base.cc revision 9882
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include <linux/kvm.h>
41#include <sys/ioctl.h>
42#include <sys/mman.h>
43#include <unistd.h>
44
45#include <cerrno>
46#include <csignal>
47#include <ostream>
48
49#include "arch/mmapped_ipr.hh"
50#include "arch/utility.hh"
51#include "cpu/kvm/base.hh"
52#include "debug/Checkpoint.hh"
53#include "debug/Drain.hh"
54#include "debug/Kvm.hh"
55#include "debug/KvmIO.hh"
56#include "debug/KvmRun.hh"
57#include "params/BaseKvmCPU.hh"
58#include "sim/process.hh"
59#include "sim/system.hh"
60
61#include <signal.h>
62
63/* Used by some KVM macros */
64#define PAGE_SIZE pageSize
65
66volatile bool timerOverflowed = false;
67
68static void
69onTimerOverflow(int signo, siginfo_t *si, void *data)
70{
71    timerOverflowed = true;
72}
73
74BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
75    : BaseCPU(params),
76      vm(*params->kvmVM),
77      _status(Idle),
78      dataPort(name() + ".dcache_port", this),
79      instPort(name() + ".icache_port", this),
80      threadContextDirty(true),
81      kvmStateDirty(false),
82      vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
83      _kvmRun(NULL), mmioRing(NULL),
84      pageSize(sysconf(_SC_PAGE_SIZE)),
85      tickEvent(*this),
86      perfControlledByTimer(params->usePerfOverflow),
87      hostFreq(params->hostFreq),
88      hostFactor(params->hostFactor),
89      drainManager(NULL),
90      ctrInsts(0)
91{
92    if (pageSize == -1)
93        panic("KVM: Failed to determine host page size (%i)\n",
94              errno);
95
96    thread = new SimpleThread(this, 0, params->system,
97                              params->itb, params->dtb, params->isa[0]);
98    thread->setStatus(ThreadContext::Halted);
99    tc = thread->getTC();
100    threadContexts.push_back(tc);
101
102    setupCounters();
103
104    if (params->usePerfOverflow)
105        runTimer.reset(new PerfKvmTimer(hwCycles,
106                                        KVM_TIMER_SIGNAL,
107                                        params->hostFactor,
108                                        params->hostFreq));
109    else
110        runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
111                                         params->hostFactor,
112                                         params->hostFreq));
113}
114
115BaseKvmCPU::~BaseKvmCPU()
116{
117    if (_kvmRun)
118        munmap(_kvmRun, vcpuMMapSize);
119    close(vcpuFD);
120}
121
122void
123BaseKvmCPU::init()
124{
125    BaseCPU::init();
126
127    if (numThreads != 1)
128        fatal("KVM: Multithreading not supported");
129
130    tc->initMemProxies(tc);
131
132    // initialize CPU, including PC
133    if (FullSystem && !switchedOut())
134        TheISA::initCPU(tc, tc->contextId());
135
136    mmio_req.setThreadContext(tc->contextId(), 0);
137}
138
139void
140BaseKvmCPU::startup()
141{
142    const BaseKvmCPUParams * const p(
143        dynamic_cast<const BaseKvmCPUParams *>(params()));
144
145    Kvm &kvm(vm.kvm);
146
147    BaseCPU::startup();
148
149    assert(vcpuFD == -1);
150
151    // Tell the VM that a CPU is about to start.
152    vm.cpuStartup();
153
154    // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
155    // not guaranteed that the parent KVM VM has initialized at that
156    // point. Initialize virtual CPUs here instead.
157    vcpuFD = vm.createVCPU(vcpuID);
158
159    // Setup signal handlers. This has to be done after the vCPU is
160    // created since it manipulates the vCPU signal mask.
