base.cc revision 9882
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66volatile bool timerOverflowed = false; 67 68static void 69onTimerOverflow(int signo, siginfo_t *si, void *data) 70{ 71 timerOverflowed = true; 72} 73 74BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 75 : BaseCPU(params), 76 vm(*params->kvmVM), 77 _status(Idle), 78 dataPort(name() + ".dcache_port", this), 79 instPort(name() + ".icache_port", this), 80 threadContextDirty(true), 81 kvmStateDirty(false), 82 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 83 _kvmRun(NULL), mmioRing(NULL), 84 pageSize(sysconf(_SC_PAGE_SIZE)), 85 tickEvent(*this), 86 perfControlledByTimer(params->usePerfOverflow), 87 hostFreq(params->hostFreq), 88 hostFactor(params->hostFactor), 89 drainManager(NULL), 90 ctrInsts(0) 91{ 92 if (pageSize == -1) 93 panic("KVM: Failed to determine host page size (%i)\n", 94 errno); 95 96 thread = new SimpleThread(this, 0, params->system, 97 params->itb, params->dtb, params->isa[0]); 98 thread->setStatus(ThreadContext::Halted); 99 tc = thread->getTC(); 100 threadContexts.push_back(tc); 101 102 setupCounters(); 103 104 if (params->usePerfOverflow) 105 runTimer.reset(new PerfKvmTimer(hwCycles, 106 KVM_TIMER_SIGNAL, 107 params->hostFactor, 108 params->hostFreq)); 109 else 110 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC, 111 params->hostFactor, 112 params->hostFreq)); 113} 114 115BaseKvmCPU::~BaseKvmCPU() 116{ 117 if (_kvmRun) 118 munmap(_kvmRun, vcpuMMapSize); 119 close(vcpuFD); 120} 121 122void 123BaseKvmCPU::init() 124{ 125 BaseCPU::init(); 126 127 if (numThreads != 1) 128 fatal("KVM: Multithreading not supported"); 129 130 tc->initMemProxies(tc); 131 132 // initialize CPU, including PC 133 if (FullSystem && !switchedOut()) 134 TheISA::initCPU(tc, tc->contextId()); 135 136 mmio_req.setThreadContext(tc->contextId(), 0); 137} 138 139void 140BaseKvmCPU::startup() 141{ 142 const BaseKvmCPUParams * const p( 143 dynamic_cast<const BaseKvmCPUParams *>(params())); 144 145 Kvm &kvm(vm.kvm); 146 147 BaseCPU::startup(); 148 149 assert(vcpuFD == -1); 150 151 // Tell the VM that a CPU is about to start. 152 vm.cpuStartup(); 153 154 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 155 // not guaranteed that the parent KVM VM has initialized at that 156 // point. Initialize virtual CPUs here instead. 157 vcpuFD = vm.createVCPU(vcpuID); 158 159 // Setup signal handlers. This has to be done after the vCPU is 160 // created since it manipulates the vCPU signal mask. 161 setupSignalHandler(); 162 163 // Map the KVM run structure */ 164 vcpuMMapSize = kvm.getVCPUMMapSize(); 165 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 166 PROT_READ | PROT_WRITE, MAP_SHARED, 167 vcpuFD, 0); 168 if (_kvmRun == MAP_FAILED) 169 panic("KVM: Failed to map run data structure\n"); 170 171 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 172 // available. The offset into the KVM's communication page is 173 // provided by the coalesced MMIO capability. 174 int mmioOffset(kvm.capCoalescedMMIO()); 175 if (!p->useCoalescedMMIO) { 176 inform("KVM: Coalesced MMIO disabled by config.\n"); 177 } else if (mmioOffset) { 178 inform("KVM: Coalesced IO available\n"); 179 mmioRing = (struct kvm_coalesced_mmio_ring *)( 180 (char *)_kvmRun + (mmioOffset * pageSize)); 181 } else { 182 inform("KVM: Coalesced not supported by host OS\n"); 183 } 184 185 thread->startup(); 186} 187 188void 189BaseKvmCPU::regStats() 190{ 191 using namespace Stats; 192 193 BaseCPU::regStats(); 194 195 numInsts 196 .name(name() + ".committedInsts") 197 .desc("Number of instructions committed") 198 ; 199 200 numVMExits 201 .name(name() + ".numVMExits") 202 .desc("total number of KVM exits") 203 ; 204 205 numVMHalfEntries 206 .name(name() + ".numVMHalfEntries") 207 .desc("number of KVM entries to finalize pending operations") 208 ; 209 210 numExitSignal 211 .name(name() + ".numExitSignal") 212 .desc("exits due to signal delivery") 213 ; 214 215 numMMIO 216 .name(name() + ".numMMIO") 217 .desc("number of VM exits due to memory mapped IO") 218 ; 219 220 numCoalescedMMIO 221 .name(name() + ".numCoalescedMMIO") 222 .desc("number of coalesced memory mapped IO requests") 223 ; 224 225 numIO 226 .name(name() + ".numIO") 227 .desc("number of VM exits due to legacy IO") 228 ; 229 230 numHalt 231 .name(name() + ".numHalt") 232 .desc("number of VM exits due to wait for interrupt instructions") 233 ; 234 235 numInterrupts 236 .name(name() + ".numInterrupts") 237 .desc("number of