) 404 return; 405 406 thread->activate(); 407} 408 409void 410BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay) 411{ 412 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay); 413 414 assert(thread_num == 0); 415 assert(thread); 416 417 assert(_status == Idle); 418 assert(!tickEvent.scheduled()); 419 420 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 421 422 schedule(tickEvent, clockEdge(delay)); 423 _status = Running; 424} 425 426 427void 428BaseKvmCPU::suspendContext(ThreadID thread_num) 429{ 430 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 431 432 assert(thread_num == 0); 433 assert(thread); 434 435 if (_status == Idle) 436 return; 437 438 assert(_status == Running); 439 440 // The tick event may no be scheduled if the quest has requested 441 // the monitor to wait for interrupts. The normal CPU models can 442 // get their tick events descheduled by quiesce instructions, but 443 // that can't happen here. 444 if (tickEvent.scheduled()) 445 deschedule(tickEvent); 446 447 _status = Idle; 448} 449 450void 451BaseKvmCPU::deallocateContext(ThreadID thread_num) 452{ 453 // for now, these are equivalent 454 suspendContext(thread_num); 455} 456 457void 458BaseKvmCPU::haltContext(ThreadID thread_num) 459{ 460 // for now, these are equivalent 461 suspendContext(thread_num); 462} 463 464ThreadContext * 465BaseKvmCPU::getContext(int tn) 466{ 467 assert(tn == 0); 468 syncThreadContext(); 469 return tc; 470} 471 472 473Counter 474BaseKvmCPU::totalInsts() const 475{ 476 return ctrInsts; 477} 478 479Counter 480BaseKvmCPU::totalOps() const 481{ 482 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 483 return ctrInsts; 484} 485 486void 487BaseKvmCPU::dump() 488{ 489 inform("State dumping not implemented."); 490} 491 492void 493BaseKvmCPU::tick() 494{ 495 Tick delay(0); 496 assert(_status != Idle); 497 498 switch (_status) { 499 case RunningService: 500 // handleKvmExit() will determine the next state of the CPU 501 delay = handleKvmExit(); 502 503 if (tryDrain()) 504 _status = Idle; 505 break; 506 507 case RunningServiceCompletion: 508 case Running: { 509 EventQueue *q = curEventQueue(); 510 Tick ticksToExecute(q->nextTick() - curTick()); 511 512 // We might need to update the KVM state. 513 syncKvmState(); 514 515 // Setup any pending instruction count breakpoints using 516 // PerfEvent. 517 setupInstStop(); 518 519 DPRINTF(KvmRun, "Entering KVM...\n"); 520 if (drainManager) { 521 // Force an immediate exit from KVM after completing 522 // pending operations. The architecture-specific code 523 // takes care to run until it is in a state where it can 524 // safely be drained. 525 delay = kvmRunDrain(); 526 } else { 527 delay = kvmRun(ticksToExecute); 528 } 529 530 // Entering into KVM implies that we'll have to reload the thread 531 // context from KVM if we want to access it. Flag the KVM state as 532 // dirty with respect to the cached thread context. 533 kvmStateDirty = true; 534 535 // Enter into the RunningService state unless the 536 // simulation was stopped by a timer. 537 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 538 _status = RunningService; 539 } else { 540 ++numExitSignal; 541 _status = Running; 542 } 543 544 // Service any pending instruction events. The vCPU should 545 // have exited in time for the event using the instruction 546 // counter configured by setupInstStop(). 547 comInstEventQueue[0]->serviceEvents(ctrInsts); 548 system->instEventQueue.serviceEvents(system->totalNumInsts); 549 550 if (tryDrain()) 551 _status = Idle; 552 } break; 553 554 default: 555 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 556 _status); 557 } 558 559 // Schedule a new tick if we are still running 560 if (_status != Idle) 561 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 562} 563 564Tick 565BaseKvmCPU::kvmRunDrain() 566{ 567 // By default, the only thing we need to drain is a pending IO 568 // operation which assumes that we are in the 569 // RunningServiceCompletion state. 570 assert(_status == RunningServiceCompletion); 571 572 // Deliver the data from the pending IO operation and immediately 573 // exit. 574 return kvmRun(0); 575} 576 577uint64_t 578BaseKvmCPU::getHostCycles() const 579{ 580 return hwCycles.read(); 581} 582 583Tick 584BaseKvmCPU::kvmRun(Tick ticks) 585{ 586 Tick ticksExecuted; 587 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 588 timerOverflowed = false; 589 590 if (ticks == 0) { 591 // Settings ticks == 0 is a special case which causes an entry 592 // into KVM that finishes pending operations (e.g., IO) and 593 // then immediately exits. 