base.cc revision 9892
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66volatile bool timerOverflowed = false; 67 68BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 69 : BaseCPU(params), 70 vm(*params->kvmVM), 71 _status(Idle), 72 dataPort(name() + ".dcache_port", this), 73 instPort(name() + ".icache_port", this), 74 threadContextDirty(true), 75 kvmStateDirty(false), 76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 77 _kvmRun(NULL), mmioRing(NULL), 78 pageSize(sysconf(_SC_PAGE_SIZE)), 79 tickEvent(*this), 80 activeInstPeriod(0), 81 perfControlledByTimer(params->usePerfOverflow), 82 hostFreq(params->hostFreq), 83 hostFactor(params->hostFactor), 84 drainManager(NULL), 85 ctrInsts(0) 86{ 87 if (pageSize == -1) 88 panic("KVM: Failed to determine host page size (%i)\n", 89 errno); 90 91 thread = new SimpleThread(this, 0, params->system, 92 params->itb, params->dtb, params->isa[0]); 93 thread->setStatus(ThreadContext::Halted); 94 tc = thread->getTC(); 95 threadContexts.push_back(tc); 96 97 setupCounters(); 98 99 if (params->usePerfOverflow) 100 runTimer.reset(new PerfKvmTimer(hwCycles, 101 KVM_TIMER_SIGNAL, 102 params->hostFactor, 103 params->hostFreq)); 104 else 105 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC, 106 params->hostFactor, 107 params->hostFreq)); 108} 109 110BaseKvmCPU::~BaseKvmCPU() 111{ 112 if (_kvmRun) 113 munmap(_kvmRun, vcpuMMapSize); 114 close(vcpuFD); 115} 116 117void 118BaseKvmCPU::init() 119{ 120 BaseCPU::init(); 121 122 if (numThreads != 1) 123 fatal("KVM: Multithreading not supported"); 124 125 tc->initMemProxies(tc); 126 127 // initialize CPU, including PC 128 if (FullSystem && !switchedOut()) 129 TheISA::initCPU(tc, tc->contextId()); 130 131 mmio_req.setThreadContext(tc->contextId(), 0); 132} 133 134void 135BaseKvmCPU::startup() 136{ 137 const BaseKvmCPUParams * const p( 138 dynamic_cast<const BaseKvmCPUParams *>(params())); 139 140 Kvm &kvm(vm.kvm); 141 142 BaseCPU::startup(); 143 144 assert(vcpuFD == -1); 145 146 // Tell the VM that a CPU is about to start. 147 vm.cpuStartup(); 148 149 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 150 // not guaranteed that the parent KVM VM has initialized at that 151 // point. Initialize virtual CPUs here instead. 152 vcpuFD = vm.createVCPU(vcpuID); 153 154 // Setup signal handlers. This has to be done after the vCPU is 155 // created since it manipulates the vCPU signal mask. 156 setupSignalHandler(); 157 158 // Map the KVM run structure */ 159 vcpuMMapSize = kvm.getVCPUMMapSize(); 160 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 161 PROT_READ | PROT_WRITE, MAP_SHARED, 162 vcpuFD, 0); 163 if (_kvmRun == MAP_FAILED) 164 panic("KVM: Failed to map run data structure\n"); 165 166 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 167 // available. The offset into the KVM's communication page is 168 // provided by the coalesced MMIO capability. 169 int mmioOffset(kvm.capCoalescedMMIO()); 170 if (!p->useCoalescedMMIO) { 171 inform("KVM: Coalesced MMIO disabled by config.\n"); 172 } else if (mmioOffset) { 173 inform("KVM: Coalesced IO available\n"); 174 mmioRing = (struct kvm_coalesced_mmio_ring *)( 175 (char *)_kvmRun + (mmioOffset * pageSize)); 176 } else { 177 inform("KVM: Coalesced not supported by host OS\n"); 178 } 179 180 thread->startup(); 181} 182 183void 184BaseKvmCPU::regStats() 185{ 186 using namespace Stats; 187 188 BaseCPU::regStats(); 189 190 numInsts 191 .name(name() + ".committedInsts") 192 .desc("Number of instructions committed") 193 ; 194 195 numVMExits 196 .name(name() + ".numVMExits") 197 .desc("total number of KVM exits") 198 ; 199 200 numVMHalfEntries 201 .name(name() + ".numVMHalfEntries") 202 .desc("number of KVM entries to finalize pending operations") 203 ; 204 205 numExitSignal 206 .name(name() + ".numExitSignal") 207 .desc("exits due to