interrupts delivered") 238 ; 239 240 numHypercalls 241 .name(name() + ".numHypercalls") 242 .desc("number of hypercalls") 243 ; 244} 245 246void 247BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid) 248{ 249 if (DTRACE(Checkpoint)) { 250 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 251 dump(); 252 } 253 254 assert(tid == 0); 255 assert(_status == Idle); 256 thread->serialize(os); 257} 258 259void 260BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string §ion, 261 ThreadID tid) 262{ 263 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 264 265 assert(tid == 0); 266 assert(_status == Idle); 267 thread->unserialize(cp, section); 268 threadContextDirty = true; 269} 270 271unsigned int 272BaseKvmCPU::drain(DrainManager *dm) 273{ 274 if (switchedOut()) 275 return 0; 276 277 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 278 switch (_status) { 279 case Running: 280 // The base KVM code is normally ready when it is in the 281 // Running state, but the architecture specific code might be 282 // of a different opinion. This may happen when the CPU been 283 // notified of an event that hasn't been accepted by the vCPU 284 // yet. 285 if (!archIsDrained()) { 286 drainManager = dm; 287 return 1; 288 } 289 290 // The state of the CPU is consistent, so we don't need to do 291 // anything special to drain it. We simply de-schedule the 292 // tick event and enter the Idle state to prevent nasty things 293 // like MMIOs from happening. 294 if (tickEvent.scheduled()) 295 deschedule(tickEvent); 296 _status = Idle; 297 298 /** FALLTHROUGH */ 299 case Idle: 300 // Idle, no need to drain 301 assert(!tickEvent.scheduled()); 302 303 // Sync the thread context here since we'll need it when we 304 // switch CPUs or checkpoint the CPU. 305 syncThreadContext(); 306 307 return 0; 308 309 case RunningServiceCompletion: 310 // The CPU has just requested a service that was handled in 311 // the RunningService state, but the results have still not 312 // been reported to the CPU. Now, we /could/ probably just 313 // update the register state ourselves instead of letting KVM 314 // handle it, but that would be tricky. Instead, we enter KVM 315 // and let it do its stuff. 316 drainManager = dm; 317 318 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 319 "requesting drain.\n"); 320 return 1; 321 322 case RunningService: 323 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 324 drainManager = dm; 325 326 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 327 return 1; 328 329 default: 330 panic("KVM: Unhandled CPU state in drain()\n"); 331 return 0; 332 } 333} 334 335void 336BaseKvmCPU::drainResume() 337{ 338 assert(!tickEvent.scheduled()); 339 340 // We might have been switched out. In that case, we don't need to 341 // do anything. 342 if (switchedOut()) 343 return; 344 345 DPRINTF(Kvm, "drainResume\n"); 346 verifyMemoryMode(); 347 348 // The tick event is de-scheduled as a part of the draining 349 // process. Re-schedule it if the thread context is active. 350 if (tc->status() == ThreadContext::Active) { 351 schedule(tickEvent, nextCycle()); 352 _status = Running; 353 } else { 354 _status = Idle; 355 } 356} 357 358void 359BaseKvmCPU::switchOut() 360{ 361 DPRINTF(Kvm, "switchOut\n"); 362 363 BaseCPU::switchOut(); 364 365 // We should have drained prior to executing a switchOut, which 366 // means that the tick event shouldn't be scheduled and the CPU is 367 // idle. 368 assert(!tickEvent.scheduled()); 369 assert(_status == Idle); 370} 371 372void 373BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 374{ 375 DPRINTF(Kvm, "takeOverFrom\n"); 376 377 BaseCPU::takeOverFrom(cpu); 378 379 // We should have drained prior to executing a switchOut, which 380 // means that the tick event shouldn't be scheduled and the CPU is 381 // idle. 382 assert(!tickEvent.scheduled()); 383 assert(_status == Idle); 384 assert(threadContexts.size() == 1); 385 386 // Force an update of the KVM state here instead of flagging the 387 // TC as dirty. This is not ideal from a performance point of 388 // view, but it makes debugging easier as it allows meaningful KVM 389 // state to be dumped before and after a takeover. 390 updateKvmState(); 391 threadContextDirty = false; 392} 393 394void 395BaseKvmCPU::verifyMemoryMode() const 396{ 397 if (!(system->isAtomicMode() && system->bypassCaches())) { 398 fatal("The KVM-based CPUs requires the memory system to be in the " 399 "'atomic_noncaching' mode.