161    setupSignalHandler();
162
163    // Map the KVM run structure */
164    vcpuMMapSize = kvm.getVCPUMMapSize();
165    _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
166                                     PROT_READ | PROT_WRITE, MAP_SHARED,
167                                     vcpuFD, 0);
168    if (_kvmRun == MAP_FAILED)
169        panic("KVM: Failed to map run data structure\n");
170
171    // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
172    // available. The offset into the KVM's communication page is
173    // provided by the coalesced MMIO capability.
174    int mmioOffset(kvm.capCoalescedMMIO());
175    if (!p->useCoalescedMMIO) {
176        inform("KVM: Coalesced MMIO disabled by config.\n");
177    } else if (mmioOffset) {
178        inform("KVM: Coalesced IO available\n");
179        mmioRing = (struct kvm_coalesced_mmio_ring *)(
180            (char *)_kvmRun + (mmioOffset * pageSize));
181    } else {
182        inform("KVM: Coalesced not supported by host OS\n");
183    }
184
185    thread->startup();
186}
187
188void
189BaseKvmCPU::regStats()
190{
191    using namespace Stats;
192
193    BaseCPU::regStats();
194
195    numInsts
196        .name(name() + ".committedInsts")
197        .desc("Number of instructions committed")
198        ;
199
200    numVMExits
201        .name(name() + ".numVMExits")
202        .desc("total number of KVM exits")
203        ;
204
205    numVMHalfEntries
206        .name(name() + ".numVMHalfEntries")
207        .desc("number of KVM entries to finalize pending operations")
208        ;
209
210    numExitSignal
211        .name(name() + ".numExitSignal")
212        .desc("exits due to signal delivery")
213        ;
214
215    numMMIO
216        .name(name() + ".numMMIO")
217        .desc("number of VM exits due to memory mapped IO")
218        ;
219
220    numCoalescedMMIO
221        .name(name() + ".numCoalescedMMIO")
222        .desc("number of coalesced memory mapped IO requests")
223        ;
224
225    numIO
226        .name(name() + ".numIO")
227        .desc("number of VM exits due to legacy IO")
228        ;
229
230    numHalt
231        .name(name() + ".numHalt")
232        .desc("number of VM exits due to wait for interrupt instructions")
233        ;
234
235    numInterrupts
236        .name(name() + ".numInterrupts")
237        .desc("number of interrupts delivered")
238        ;
239
240    numHypercalls
241        .name(name() + ".numHypercalls")
242        .desc("number of hypercalls")
243        ;
244}
245
246void
247BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
248{
249    if (DTRACE(Checkpoint)) {
250        DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
251        dump();
252    }
253
254    assert(tid == 0);
255    assert(_status == Idle);
256    thread->serialize(os);
257}
258
259void
260BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
261                              ThreadID tid)
262{
263    DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
264
265    assert(tid == 0);
266    assert(_status == Idle);
267    thread->unserialize(cp, section);
268    threadContextDirty = true;
269}
270
271unsigned int
272BaseKvmCPU::drain(DrainManager *dm)
273{
274    if (switchedOut())
275        return 0;
276
277    DPRINTF(Drain, "BaseKvmCPU::drain\n");
278    switch (_status) {
279      case Running:
280        // The base KVM code is normally ready when it is in the
281        // Running state, but the architecture specific code might be
282        // of a different opinion. This may happen when the CPU been
283        // notified of an event that hasn't been accepted by the vCPU
284        // yet.
285        if (!archIsDrained()) {
286            drainManager = dm;
287            return 1;
288        }
289
290        // The state of the CPU is consistent, so we don't need to do
291        // anything special to drain it. We simply de-schedule the
292        // tick event and enter the Idle state to prevent nasty things
293        // like MMIOs from happening.
294        if (tickEvent.scheduled())
295            deschedule(tickEvent);
296        _status = Idle;
297
298        /** FALLTHROUGH */
299      case Idle:
300        // Idle, no need to drain
301        assert(!tickEvent.scheduled());
302
303        // Sync the thread context here since we'll need it when we
304        // switch CPUs or checkpoint the CPU.