594 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 595 596 ++numVMHalfEntries; 597 598 // This signal is always masked while we are executing in gem5 599 // and gets unmasked temporarily as soon as we enter into 600 // KVM. See setSignalMask() and setupSignalHandler(). 601 raise(KVM_TIMER_SIGNAL); 602 603 // Enter into KVM. KVM will check for signals after completing 604 // pending operations (IO). Since the KVM_TIMER_SIGNAL is 605 // pending, this forces an immediate exit into gem5 again. We 606 // don't bother to setup timers since this shouldn't actually 607 // execute any code in the guest. 608 ioctlRun(); 609 610 // We always execute at least one cycle to prevent the 611 // BaseKvmCPU::tick() to be rescheduled on the same tick 612 // twice. 613 ticksExecuted = clockPeriod(); 614 } else { 615 if (ticks < runTimer->resolution()) { 616 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 617 ticks, runTimer->resolution()); 618 ticks = runTimer->resolution(); 619 } 620 621 // Get hardware statistics after synchronizing contexts. The KVM 622 // state update might affect guest cycle counters. 623 uint64_t baseCycles(getHostCycles()); 624 uint64_t baseInstrs(hwInstructions.read()); 625 626 // Arm the run timer and start the cycle timer if it isn't 627 // controlled by the overflow timer. Starting/stopping the cycle 628 // timer automatically starts the other perf timers as they are in 629 // the same counter group. 630 runTimer->arm(ticks); 631 if (!perfControlledByTimer) 632 hwCycles.start(); 633 634 ioctlRun(); 635 636 runTimer->disarm(); 637 if (!perfControlledByTimer) 638 hwCycles.stop(); 639 640 // The timer signal may have been delivered after we exited 641 // from KVM. It will be pending in that case since it is 642 // masked when we aren't executing in KVM. Discard it to make 643 // sure we don't deliver it immediately next time we try to 644 // enter into KVM. 645 discardPendingSignal(KVM_TIMER_SIGNAL); 646 discardPendingSignal(KVM_INST_SIGNAL); 647 648 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 649 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 650 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 651 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 652 653 if (ticksExecuted < ticks && 654 timerOverflowed && 655 _kvmRun->exit_reason == KVM_EXIT_INTR) { 656 // TODO: We should probably do something clever here... 657 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n", 658 ticks, ticksExecuted); 659 } 660 661 /* Update statistics */ 662 numCycles += simCyclesExecuted;; 663 numInsts += instsExecuted; 664 ctrInsts += instsExecuted; 665 system->totalNumInsts += instsExecuted; 666 667 DPRINTF(KvmRun, 668 "KVM: Executed %i instructions in %i cycles " 669 "(%i ticks, sim cycles: %i).\n", 670 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 671 } 672 673 ++numVMExits; 674 675 return ticksExecuted + flushCoalescedMMIO(); 676} 677 678void 679BaseKvmCPU::kvmNonMaskableInterrupt() 680{ 681 ++numInterrupts; 682 if (ioctl(KVM_NMI) == -1) 683 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 684} 685 686void 687BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 688{ 689 ++numInterrupts; 690 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 691 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 692} 693 694void 695BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 696{ 697 if (ioctl(KVM_GET_REGS, ®s) == -1) 698 panic("KVM: Failed to get guest registers\n"); 699} 700 701void 702BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 703{ 704 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 705 panic("KVM: Failed to set guest registers\n"); 706} 707 708void 709BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 710{ 711 if (ioctl(KVM_GET_SREGS, ®s) == -1) 712 panic("KVM: Failed to get guest special registers\n"); 713} 714 715void 716BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 717{ 718 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 719 panic("KVM: Failed to set guest special registers\n"); 720} 721 722void 723BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 724{ 725 if (ioctl(KVM_GET_FPU, &state) == -1) 726 panic("KVM: Failed to get guest FPU state\n"); 