\n"); 400 } 401} 402 403void 404BaseKvmCPU::wakeup() 405{ 406 DPRINTF(Kvm, "wakeup()\n"); 407 408 if (thread->status() != ThreadContext::Suspended) 409 return; 410 411 thread->activate(); 412} 413 414void 415BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay) 416{ 417 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay); 418 419 assert(thread_num == 0); 420 assert(thread); 421 422 assert(_status == Idle); 423 assert(!tickEvent.scheduled()); 424 425 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 426 427 schedule(tickEvent, clockEdge(delay)); 428 _status = Running; 429} 430 431 432void 433BaseKvmCPU::suspendContext(ThreadID thread_num) 434{ 435 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 436 437 assert(thread_num == 0); 438 assert(thread); 439 440 if (_status == Idle) 441 return; 442 443 assert(_status == Running); 444 445 // The tick event may no be scheduled if the quest has requested 446 // the monitor to wait for interrupts. The normal CPU models can 447 // get their tick events descheduled by quiesce instructions, but 448 // that can't happen here. 449 if (tickEvent.scheduled()) 450 deschedule(tickEvent); 451 452 _status = Idle; 453} 454 455void 456BaseKvmCPU::deallocateContext(ThreadID thread_num) 457{ 458 // for now, these are equivalent 459 suspendContext(thread_num); 460} 461 462void 463BaseKvmCPU::haltContext(ThreadID thread_num) 464{ 465 // for now, these are equivalent 466 suspendContext(thread_num); 467} 468 469ThreadContext * 470BaseKvmCPU::getContext(int tn) 471{ 472 assert(tn == 0); 473 syncThreadContext(); 474 return tc; 475} 476 477 478Counter 479BaseKvmCPU::totalInsts() const 480{ 481 return ctrInsts; 482} 483 484Counter 485BaseKvmCPU::totalOps() const 486{ 487 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 488 return ctrInsts; 489} 490 491void 492BaseKvmCPU::dump() 493{ 494 inform("State dumping not implemented."); 495} 496 497void 498BaseKvmCPU::tick() 499{ 500 Tick delay(0); 501 assert(_status != Idle); 502 503 switch (_status) { 504 case RunningService: 505 // handleKvmExit() will determine the next state of the CPU 506 delay = handleKvmExit(); 507 508 if (tryDrain()) 509 _status = Idle; 510 break; 511 512 case RunningServiceCompletion: 513 case Running: { 514 Tick ticksToExecute(mainEventQueue.nextTick() - curTick()); 515 516 // We might need to update the KVM state. 517 syncKvmState(); 518 519 DPRINTF(KvmRun, "Entering KVM...\n"); 520 if (drainManager) { 521 // Force an immediate exit from KVM after completing 522 // pending operations. The architecture-specific code 523 // takes care to run until it is in a state where it can 524 // safely be drained. 525 delay = kvmRunDrain(); 526 } else { 527 delay = kvmRun(ticksToExecute); 528 } 529 530 // Entering into KVM implies that we'll have to reload the thread 531 // context from KVM if we want to access it. Flag the KVM state as 532 // dirty with respect to the cached thread context. 533 kvmStateDirty = true; 534 535 // Enter into the RunningService state unless the 536 // simulation was stopped by a timer. 537 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 538 _status = RunningService; 539 } else { 540 ++numExitSignal; 541 _status = Running; 542 } 543 544 if (tryDrain()) 545 _status = Idle; 546 } break; 547 548 default: 549 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 550 _status); 551 } 552 553 // Schedule a new tick if we are still running 554 if (_status != Idle) 555 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 556} 557 558Tick 559BaseKvmCPU::kvmRunDrain() 560{ 561 // By default, the only thing we need to drain is a pending IO 562 // operation which assumes that we are in the 563 // RunningServiceCompletion state. 564 assert(_status == RunningServiceCompletion); 565 566 // Deliver the data from the pending IO operation and immediately 567 // exit. 568 return kvmRun(0); 569} 570 571uint64_t 572BaseKvmCPU::getHostCycles() const 573{ 574 return hwCycles.read(); 575} 576 577Tick 578BaseKvmCPU::kvmRun(Tick ticks) 579{ 580 Tick ticksExecuted; 581 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 582 timerOverflowed = false; 583 584 if (ticks == 0) { 585 // Settings ticks == 0 is a special case which causes an entry 586 // into KVM that finishes pending operations (e.g., IO) and 587 // then immediately exits. 588 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 589 590 ++numVMHalfEntries; 591 592 // This signal is always masked while we are executing in gem5 593 // and gets unmasked temporarily as soon as we enter into 594 // KVM. See setSignalMask() and setupSignalHandler(). 