305        syncThreadContext();
306
307        return 0;
308
309      case RunningServiceCompletion:
310        // The CPU has just requested a service that was handled in
311        // the RunningService state, but the results have still not
312        // been reported to the CPU. Now, we /could/ probably just
313        // update the register state ourselves instead of letting KVM
314        // handle it, but that would be tricky. Instead, we enter KVM
315        // and let it do its stuff.
316        drainManager = dm;
317
318        DPRINTF(Drain, "KVM CPU is waiting for service completion, "
319                "requesting drain.\n");
320        return 1;
321
322      case RunningService:
323        // We need to drain since the CPU is waiting for service (e.g., MMIOs)
324        drainManager = dm;
325
326        DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
327        return 1;
328
329      default:
330        panic("KVM: Unhandled CPU state in drain()\n");
331        return 0;
332    }
333}
334
335void
336BaseKvmCPU::drainResume()
337{
338    assert(!tickEvent.scheduled());
339
340    // We might have been switched out. In that case, we don't need to
341    // do anything.
342    if (switchedOut())
343        return;
344
345    DPRINTF(Kvm, "drainResume\n");
346    verifyMemoryMode();
347
348    // The tick event is de-scheduled as a part of the draining
349    // process. Re-schedule it if the thread context is active.
350    if (tc->status() == ThreadContext::Active) {
351        schedule(tickEvent, nextCycle());
352        _status = Running;
353    } else {
354        _status = Idle;
355    }
356}
357
358void
359BaseKvmCPU::switchOut()
360{
361    DPRINTF(Kvm, "switchOut\n");
362
363    BaseCPU::switchOut();
364
365    // We should have drained prior to executing a switchOut, which
366    // means that the tick event shouldn't be scheduled and the CPU is
367    // idle.
368    assert(!tickEvent.scheduled());
369    assert(_status == Idle);
370}
371
372void
373BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
374{
375    DPRINTF(Kvm, "takeOverFrom\n");
376
377    BaseCPU::takeOverFrom(cpu);
378
379    // We should have drained prior to executing a switchOut, which
380    // means that the tick event shouldn't be scheduled and the CPU is
381    // idle.
382    assert(!tickEvent.scheduled());
383    assert(_status == Idle);
384    assert(threadContexts.size() == 1);
385
386    // Force an update of the KVM state here instead of flagging the
387    // TC as dirty. This is not ideal from a performance point of
388    // view, but it makes debugging easier as it allows meaningful KVM
389    // state to be dumped before and after a takeover.
390    updateKvmState();
391    threadContextDirty = false;
392}
393
394void
395BaseKvmCPU::verifyMemoryMode() const
396{
397    if (!(system->isAtomicMode() && system->bypassCaches())) {
398        fatal("The KVM-based CPUs requires the memory system to be in the "
399              "'atomic_noncaching' mode.\n");
400    }
401}
402
403void
404BaseKvmCPU::wakeup()
405{
406    DPRINTF(Kvm, "wakeup()\n");
407
408    if (thread->status() != ThreadContext::Suspended)
409        return;
410
411    thread->activate();
412}
413
414void
415BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
416{
417    DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
418
419    assert(thread_num == 0);
420    assert(thread);
421
422    assert(_status == Idle);
423    assert(!tickEvent.scheduled());
424
425    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
426
427    schedule(tickEvent, clockEdge(delay));
428    _status = Running;
429}
430
431
432void
433BaseKvmCPU::suspendContext(ThreadID thread_num)
434{
435    DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
436
437    assert(thread_num == 0);
438    assert(thread);
439
440    if (_status == Idle)
441        return;
442
443    assert(_status == Running);
444
445    // The tick event may no be scheduled if the quest has requested
446    // the monitor to wait for interrupts. The normal CPU models can
447    // get their tick events descheduled by quiesce instructions, but
448    // that can't happen here.