727} 728 729void 730BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 731{ 732 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 733 panic("KVM: Failed to set guest FPU state\n"); 734} 735 736 737void 738BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 739{ 740#ifdef KVM_SET_ONE_REG 741 struct kvm_one_reg reg; 742 reg.id = id; 743 reg.addr = (uint64_t)addr; 744 745 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 746 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 747 id, errno); 748 } 749#else 750 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 751#endif 752} 753 754void 755BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 756{ 757#ifdef KVM_GET_ONE_REG 758 struct kvm_one_reg reg; 759 reg.id = id; 760 reg.addr = (uint64_t)addr; 761 762 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 763 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 764 id, errno); 765 } 766#else 767 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 768#endif 769} 770 771std::string 772BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 773{ 774#ifdef KVM_GET_ONE_REG 775 std::ostringstream ss; 776 777 ss.setf(std::ios::hex, std::ios::basefield); 778 ss.setf(std::ios::showbase); 779#define HANDLE_INTTYPE(len) \ 780 case KVM_REG_SIZE_U ## len: { \ 781 uint ## len ## _t value; \ 782 getOneReg(id, &value); \ 783 ss << value; \ 784 } break 785 786#define HANDLE_ARRAY(len) \ 787 case KVM_REG_SIZE_U ## len: { \ 788 uint8_t value[len / 8]; \ 789 getOneReg(id, value); \ 790 ss << "[" << value[0]; \ 791 for (int i = 1; i < len / 8; ++i) \ 792 ss << ", " << value[i]; \ 793 ss << "]"; \ 794 } break 795 796 switch (id & KVM_REG_SIZE_MASK) { 797 HANDLE_INTTYPE(8); 798 HANDLE_INTTYPE(16); 799 HANDLE_INTTYPE(32); 800 HANDLE_INTTYPE(64); 801 HANDLE_ARRAY(128); 802 HANDLE_ARRAY(256); 803 HANDLE_ARRAY(512); 804 HANDLE_ARRAY(1024); 805 default: 806 ss << "??"; 807 } 808 809#undef HANDLE_INTTYPE 810#undef HANDLE_ARRAY 811 812 return ss.str(); 813#else 814 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 815#endif 816} 817 818void 819BaseKvmCPU::syncThreadContext() 820{ 821 if (!kvmStateDirty) 822 return; 823 824 assert(!threadContextDirty); 825 826 updateThreadContext(); 827 kvmStateDirty = false; 828} 829 830void 831BaseKvmCPU::syncKvmState() 832{ 833 if (!threadContextDirty) 834 return; 835 836 assert(!kvmStateDirty); 837 838 updateKvmState(); 839 threadContextDirty = false; 840} 841 842Tick 843BaseKvmCPU::handleKvmExit() 844{ 845 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 846 assert(_status == RunningService); 847 848 // Switch into the running state by default. Individual handlers 849 // can override this. 850 _status = Running; 851 switch (_kvmRun->exit_reason) { 852 case KVM_EXIT_UNKNOWN: 853 return handleKvmExitUnknown(); 854 855 case KVM_EXIT_EXCEPTION: 856 return handleKvmExitException(); 857 858 case KVM_EXIT_IO: 859 _status = RunningServiceCompletion; 860 ++numIO; 861 return handleKvmExitIO(); 862 863 case KVM_EXIT_HYPERCALL: 864 ++numHypercalls; 865 return handleKvmExitHypercall(); 866 867 case KVM_EXIT_HLT: 868 /* The guest has halted and is waiting for interrupts */ 869 DPRINTF(Kvm, "handleKvmExitHalt\n"); 870 ++numHalt; 871 872 // Suspend the thread until the next interrupt arrives 873 thread->suspend(); 874 875 // This is actually ignored since the thread is suspended. 876 return 0; 877 878 case KVM_EXIT_MMIO: 879 _status = RunningServiceCompletion; 880 /* Service memory mapped IO requests */ 881 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 882 _kvmRun->mmio.is_write, 883 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 884 885 ++numMMIO; 886 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 887 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 888 889 case KVM_EXIT_IRQ_WINDOW_OPEN: 890 return handleKvmExitIRQWindowOpen(); 891 892 case KVM_EXIT_FAIL_ENTRY: 893 return handleKvmExitFailEntry(); 894 895 case KVM_EXIT_INTR: 896 /* KVM was interrupted by a signal, restart it in the next 897 * tick. */ 898 return 0; 899 900 case KVM_EXIT_INTERNAL_ERROR: 901 panic("KVM: Internal error (suberror: %u)\n", 902 _kvmRun->internal.suberror); 903 904 default: 905 dump(); 906 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 907 } 908} 909 910Tick 911BaseKvmCPU::handleKvmExitIO() 912{ 913 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 914 _kvmRun->io.direction, _kvmRun->io.size, 915 _kvmRun->io.port, _kvmRun->io.count); 916} 917 918Tick 919BaseKvmCPU::handleKvmExitHypercall() 920{ 921 panic("KVM: Unhandled hypercall\n"); 922} 923 924Tick 925BaseKvmCPU::handleKvmExitIRQWindowOpen() 926{ 927 warn("KVM: Unhandled IRQ window.