signal delivery") 208 ; 209 210 numMMIO 211 .name(name() + ".numMMIO") 212 .desc("number of VM exits due to memory mapped IO") 213 ; 214 215 numCoalescedMMIO 216 .name(name() + ".numCoalescedMMIO") 217 .desc("number of coalesced memory mapped IO requests") 218 ; 219 220 numIO 221 .name(name() + ".numIO") 222 .desc("number of VM exits due to legacy IO") 223 ; 224 225 numHalt 226 .name(name() + ".numHalt") 227 .desc("number of VM exits due to wait for interrupt instructions") 228 ; 229 230 numInterrupts 231 .name(name() + ".numInterrupts") 232 .desc("number of interrupts delivered") 233 ; 234 235 numHypercalls 236 .name(name() + ".numHypercalls") 237 .desc("number of hypercalls") 238 ; 239} 240 241void 242BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid) 243{ 244 if (DTRACE(Checkpoint)) { 245 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 246 dump(); 247 } 248 249 assert(tid == 0); 250 assert(_status == Idle); 251 thread->serialize(os); 252} 253 254void 255BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string §ion, 256 ThreadID tid) 257{ 258 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 259 260 assert(tid == 0); 261 assert(_status == Idle); 262 thread->unserialize(cp, section); 263 threadContextDirty = true; 264} 265 266unsigned int 267BaseKvmCPU::drain(DrainManager *dm) 268{ 269 if (switchedOut()) 270 return 0; 271 272 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 273 switch (_status) { 274 case Running: 275 // The base KVM code is normally ready when it is in the 276 // Running state, but the architecture specific code might be 277 // of a different opinion. This may happen when the CPU been 278 // notified of an event that hasn't been accepted by the vCPU 279 // yet. 280 if (!archIsDrained()) { 281 drainManager = dm; 282 return 1; 283 } 284 285 // The state of the CPU is consistent, so we don't need to do 286 // anything special to drain it. We simply de-schedule the 287 // tick event and enter the Idle state to prevent nasty things 288 // like MMIOs from happening. 289 if (tickEvent.scheduled()) 290 deschedule(tickEvent); 291 _status = Idle; 292 293 /** FALLTHROUGH */ 294 case Idle: 295 // Idle, no need to drain 296 assert(!tickEvent.scheduled()); 297 298 // Sync the thread context here since we'll need it when we 299 // switch CPUs or checkpoint the CPU. 300 syncThreadContext(); 301 302 return 0; 303 304 case RunningServiceCompletion: 305 // The CPU has just requested a service that was handled in 306 // the RunningService state, but the results have still not 307 // been reported to the CPU. Now, we /could/ probably just 308 // update the register state ourselves instead of letting KVM 309 // handle it, but that would be tricky. Instead, we enter KVM 310 // and let it do its stuff. 311 drainManager = dm; 312 313 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 314 "requesting drain.\n"); 315 return 1; 316 317 case RunningService: 318 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 319 drainManager = dm; 320 321 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 322 return 1; 323 324 default: 325 panic("KVM: Unhandled CPU state in drain()\n"); 326 return 0; 327 } 328} 329 330void 331BaseKvmCPU::drainResume() 332{ 333 assert(!tickEvent.scheduled()); 334 335 // We might have been switched out. In that case, we don't need to 336 // do anything. 337 if (switchedOut()) 338 return; 339 340 DPRINTF(Kvm, "drainResume\n"); 341 verifyMemoryMode(); 342 343 // The tick event is de-scheduled as a part of the draining 344 // process. Re-schedule it if the thread context is active. 