449    if (tickEvent.scheduled())
450        deschedule(tickEvent);
451
452    _status = Idle;
453}
454
455void
456BaseKvmCPU::deallocateContext(ThreadID thread_num)
457{
458    // for now, these are equivalent
459    suspendContext(thread_num);
460}
461
462void
463BaseKvmCPU::haltContext(ThreadID thread_num)
464{
465    // for now, these are equivalent
466    suspendContext(thread_num);
467}
468
469ThreadContext *
470BaseKvmCPU::getContext(int tn)
471{
472    assert(tn == 0);
473    syncThreadContext();
474    return tc;
475}
476
477
478Counter
479BaseKvmCPU::totalInsts() const
480{
481    return ctrInsts;
482}
483
484Counter
485BaseKvmCPU::totalOps() const
486{
487    hack_once("Pretending totalOps is equivalent to totalInsts()\n");
488    return ctrInsts;
489}
490
491void
492BaseKvmCPU::dump()
493{
494    inform("State dumping not implemented.");
495}
496
497void
498BaseKvmCPU::tick()
499{
500    Tick delay(0);
501    assert(_status != Idle);
502
503    switch (_status) {
504      case RunningService:
505        // handleKvmExit() will determine the next state of the CPU
506        delay = handleKvmExit();
507
508        if (tryDrain())
509            _status = Idle;
510        break;
511
512      case RunningServiceCompletion:
513      case Running: {
514          Tick ticksToExecute(mainEventQueue.nextTick() - curTick());
515
516          // We might need to update the KVM state.
517          syncKvmState();
518
519          DPRINTF(KvmRun, "Entering KVM...\n");
520          if (drainManager) {
521              // Force an immediate exit from KVM after completing
522              // pending operations. The architecture-specific code
523              // takes care to run until it is in a state where it can
524              // safely be drained.
525              delay = kvmRunDrain();
526          } else {
527              delay = kvmRun(ticksToExecute);
528          }
529
530          // Entering into KVM implies that we'll have to reload the thread
531          // context from KVM if we want to access it. Flag the KVM state as
532          // dirty with respect to the cached thread context.
533          kvmStateDirty = true;
534
535          // Enter into the RunningService state unless the
536          // simulation was stopped by a timer.
537          if (_kvmRun->exit_reason !=  KVM_EXIT_INTR) {
538              _status = RunningService;
539          } else {
540              ++numExitSignal;
541              _status = Running;
542          }
543
544          if (tryDrain())
545              _status = Idle;
546      } break;
547
548      default:
549        panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
550              _status);
551    }
552
553    // Schedule a new tick if we are still running
554    if (_status != Idle)
555        schedule(tickEvent, clockEdge(ticksToCycles(delay)));
556}
557
558Tick
559BaseKvmCPU::kvmRunDrain()
560{
561    // By default, the only thing we need to drain is a pending IO
562    // operation which assumes that we are in the
563    // RunningServiceCompletion state.
564    assert(_status == RunningServiceCompletion);
565
566    // Deliver the data from the pending IO operation and immediately
567    // exit.
568    return kvmRun(0);
569}
570
571uint64_t
572BaseKvmCPU::getHostCycles() const
573{
574    return hwCycles.read();
575}
576
577Tick
578BaseKvmCPU::kvmRun(Tick ticks)
579{
580    Tick ticksExecuted;
581    DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
582    timerOverflowed = false;
583
584    if (ticks == 0) {
585        // Settings ticks == 0 is a special case which causes an entry
586        // into KVM that finishes pending operations (e.g., IO) and
587        // then immediately exits.
588        DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
589
590        ++numVMHalfEntries;
591
592        // This signal is always masked while we are executing in gem5
593        // and gets unmasked temporarily as soon as we enter into
594        // KVM. See setSignalMask() and setupSignalHandler().
595        raise(KVM_TIMER_SIGNAL);
596
597        // Enter into KVM. KVM will check for signals after completing
598        // pending operations (IO). Since the KVM_TIMER_SIGNAL is
599        // pending, this forces an immediate exit into gem5 again. We
600        // don't bother to setup timers since this shouldn't actually
601        // execute any code in the guest.