\n"); 928 return 0; 929} 930 931 932Tick 933BaseKvmCPU::handleKvmExitUnknown() 934{ 935 dump(); 936 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 937 _kvmRun->hw.hardware_exit_reason); 938} 939 940Tick 941BaseKvmCPU::handleKvmExitException() 942{ 943 dump(); 944 panic("KVM: Got exception when starting vCPU " 945 "(exception: %u, error_code: %u)\n", 946 _kvmRun->ex.exception, _kvmRun->ex.error_code); 947} 948 949Tick 950BaseKvmCPU::handleKvmExitFailEntry() 951{ 952 dump(); 953 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 954 _kvmRun->fail_entry.hardware_entry_failure_reason); 955} 956 957Tick 958BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 959{ 960 ThreadContext *tc(thread->getTC()); 961 syncThreadContext(); 962 963 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId()); 964 // Some architectures do need to massage physical addresses a bit 965 // before they are inserted into the memory system. This enables 966 // APIC accesses on x86 and m5ops where supported through a MMIO 967 // interface. 968 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 969 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 970 if (fault != NoFault) 971 warn("Finalization of MMIO address failed: %s\n", fault->name()); 972 973 974 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 975 Packet pkt(&mmio_req, cmd); 976 pkt.dataStatic(data); 977 978 if (mmio_req.isMmappedIpr()) { 979 const Cycles ipr_delay(write ? 980 TheISA::handleIprWrite(tc, &pkt) : 981 TheISA::handleIprRead(tc, &pkt)); 982 return clockPeriod() * ipr_delay; 983 } else { 984 return dataPort.sendAtomic(&pkt); 985 } 986} 987 988void 989BaseKvmCPU::setSignalMask(const sigset_t *mask) 990{ 991 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 992 993 if (mask) { 994 kvm_mask.reset((struct kvm_signal_mask *)operator new( 995 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 996 // The kernel and the user-space headers have different ideas 997 // about the size of sigset_t. This seems like a massive hack, 998 // but is actually what qemu does. 999 assert(sizeof(*mask) >= 8); 1000 kvm_mask->len = 8; 1001 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1002 } 1003 1004 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1005 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1006 errno); 1007} 1008 1009int 1010BaseKvmCPU::ioctl(int request, long p1) const 1011{ 1012 if (vcpuFD == -1) 1013 panic("KVM: CPU ioctl called before initialization\n"); 1014 1015 return ::ioctl(vcpuFD, request, p1); 1016} 1017 1018Tick 1019BaseKvmCPU::flushCoalescedMMIO() 1020{ 1021 if (!mmioRing) 1022 return 0; 1023 1024 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1025 1026 // TODO: We might need to do synchronization when we start to 1027 // support multiple CPUs 1028 Tick ticks(0); 1029 while (mmioRing->first != mmioRing->last) { 1030 struct kvm_coalesced_mmio &ent( 1031 mmioRing->coalesced_mmio[mmioRing->first]); 1032 1033 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1034 ent.phys_addr, ent.len); 1035 1036 ++numCoalescedMMIO; 1037 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1038 1039 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1040 } 1041 1042 return ticks; 1043} 1044 1045/** 1046 * Cycle timer overflow when running in KVM. Forces the KVM syscall to 1047 * exit with EINTR and allows us to run the event queue. 1048 */ 1049static void 1050onTimerOverflow(int signo, siginfo_t *si, void *data) 1051{ 1052 timerOverflowed = true; 1053} 1054 1055/** 1056 * Instruction counter overflow when running in KVM. Forces the KVM 1057 * syscall to exit with EINTR and allows us to handle instruction 1058 * count events. 