345 if (tc->status() == ThreadContext::Active) { 346 schedule(tickEvent, nextCycle()); 347 _status = Running; 348 } else { 349 _status = Idle; 350 } 351} 352 353void 354BaseKvmCPU::switchOut() 355{ 356 DPRINTF(Kvm, "switchOut\n"); 357 358 BaseCPU::switchOut(); 359 360 // We should have drained prior to executing a switchOut, which 361 // means that the tick event shouldn't be scheduled and the CPU is 362 // idle. 363 assert(!tickEvent.scheduled()); 364 assert(_status == Idle); 365} 366 367void 368BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 369{ 370 DPRINTF(Kvm, "takeOverFrom\n"); 371 372 BaseCPU::takeOverFrom(cpu); 373 374 // We should have drained prior to executing a switchOut, which 375 // means that the tick event shouldn't be scheduled and the CPU is 376 // idle. 377 assert(!tickEvent.scheduled()); 378 assert(_status == Idle); 379 assert(threadContexts.size() == 1); 380 381 // Force an update of the KVM state here instead of flagging the 382 // TC as dirty. This is not ideal from a performance point of 383 // view, but it makes debugging easier as it allows meaningful KVM 384 // state to be dumped before and after a takeover. 385 updateKvmState(); 386 threadContextDirty = false; 387} 388 389void 390BaseKvmCPU::verifyMemoryMode() const 391{ 392 if (!(system->isAtomicMode() && system->bypassCaches())) { 393 fatal("The KVM-based CPUs requires the memory system to be in the " 394 "'atomic_noncaching' mode.\n"); 395 } 396} 397 398void 399BaseKvmCPU::wakeup() 400{ 401 DPRINTF(Kvm, "wakeup()\n"); 402 403 if (thread->status() != ThreadContext::Suspended) 404 return; 405 406 thread->activate(); 407} 408 409void 410BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay) 411{ 412 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay); 413 414 assert(thread_num == 0); 415 assert(thread); 416 417 assert(_status == Idle); 418 assert(!tickEvent.scheduled()); 419 420 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 421 422 schedule(tickEvent, clockEdge(delay)); 423 _status = Running; 424} 425 426 427void 428BaseKvmCPU::suspendContext(ThreadID thread_num) 429{ 430 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 431 432 assert(thread_num == 0); 433 assert(thread); 434 435 if (_status == Idle) 436 return; 437 438 assert(_status == Running); 439 440 // The tick event may no be scheduled if the quest has requested 441 // the monitor to wait for interrupts. The normal CPU models can 442 // get their tick events descheduled by quiesce instructions, but 443 // that can't happen here. 444 if (tickEvent.scheduled()) 445 deschedule(tickEvent); 446 447 _status = Idle; 448} 449 450void 451BaseKvmCPU::deallocateContext(ThreadID thread_num) 452{ 453 // for now, these are equivalent 454 suspendContext(thread_num); 455} 456 457void 458BaseKvmCPU::haltContext(ThreadID thread_num) 459{ 460 // for now, these are equivalent 461 suspendContext(thread_num); 462} 463 464ThreadContext * 465BaseKvmCPU::getContext(int tn) 466{ 467 assert(tn == 0); 468 syncThreadContext(); 469 return tc; 470} 471 472 473Counter 474BaseKvmCPU::totalInsts() const 475{ 476 return ctrInsts; 477} 478 479Counter 480BaseKvmCPU::totalOps() const 481{ 482 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 483 return ctrInsts; 484} 485 486void 487BaseKvmCPU::dump() 488{ 489 inform("State dumping not implemented."); 490} 491 492void 493BaseKvmCPU::tick() 494{ 495 Tick delay(0); 496 assert(_status != Idle); 497 498 switch (_status) { 499 case RunningService: 500 // handleKvmExit() will determine the next state of the CPU 501 delay = handleKvmExit(); 502 503 if (tryDrain()) 504 _status = Idle; 505 break; 506 507 case RunningServiceCompletion: 508 case Running: { 509 Tick ticksToExecute(mainEventQueue.nextTick() - curTick()); 510 511 // We might need to update the KVM state. 512 syncKvmState(); 513 514 // Setup any pending instruction count breakpoints using 515 // PerfEvent. 516 setupInstStop(); 517 518 DPRINTF(KvmRun, "Entering KVM...\n"); 519 if (drainManager) { 520 // Force an immediate exit from KVM after completing 521 // pending operations. The architecture-specific code 522 // takes care to run until it is in a state where it can 523 // safely be drained. 