602        ioctlRun();
603
604        // We always execute at least one cycle to prevent the
605        // BaseKvmCPU::tick() to be rescheduled on the same tick
606        // twice.
607        ticksExecuted = clockPeriod();
608    } else {
609        if (ticks < runTimer->resolution()) {
610            DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
611                    ticks, runTimer->resolution());
612            ticks = runTimer->resolution();
613        }
614
615        // Get hardware statistics after synchronizing contexts. The KVM
616        // state update might affect guest cycle counters.
617        uint64_t baseCycles(getHostCycles());
618        uint64_t baseInstrs(hwInstructions.read());
619
620        // Arm the run timer and start the cycle timer if it isn't
621        // controlled by the overflow timer. Starting/stopping the cycle
622        // timer automatically starts the other perf timers as they are in
623        // the same counter group.
624        runTimer->arm(ticks);
625        if (!perfControlledByTimer)
626            hwCycles.start();
627
628        ioctlRun();
629
630        runTimer->disarm();
631        if (!perfControlledByTimer)
632            hwCycles.stop();
633
634        // The timer signal may have been delivered after we exited
635        // from KVM. It will be pending in that case since it is
636        // masked when we aren't executing in KVM. Discard it to make
637        // sure we don't deliver it immediately next time we try to
638        // enter into KVM.
639        discardPendingSignal(KVM_TIMER_SIGNAL);
640
641        const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
642        const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
643        const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
644        ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
645
646        if (ticksExecuted < ticks &&
647            timerOverflowed &&
648            _kvmRun->exit_reason == KVM_EXIT_INTR) {
649            // TODO: We should probably do something clever here...
650            warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
651                 ticks, ticksExecuted);
652        }
653
654        /* Update statistics */
655        numCycles += simCyclesExecuted;;
656        numInsts += instsExecuted;
657        ctrInsts += instsExecuted;
658        system->totalNumInsts += instsExecuted;
659
660        DPRINTF(KvmRun,
661                "KVM: Executed %i instructions in %i cycles "
662                "(%i ticks, sim cycles: %i).\n",
663                instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
664    }
665
666    ++numVMExits;
667
668    return ticksExecuted + flushCoalescedMMIO();
669}
670
671void
672BaseKvmCPU::kvmNonMaskableInterrupt()
673{
674    ++numInterrupts;
675    if (ioctl(KVM_NMI) == -1)
676        panic("KVM: Failed to deliver NMI to virtual CPU\n");
677}
678
679void
680BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
681{
682    ++numInterrupts;
683    if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
684        panic("KVM: Failed to deliver interrupt to virtual CPU\n");
685}
686
687void
688BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
689{
690    if (ioctl(KVM_GET_REGS, &regs) == -1)
691        panic("KVM: Failed to get guest registers\n");
692}
693
694void
695BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
696{
697    if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
698        panic("KVM: Failed to set guest registers\n");
699}
700
701void
702BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
703{
704    if (ioctl(KVM_GET_SREGS, &regs) == -1)
705        panic("KVM: Failed to get guest special registers\n");
706}
707
708void
709BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
710{
711    if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
712        panic("KVM: Failed to set guest special registers\n");
713}
714
715void
716BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
717{
718    if (ioctl(KVM_GET_FPU, &state) == -1)