1059 */ 1060static void 1061onInstEvent(int signo, siginfo_t *si, void *data) 1062{ 1063} 1064 1065void 1066BaseKvmCPU::setupSignalHandler() 1067{ 1068 struct sigaction sa; 1069 1070 memset(&sa, 0, sizeof(sa)); 1071 sa.sa_sigaction = onTimerOverflow; 1072 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1073 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1) 1074 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1075 1076 memset(&sa, 0, sizeof(sa)); 1077 sa.sa_sigaction = onInstEvent; 1078 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1079 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1) 1080 panic("KVM: Failed to setup vCPU instruction signal handler\n"); 1081 1082 sigset_t sigset; 1083 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1) 1084 panic("KVM: Failed get signal mask\n"); 1085 1086 // Request KVM to setup the same signal mask as we're currently 1087 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL 1088 // to cause immediate exits from KVM after servicing IO 1089 // requests. See kvmRun(). 1090 setSignalMask(&sigset); 1091 1092 // Mask our control signals so they aren't delivered unless we're 1093 // actually executing inside KVM. 1094 sigaddset(&sigset, KVM_TIMER_SIGNAL); 1095 sigaddset(&sigset, KVM_INST_SIGNAL); 1096 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1) 1097 panic("KVM: Failed mask the KVM control signals\n"); 1098} 1099 1100bool 1101BaseKvmCPU::discardPendingSignal(int signum) const 1102{ 1103 int discardedSignal; 1104 1105 // Setting the timeout to zero causes sigtimedwait to return 1106 // immediately. 1107 struct timespec timeout; 1108 timeout.tv_sec = 0; 1109 timeout.tv_nsec = 0; 1110 1111 sigset_t sigset; 1112 sigemptyset(&sigset); 1113 sigaddset(&sigset, signum); 1114 1115 do { 1116 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1117 } while (discardedSignal == -1 && errno == EINTR); 1118 1119 if (discardedSignal == signum) 1120 return true; 1121 else if (discardedSignal == -1 && errno == EAGAIN) 1122 return false; 1123 else 1124 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1125 discardedSignal, errno); 1126} 1127 1128void 1129BaseKvmCPU::setupCounters() 1130{ 1131 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1132 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1133 PERF_COUNT_HW_CPU_CYCLES); 1134 cfgCycles.disabled(true) 1135 .pinned(true); 1136 1137 if (perfControlledByTimer) { 1138 // We need to configure the cycles counter to send overflows 1139 // since we are going to use it to trigger timer signals that 1140 // trap back into m5 from KVM. In practice, this means that we 1141 // need to set some non-zero sample period that gets 1142 // overridden when the timer is armed. 1143 cfgCycles.wakeupEvents(1) 1144 .samplePeriod(42); 1145 } 1146 1147 hwCycles.attach(cfgCycles, 1148 0); // TID (0 => currentThread) 1149 1150 setupInstCounter(); 1151} 1152 1153bool 1154BaseKvmCPU::tryDrain() 1155{ 1156 if (!drainManager) 1157 return false; 1158 1159 if (!archIsDrained()) { 1160 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1161 return false; 1162 } 1163 1164 if (_status == Idle || _status == Running) { 1165 DPRINTF(Drain, 1166 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1167 drainManager->signalDrainDone(); 1168 drainManager = NULL; 1169 return true; 1170 } else { 1171 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1172 return false; 1173 } 1174} 1175 1176void 1177BaseKvmCPU::ioctlRun() 1178{ 1179 if (ioctl(KVM_RUN) == -1) { 1180 if (errno != EINTR) 1181 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1182 errno); 1183 } 1184} 1185 1186void 1187BaseKvmCPU::setupInstStop() 1188{ 1189 if (comInstEventQueue[0]->empty()) { 1190 setupInstCounter(0); 1191 } else { 1192 const uint64_t next(comInstEventQueue[0]->nextTick()); 1193 1194 assert(next > ctrInsts); 1195 setupInstCounter(next - ctrInsts); 1196 } 1197} 1198 1199void 1200BaseKvmCPU::setupInstCounter(uint64_t period) 1201{ 1202 // No need to do anything if we aren't attaching for the first 1203 // time or the period isn't changing. 1204 if (period == activeInstPeriod && hwInstructions.attached()) 1205 return; 1206 1207 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1208 PERF_COUNT_HW_INSTRUCTIONS); 1209 1210 if (period) { 1211 // Setup a sampling counter if that has been requested. 1212 cfgInstructions.wakeupEvents(1) 1213 .samplePeriod(period); 1214 } 1215 1216 // We need to detach and re-attach the counter to reliably change 1217 // sampling settings. See PerfKvmCounter::period() for details. 1218 if (hwInstructions.attached()) 1219 hwInstructions.detach(); 1220 assert(hwCycles.attached()); 1221 hwInstructions.attach(cfgInstructions, 1222 0, // TID (0 => currentThread) 1223 hwCycles); 1224 1225 if (period) 1226 hwInstructions.enableSignals(KVM_INST_SIGNAL); 1227 1228 activeInstPeriod = period; 1229} 1230