524 delay = kvmRunDrain(); 525 } else { 526 delay = kvmRun(ticksToExecute); 527 } 528 529 // Entering into KVM implies that we'll have to reload the thread 530 // context from KVM if we want to access it. Flag the KVM state as 531 // dirty with respect to the cached thread context. 532 kvmStateDirty = true; 533 534 // Enter into the RunningService state unless the 535 // simulation was stopped by a timer. 536 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 537 _status = RunningService; 538 } else { 539 ++numExitSignal; 540 _status = Running; 541 } 542 543 if (tryDrain()) 544 _status = Idle; 545 } break; 546 547 default: 548 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 549 _status); 550 } 551 552 // Schedule a new tick if we are still running 553 if (_status != Idle) 554 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 555} 556 557Tick 558BaseKvmCPU::kvmRunDrain() 559{ 560 // By default, the only thing we need to drain is a pending IO 561 // operation which assumes that we are in the 562 // RunningServiceCompletion state. 563 assert(_status == RunningServiceCompletion); 564 565 // Deliver the data from the pending IO operation and immediately 566 // exit. 567 return kvmRun(0); 568} 569 570uint64_t 571BaseKvmCPU::getHostCycles() const 572{ 573 return hwCycles.read(); 574} 575 576Tick 577BaseKvmCPU::kvmRun(Tick ticks) 578{ 579 Tick ticksExecuted; 580 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 581 timerOverflowed = false; 582 583 if (ticks == 0) { 584 // Settings ticks == 0 is a special case which causes an entry 585 // into KVM that finishes pending operations (e.g., IO) and 586 // then immediately exits. 587 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 588 589 ++numVMHalfEntries; 590 591 // This signal is always masked while we are executing in gem5 592 // and gets unmasked temporarily as soon as we enter into 593 // KVM. See setSignalMask() and setupSignalHandler(). 594 raise(KVM_TIMER_SIGNAL); 595 596 // Enter into KVM. KVM will check for signals after completing 597 // pending operations (IO). Since the KVM_TIMER_SIGNAL is 598 // pending, this forces an immediate exit into gem5 again. We 599 // don't bother to setup timers since this shouldn't actually 600 // execute any code in the guest. 601 ioctlRun(); 602 603 // We always execute at least one cycle to prevent the 604 // BaseKvmCPU::tick() to be rescheduled on the same tick 605 // twice. 606 ticksExecuted = clockPeriod(); 607 } else { 608 if (ticks < runTimer->resolution()) { 609 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 610 ticks, runTimer->resolution()); 611 ticks = runTimer->resolution(); 612 } 613 614 // Get hardware statistics after synchronizing contexts. The KVM 615 // state update might affect guest cycle counters. 616 uint64_t baseCycles(getHostCycles()); 617 uint64_t baseInstrs(hwInstructions.read()); 618 619 // Arm the run timer and start the cycle timer if it isn't 620 // controlled by the overflow timer. Starting/stopping the cycle 621 // timer automatically starts the other perf timers as they are in 622 // the same counter group. 623 runTimer->arm(ticks); 624 if (!perfControlledByTimer) 625 hwCycles.start(); 626 627 ioctlRun(); 628 629 runTimer->disarm(); 630 if (!perfControlledByTimer) 631 hwCycles.stop(); 632 633 // The timer signal may have been delivered after we exited 634 // from KVM. It will be pending in that case since it is 635 // masked when we aren't executing in KVM. Discard it to make 636 // sure we don't deliver it immediately next time we try to 637 // enter into KVM. 638 discardPendingSignal(KVM_TIMER_SIGNAL); 639 discardPendingSignal(KVM_INST_SIGNAL); 640 641 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 642 