719        panic("KVM: Failed to get guest FPU state\n");
720}
721
722void
723BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
724{
725    if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
726        panic("KVM: Failed to set guest FPU state\n");
727}
728
729
730void
731BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
732{
733#ifdef KVM_SET_ONE_REG
734    struct kvm_one_reg reg;
735    reg.id = id;
736    reg.addr = (uint64_t)addr;
737
738    if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
739        panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
740              id, errno);
741    }
742#else
743    panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
744#endif
745}
746
747void
748BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
749{
750#ifdef KVM_GET_ONE_REG
751    struct kvm_one_reg reg;
752    reg.id = id;
753    reg.addr = (uint64_t)addr;
754
755    if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
756        panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
757              id, errno);
758    }
759#else
760    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
761#endif
762}
763
764std::string
765BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
766{
767#ifdef KVM_GET_ONE_REG
768    std::ostringstream ss;
769
770    ss.setf(std::ios::hex, std::ios::basefield);
771    ss.setf(std::ios::showbase);
772#define HANDLE_INTTYPE(len)                      \
773    case KVM_REG_SIZE_U ## len: {                \
774        uint ## len ## _t value;                 \
775        getOneReg(id, &value);                   \
776        ss << value;                             \
777    }  break
778
779#define HANDLE_ARRAY(len)                       \
780    case KVM_REG_SIZE_U ## len: {               \
781        uint8_t value[len / 8];                 \
782        getOneReg(id, value);                   \
783        ss << "[" << value[0];                  \
784        for (int i = 1; i < len  / 8; ++i)      \
785            ss << ", " << value[i];             \
786        ss << "]";                              \
787      } break
788
789    switch (id & KVM_REG_SIZE_MASK) {
790        HANDLE_INTTYPE(8);
791        HANDLE_INTTYPE(16);
792        HANDLE_INTTYPE(32);
793        HANDLE_INTTYPE(64);
794        HANDLE_ARRAY(128);
795        HANDLE_ARRAY(256);
796        HANDLE_ARRAY(512);
797        HANDLE_ARRAY(1024);
798      default:
799        ss << "??";
800    }
801
802#undef HANDLE_INTTYPE
803#undef HANDLE_ARRAY
804
805    return ss.str();
806#else
807    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
808#endif
809}
810
811void
812BaseKvmCPU::syncThreadContext()
813{
814    if (!kvmStateDirty)
815        return;
816
817    assert(!threadContextDirty);
818
819    updateThreadContext();
820    kvmStateDirty = false;
821}
822
823void
824BaseKvmCPU::syncKvmState()
825{
826    if (!threadContextDirty)
827        return;
828
829    assert(!kvmStateDirty);
830
831    updateKvmState();
832    threadContextDirty = false;
833}
834
835Tick
836BaseKvmCPU::handleKvmExit()
837{
838    DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
839    assert(_status == RunningService);
840
841    // Switch into the running state by default. Individual handlers
842    // can override this.
843    _status = Running;
844    switch (_kvmRun->exit_reason) {
845      case KVM_EXIT_UNKNOWN:
846        return handleKvmExitUnknown();
847
848      case KVM_EXIT_EXCEPTION:
849        return handleKvmExitException();
850
851      case KVM_EXIT_IO:
852        _status = RunningServiceCompletion;
853        ++numIO;
854        return handleKvmExitIO();
855
856      case KVM_EXIT_HYPERCALL:
857        ++numHypercalls;
858        return handleKvmExitHypercall();
859
860      case KVM_EXIT_HLT:
861        /* The guest has halted and is waiting for interrupts */
862        DPRINTF(Kvm, "handleKvmExitHalt\n");
863        ++numHalt;
864
865        // Suspend the thread until the next interrupt arrives
866        thread->suspend();
867
868        // This is actually ignored since the thread is suspended.