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 643 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 644 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 645 646 if (ticksExecuted < ticks && 647 timerOverflowed && 648 _kvmRun->exit_reason == KVM_EXIT_INTR) { 649 // TODO: We should probably do something clever here... 650 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n", 651 ticks, ticksExecuted); 652 } 653 654 /* Update statistics */ 655 numCycles += simCyclesExecuted;; 656 numInsts += instsExecuted; 657 ctrInsts += instsExecuted; 658 system->totalNumInsts += instsExecuted; 659 660 DPRINTF(KvmRun, 661 "KVM: Executed %i instructions in %i cycles " 662 "(%i ticks, sim cycles: %i).\n", 663 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 664 } 665 666 ++numVMExits; 667 668 return ticksExecuted + flushCoalescedMMIO(); 669} 670 671void 672BaseKvmCPU::kvmNonMaskableInterrupt() 673{ 674 ++numInterrupts; 675 if (ioctl(KVM_NMI) == -1) 676 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 677} 678 679void 680BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 681{ 682 ++numInterrupts; 683 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 684 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 685} 686 687void 688BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 689{ 690 if (ioctl(KVM_GET_REGS, ®s) == -1) 691 panic("KVM: Failed to get guest registers\n"); 692} 693 694void 695BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 696{ 697 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 698 panic("KVM: Failed to set guest registers\n"); 699} 700 701void 702BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 703{ 704 if (ioctl(KVM_GET_SREGS, ®s) == -1) 705 panic("KVM: Failed to get guest special registers\n"); 706} 707 708void 709BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 710{ 711 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 712 panic("KVM: Failed to set guest special registers\n"); 713} 714 715void 716BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 717{ 718 if (ioctl(KVM_GET_FPU, &state) == -1) 719 panic("KVM: Failed to get guest FPU state\n"); 720} 721 722void 723BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 724{ 725 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 726 panic("KVM: Failed to set guest FPU state\n"); 727} 728 729 730void 731BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 732{ 733#ifdef KVM_SET_ONE_REG 734 struct kvm_one_reg reg; 735 reg.id = id; 736 reg.addr = (uint64_t)addr; 737 738 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 739 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 740 id, errno); 741 } 742#else 743 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 744#endif 745} 746 747void 748BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 749{ 750#ifdef KVM_GET_ONE_REG 751 struct kvm_one_reg reg; 752 reg.id = id; 753 reg.addr = (uint64_t)addr; 754 755 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 756 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 757 id, errno); 758 } 759#else 760 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 761#endif 762} 763 764std::string 765BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 766{ 767#ifdef KVM_GET_ONE_REG 768 std::ostringstream ss; 769 770 ss.setf(std::ios::hex, std::ios::basefield); 771 ss.setf(std::ios::showbase); 772#define HANDLE_INTTYPE(len) \ 773 case KVM_REG_SIZE_U ## len: { \ 774 uint ## len ## _t value; \ 775 getOneReg(id, &value); \ 776 ss << value; \ 777 } break 778 779#define HANDLE_ARRAY(len) \ 780 case KVM_REG_SIZE_U ## len: { \ 781 uint8_t value[len / 8]; \ 782 getOneReg(id, value); \ 783 ss << "[" << value[0]; \ 784 for (int i = 1; i < len / 8; ++i) \ 785 ss << ", " << value[i]; \ 786 ss << "]"; \ 787 } break 788 789 switch (id & KVM_REG_SIZE_MASK) { 790 