869        return 0;
870
871      case KVM_EXIT_MMIO:
872        _status = RunningServiceCompletion;
873        /* Service memory mapped IO requests */
874        DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
875                _kvmRun->mmio.is_write,
876                _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
877
878        ++numMMIO;
879        return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
880                            _kvmRun->mmio.len, _kvmRun->mmio.is_write);
881
882      case KVM_EXIT_IRQ_WINDOW_OPEN:
883        return handleKvmExitIRQWindowOpen();
884
885      case KVM_EXIT_FAIL_ENTRY:
886        return handleKvmExitFailEntry();
887
888      case KVM_EXIT_INTR:
889        /* KVM was interrupted by a signal, restart it in the next
890         * tick. */
891        return 0;
892
893      case KVM_EXIT_INTERNAL_ERROR:
894        panic("KVM: Internal error (suberror: %u)\n",
895              _kvmRun->internal.suberror);
896
897      default:
898        dump();
899        panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
900    }
901}
902
903Tick
904BaseKvmCPU::handleKvmExitIO()
905{
906    panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
907          _kvmRun->io.direction, _kvmRun->io.size,
908          _kvmRun->io.port, _kvmRun->io.count);
909}
910
911Tick
912BaseKvmCPU::handleKvmExitHypercall()
913{
914    panic("KVM: Unhandled hypercall\n");
915}
916
917Tick
918BaseKvmCPU::handleKvmExitIRQWindowOpen()
919{
920    warn("KVM: Unhandled IRQ window.\n");
921    return 0;
922}
923
924
925Tick
926BaseKvmCPU::handleKvmExitUnknown()
927{
928    dump();
929    panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
930          _kvmRun->hw.hardware_exit_reason);
931}
932
933Tick
934BaseKvmCPU::handleKvmExitException()
935{
936    dump();
937    panic("KVM: Got exception when starting vCPU "
938          "(exception: %u, error_code: %u)\n",
939          _kvmRun->ex.exception, _kvmRun->ex.error_code);
940}
941
942Tick
943BaseKvmCPU::handleKvmExitFailEntry()
944{
945    dump();
946    panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
947          _kvmRun->fail_entry.hardware_entry_failure_reason);
948}
949
950Tick
951BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
952{
953    ThreadContext *tc(thread->getTC());
954    syncThreadContext();
955
956    mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
957    // Some architectures do need to massage physical addresses a bit
958    // before they are inserted into the memory system. This enables
959    // APIC accesses on x86 and m5ops where supported through a MMIO
960    // interface.
961    BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
962    Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
963    if (fault != NoFault)
964        warn("Finalization of MMIO address failed: %s\n", fault->name());
965
966
967    const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
968    Packet pkt(&mmio_req, cmd);
969    pkt.dataStatic(data);
970
971    if (mmio_req.isMmappedIpr()) {
972        const Cycles ipr_delay(write ?
973                             TheISA::handleIprWrite(tc, &pkt) :
974                             TheISA::handleIprRead(tc, &pkt));
975        return clockEdge(ipr_delay);
976    } else {
977        return dataPort.sendAtomic(&pkt);
978    }
979}
980
981void
982BaseKvmCPU::setSignalMask(const sigset_t *mask)
983{
984    std::unique_ptr<struct kvm_signal_mask> kvm_mask;
985
986    if (mask) {
987        kvm_mask.reset((struct kvm_signal_mask *)operator new(
988                           sizeof(struct kvm_signal_mask) + sizeof(*mask)));
989        // The kernel and the user-space headers have different ideas
990        // about the size of sigset_t. This seems like a massive hack,
991        // but is actually what qemu does.
992        assert(sizeof(*mask) >= 8);
993        kvm_mask->len = 8;
994        memcpy(kvm_mask->sigset, mask, kvm_mask->len);
995    }
996
997    if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
998        panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
999              errno);
1000}
1001
1002int
1003BaseKvmCPU::ioctl(int request, long p1) const
1004{
1005    if (vcpuFD == -1)
1006        panic("KVM: CPU ioctl called before initialization\n");
1007
1008    return ::ioctl(vcpuFD, request, p1);
1009}
1010
1011Tick
1012BaseKvmCPU::flushCoalescedMMIO()
1013{
1014    if (!mmioRing)
1015        return 0;
1016
1017    DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1018
1019    // TODO: We might need to do synchronization when we start to
1020    // support multiple CPUs
1021    Tick ticks(0);
1022    while (mmioRing->first != mmioRing->last) {
1023        struct kvm_coalesced_mmio &ent(
1024            mmioRing->coalesced_mmio[mmioRing->first]);
1025
1026        DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1027                ent.phys_addr, ent.len);
1028
1029        ++numCoalescedMMIO;
1030        ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1031
1032        mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1033    }
1034
1035    return ticks;
1036}
1037
1038void
1039BaseKvmCPU::setupSignalHandler()
1040{
1041    struct sigaction sa;
1042
1043    memset(&sa, 0, sizeof(sa));
1044    sa.sa_sigaction = onTimerOverflow;
1045    sa.sa_flags = SA_SIGINFO | SA_RESTART;
1046    if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1047        panic("KVM: Failed to setup vCPU signal handler\n");
1048
1049    sigset_t sigset;
1050    if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1)
1051        panic("KVM: Failed get signal mask\n");
1052
1053    // Request KVM to setup the same signal mask as we're currently
1054    // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL
1055    // to cause immediate exits from KVM after servicing IO
1056    // requests. See kvmRun().
1057    setSignalMask(&sigset);
1058
1059    // Mask the KVM_TIMER_SIGNAL so it isn't delivered unless we're
1060    // actually executing inside KVM.
1061    sigaddset(&sigset, KVM_TIMER_SIGNAL);
1062    if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1)
1063        panic("KVM: Failed mask the KVM timer signal\n");
1064}
1065
1066bool
1067BaseKvmCPU::discardPendingSignal(int signum) const
1068{
1069    int discardedSignal;
1070
1071    // Setting the timeout to zero causes sigtimedwait to return
1072    // immediately.
1073    struct timespec timeout;
1074    timeout.tv_sec = 0;
1075    timeout.tv_nsec = 0;
1076
1077    sigset_t sigset;
1078    sigemptyset(&sigset);
1079    sigaddset(&sigset, signum);
1080
1081    do {
1082        discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1083    } while (discardedSignal == -1 && errno == EINTR);
1084
1085    if (discardedSignal == signum)
1086        return true;
1087    else if (discardedSignal == -1 && errno == EAGAIN)
1088        return false;
1089    else
1090        panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1091              discardedSignal, errno);
1092}
1093
1094void
1095BaseKvmCPU::setupCounters()
1096{
1097    DPRINTF(Kvm, "Attaching cycle counter...\n");
1098    PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1099                                PERF_COUNT_HW_CPU_CYCLES);
1100    cfgCycles.disabled(true)
1101        .pinned(true);
1102
1103    if (perfControlledByTimer) {
1104        // We need to configure the cycles counter to send overflows
1105        // since we are going to use it to trigger timer signals that
1106        // trap back into m5 from KVM. In practice, this means that we
1107        // need to set some non-zero sample period that gets
1108        // overridden when the timer is armed.
1109        cfgCycles.wakeupEvents(1)
1110            .samplePeriod(42);
1111    }
1112
1113    hwCycles.attach(cfgCycles,
1114                    0); // TID (0 => currentThread)
1115
1116    DPRINTF(Kvm, "Attaching instruction counter...\n");
1117    PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1118                                      PERF_COUNT_HW_INSTRUCTIONS);
1119    hwInstructions.attach(cfgInstructions,
1120                          0, // TID (0 => currentThread)
1121                          hwCycles);
1122}
1123
1124bool
1125BaseKvmCPU::tryDrain()
1126{
1127    if (!drainManager)
1128        return false;
1129
1130    if (!archIsDrained()) {
1131        DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1132        return false;
1133    }
1134
1135    if (_status == Idle || _status == Running) {
1136        DPRINTF(Drain,
1137                "tryDrain: CPU transitioned into the Idle state, drain done\n");
1138        drainManager->signalDrainDone();
1139        drainManager = NULL;
1140        return true;
1141    } else {
1142        DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1143        return false;
1144    }
1145}
1146
1147void
1148BaseKvmCPU::ioctlRun()
1149{
1150    if (ioctl(KVM_RUN) == -1) {
1151        if (errno != EINTR)
1152            panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1153                  errno);
1154    }
1155}
1156