HANDLE_INTTYPE(8); 791 HANDLE_INTTYPE(16); 792 HANDLE_INTTYPE(32); 793 HANDLE_INTTYPE(64); 794 HANDLE_ARRAY(128); 795 HANDLE_ARRAY(256); 796 HANDLE_ARRAY(512); 797 HANDLE_ARRAY(1024); 798 default: 799 ss << "??"; 800 } 801 802#undef HANDLE_INTTYPE 803#undef HANDLE_ARRAY 804 805 return ss.str(); 806#else 807 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 808#endif 809} 810 811void 812BaseKvmCPU::syncThreadContext() 813{ 814 if (!kvmStateDirty) 815 return; 816 817 assert(!threadContextDirty); 818 819 updateThreadContext(); 820 kvmStateDirty = false; 821} 822 823void 824BaseKvmCPU::syncKvmState() 825{ 826 if (!threadContextDirty) 827 return; 828 829 assert(!kvmStateDirty); 830 831 updateKvmState(); 832 threadContextDirty = false; 833} 834 835Tick 836BaseKvmCPU::handleKvmExit() 837{ 838 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 839 assert(_status == RunningService); 840 841 // Switch into the running state by default. Individual handlers 842 // can override this. 843 _status = Running; 844 switch (_kvmRun->exit_reason) { 845 case KVM_EXIT_UNKNOWN: 846 return handleKvmExitUnknown(); 847 848 case KVM_EXIT_EXCEPTION: 849 return handleKvmExitException(); 850 851 case KVM_EXIT_IO: 852 _status = RunningServiceCompletion; 853 ++numIO; 854 return handleKvmExitIO(); 855 856 case KVM_EXIT_HYPERCALL: 857 ++numHypercalls; 858 return handleKvmExitHypercall(); 859 860 case KVM_EXIT_HLT: 861 /* The guest has halted and is waiting for interrupts */ 862 DPRINTF(Kvm, "handleKvmExitHalt\n"); 863 ++numHalt; 864 865 // Suspend the thread until the next interrupt arrives 866 thread->suspend(); 867 868 // This is actually ignored since the thread is suspended. 869 return 0; 870 871 case KVM_EXIT_MMIO: 872 _status = RunningServiceCompletion; 873 /* Service memory mapped IO requests */ 874 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 875 _kvmRun->mmio.is_write, 876 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 877 878 ++numMMIO; 879 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 880 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 881 882 case KVM_EXIT_IRQ_WINDOW_OPEN: 883 return handleKvmExitIRQWindowOpen(); 884 885 case KVM_EXIT_FAIL_ENTRY: 886 return handleKvmExitFailEntry(); 887 888 case KVM_EXIT_INTR: 889 /* KVM was interrupted by a signal, restart it in the next 890 * tick. */ 891 return 0; 892 893 case KVM_EXIT_INTERNAL_ERROR: 894 panic("KVM: Internal error (suberror: %u)\n", 895 _kvmRun->internal.suberror); 896 897 default: 898 dump(); 899 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 900 } 901} 902 903Tick 904BaseKvmCPU::handleKvmExitIO() 905{ 906 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 907 _kvmRun->io.direction, _kvmRun->io.size, 908 _kvmRun->io.port, _kvmRun->io.count); 909} 910 911Tick 912BaseKvmCPU::handleKvmExitHypercall() 913{ 914 panic("KVM: Unhandled hypercall\n"); 915} 916 917Tick 918BaseKvmCPU::handleKvmExitIRQWindowOpen() 919{ 920 warn("KVM: Unhandled IRQ window.\n"); 921 return 0; 922} 923 924 925Tick 926BaseKvmCPU::handleKvmExitUnknown() 927{ 928 dump(); 929 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 930 _kvmRun->hw.hardware_exit_reason); 931} 932 933Tick 934BaseKvmCPU::handleKvmExitException() 935{ 936 dump(); 937 panic("KVM: Got exception when starting vCPU " 938 "(exception: %u, error_code: %u)\n", 939 _kvmRun->ex.exception, _kvmRun->ex.error_code); 940} 941 942Tick 943BaseKvmCPU::handleKvmExitFailEntry() 944{ 945 dump(); 946 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 947 _kvmRun->fail_entry.hardware_entry_failure_reason); 948} 949 950Tick 951BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 952{ 953 ThreadContext *tc(thread->getTC()); 954 syncThreadContext(); 955 956 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId()); 957 // Some architectures do need to massage physical addresses a bit 958 // before they are inserted into the memory system. This enables 959 // APIC accesses on x86 and m5ops where supported through a MMIO 960 // interface. 961 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 962 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 963 if (fault != NoFault) 964 warn("Finalization of MMIO address failed: %s\n", fault->name()); 965 966 967 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 968 Packet pkt(&mmio_req, cmd); 969 pkt.dataStatic(data); 970 971 if (mmio_req.isMmappedIpr()) { 972 const Cycles ipr_delay(write ? 973 TheISA::handleIprWrite(tc, &pkt) : 974 TheISA::handleIprRead(tc, &pkt)); 975 return clockEdge(ipr_delay); 976 } else { 977 return dataPort.sendAtomic(&pkt); 978 } 979} 980 981void 982BaseKvmCPU::setSignalMask(const sigset_t *mask) 983{ 984 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 985 986 if (mask) { 987 kvm_mask.reset((struct kvm_signal_mask *)operator new( 988 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 989 // The kernel and the user-space headers have different ideas 990 // about the size of sigset_t. This seems like a massive hack, 991 // but is actually what qemu does. 992 assert(sizeof(*mask) >= 8); 993 kvm_mask->len = 8; 994 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 995 } 996 997 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 998 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 999 errno); 1000} 1001 1002int 1003BaseKvmCPU::ioctl(int request, long p1) const 1004{ 1005 if (vcpuFD == -1) 1006 panic("KVM: CPU ioctl called before initialization\n"); 1007 1008 return ::ioctl(vcpuFD, request, p1); 1009} 1010 1011Tick 1012BaseKvmCPU::flushCoalescedMMIO() 1013{ 1014 if (!mmioRing) 1015 return 0; 1016 1017 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1018 1019 // TODO: We might need to do synchronization when we start to 1020 // support multiple CPUs 1021 Tick ticks(0); 1022 while (mmioRing->first != mmioRing->last) { 1023 struct kvm_coalesced_mmio &ent( 1024 mmioRing->coalesced_mmio[mmioRing->first]); 1025 1026 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1027 ent.phys_addr, ent.len); 1028 1029 ++numCoalescedMMIO; 1030 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1031 1032 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1033 } 1034 1035 return ticks; 1036} 1037 1038/** 1039 * Cycle timer overflow when running in KVM. Forces the KVM syscall to 1040 * exit with EINTR and allows us to run the event queue. 1041 */ 1042static void 1043onTimerOverflow(int signo, siginfo_t *si, void *data) 1044{ 1045 timerOverflowed = true; 1046} 1047 1048/** 1049 * Instruction counter overflow when running in KVM. Forces the KVM 1050 * syscall to exit with EINTR and allows us to handle instruction 1051 * count events. 1052 */ 1053static void 1054onInstEvent(int signo, siginfo_t *si, void *data) 1055{ 1056} 1057 1058void 1059BaseKvmCPU::setupSignalHandler() 1060{ 1061 struct sigaction sa; 1062 1063 memset(&sa, 0, sizeof(sa)); 1064 sa.sa_sigaction = onTimerOverflow; 1065 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1066 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1) 1067 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1068 1069 memset(&sa, 0, sizeof(sa)); 1070 sa.sa_sigaction = onInstEvent; 1071 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1072 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1) 1073 panic("KVM: Failed to setup vCPU instruction signal handler\n"); 1074 1075 sigset_t sigset; 1076 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1) 1077 panic("KVM: Failed get signal mask\n"); 1078 1079 // Request KVM to setup the same signal mask as we're currently 1080 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL 1081 // to cause immediate exits from KVM after servicing IO 1082 // requests. See kvmRun(). 1083 setSignalMask(&sigset); 1084 1085 // Mask our control signals so they aren't delivered unless we're 1086 // actually executing inside KVM. 1087 sigaddset(&sigset, KVM_TIMER_SIGNAL); 1088 sigaddset(&sigset, KVM_INST_SIGNAL); 1089 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1) 1090 panic("KVM: Failed mask the KVM control signals\n"); 1091} 1092 1093bool 1094BaseKvmCPU::discardPendingSignal(int signum) const 1095{ 1096 int discardedSignal; 1097 1098 // Setting the timeout to zero causes sigtimedwait to return 1099 // immediately. 1100 struct timespec timeout; 1101 timeout.tv_sec = 0; 1102 timeout.tv_nsec = 0; 1103 1104 sigset_t sigset; 1105 sigemptyset(&sigset); 1106 sigaddset(&sigset, signum); 1107 1108 do { 1109 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1110 } while (discardedSignal == -1 && errno == EINTR); 1111 1112 if (discardedSignal == signum) 1113 return true; 1114 else if (discardedSignal == -1 && errno == EAGAIN) 1115 return false; 1116 else 1117 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1118 discardedSignal, errno); 1119} 1120 1121void 1122BaseKvmCPU::setupCounters() 1123{ 1124 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1125 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1126 PERF_COUNT_HW_CPU_CYCLES); 1127 cfgCycles.disabled(true) 1128 .pinned(true); 1129 1130 if (perfControlledByTimer) { 1131 // We need to configure the cycles counter to send overflows 1132 // since we are going to use it to trigger timer signals that 1133 // trap back into m5 from KVM. In practice, this means that we 1134 // need to set some non-zero sample period that gets 1135 // overridden when the timer is armed. 1136 cfgCycles.wakeupEvents(1) 1137 .samplePeriod(42); 1138 } 1139 1140 hwCycles.attach(cfgCycles, 1141 0); // TID (0 => currentThread) 1142 1143 setupInstCounter(); 1144} 1145 1146bool 1147BaseKvmCPU::tryDrain() 1148{ 1149 if (!drainManager) 1150 return false; 1151 1152 if (!archIsDrained()) { 1153 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1154 return false; 1155 } 1156 1157 if (_status == Idle || _status == Running) { 1158 DPRINTF(Drain, 1159 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1160 drainManager->signalDrainDone(); 1161 drainManager = NULL; 1162 return true; 1163 } else { 1164 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1165 return false; 1166 } 1167} 1168 1169void 1170BaseKvmCPU::ioctlRun() 1171{ 1172 if (ioctl(KVM_RUN) == -1) { 1173 if (errno != EINTR) 1174 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1175 errno); 1176 } 1177} 1178 1179void 1180BaseKvmCPU::setupInstStop() 1181{ 1182 1183 if (comInstEventQueue[0]->empty()) { 1184 setupInstCounter(0); 1185 } else { 1186 const uint64_t next(comInstEventQueue[0]->nextTick()); 1187 1188 assert(next > ctrInsts); 1189 setupInstCounter(next - ctrInsts); 1190 } 1191} 1192 1193void 1194BaseKvmCPU::setupInstCounter(uint64_t period) 1195{ 1196 // No need to do anything if we aren't attaching for the first 1197 // time or the period isn't changing. 1198 if (period == activeInstPeriod && hwInstructions.attached()) 1199 return; 1200 1201 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1202 PERF_COUNT_HW_INSTRUCTIONS); 1203 1204 if (period) { 1205 // Setup a sampling counter if that has been requested. 1206 cfgInstructions.wakeupEvents(1) 1207 .samplePeriod(period); 1208 } 1209 1210 // We need to detach and re-attach the counter to reliably change 1211 // sampling settings. See PerfKvmCounter::period() for details. 1212 if (hwInstructions.attached()) 1213 hwInstructions.detach(); 1214 assert(hwCycles.attached()); 1215 hwInstructions.attach(cfgInstructions, 1216 0, // TID (0 => currentThread) 1217 hwCycles); 1218 1219 if (period) 1220 hwInstructions.enableSignals(KVM_INST_SIGNAL); 1221 1222 activeInstPeriod = period; 1223} 1224