595 raise(KVM_TIMER_SIGNAL); 596 597 // Enter into KVM. KVM will check for signals after completing 598 // pending operations (IO). Since the KVM_TIMER_SIGNAL is 599 // pending, this forces an immediate exit into gem5 again. We 600 // don't bother to setup timers since this shouldn't actually 601 // execute any code in the guest. 602 ioctlRun(); 603 604 // We always execute at least one cycle to prevent the 605 // BaseKvmCPU::tick() to be rescheduled on the same tick 606 // twice. 607 ticksExecuted = clockPeriod(); 608 } else { 609 if (ticks < runTimer->resolution()) { 610 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 611 ticks, runTimer->resolution()); 612 ticks = runTimer->resolution(); 613 } 614 615 // Get hardware statistics after synchronizing contexts. The KVM 616 // state update might affect guest cycle counters. 617 uint64_t baseCycles(getHostCycles()); 618 uint64_t baseInstrs(hwInstructions.read()); 619 620 // Arm the run timer and start the cycle timer if it isn't 621 // controlled by the overflow timer. Starting/stopping the cycle 622 // timer automatically starts the other perf timers as they are in 623 // the same counter group. 624 runTimer->arm(ticks); 625 if (!perfControlledByTimer) 626 hwCycles.start(); 627 628 ioctlRun(); 629 630 runTimer->disarm(); 631 if (!perfControlledByTimer) 632 hwCycles.stop(); 633 634 // The timer signal may have been delivered after we exited 635 // from KVM. It will be pending in that case since it is 636 // masked when we aren't executing in KVM. Discard it to make 637 // sure we don't deliver it immediately next time we try to 638 // enter into KVM. 639 discardPendingSignal(KVM_TIMER_SIGNAL); 640 641 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 642 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 643 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 644 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 645 646 if (ticksExecuted < ticks && 647 timerOverflowed && 648 _kvmRun->exit_reason == KVM_EXIT_INTR) { 649 // TODO: We should probably do something clever here... 650 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n", 651 ticks, ticksExecuted); 652 } 653 654 /* Update statistics */ 655 numCycles += simCyclesExecuted;; 656 numInsts += instsExecuted; 657 ctrInsts += instsExecuted; 658 system->totalNumInsts += instsExecuted; 659 660 DPRINTF(KvmRun, 661 "KVM: Executed %i instructions in %i cycles " 662 "(%i ticks, sim cycles: %i).\n", 663 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 664 } 665 666 ++numVMExits; 667 668 return ticksExecuted + flushCoalescedMMIO(); 669} 670 671void 672BaseKvmCPU::kvmNonMaskableInterrupt() 673{ 674 ++numInterrupts; 675 if (ioctl(KVM_NMI) == -1) 676 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 677} 678 679void 680BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 681{ 682 ++numInterrupts; 683 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 684 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 685} 686 687void 688BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 689{ 690 if (ioctl(KVM_GET_REGS, ®s) == -1) 691 panic("KVM: Failed to get guest registers\n"); 692} 693 694void 695BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 696{ 697 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 698 panic("KVM: Failed to set guest registers\n"); 699} 700 701void 702BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 703{ 704 if (ioctl(KVM_GET_SREGS, ®s) == -1) 705 panic("KVM: Failed to get guest special registers\n"); 706} 707 708void 709BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 710{ 711 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 712 panic("KVM: Failed to set guest special registers\n"); 713} 714 715void 716BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 717{ 718 if (ioctl(KVM_GET_FPU, &state) == -1) 719 panic("KVM: Failed to get guest FPU state\n"); 720} 721 722void 723BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 724{ 725 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 726 panic("KVM: Failed to set guest FPU state\n"); 727} 728 729 730void 731BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 732{ 733#ifdef KVM_SET_ONE_REG 734 struct kvm_one_reg reg; 735 reg.id = id; 736 reg.addr = (uint64_t)addr; 737 738 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 739 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 740 id, errno); 741 } 742#else 743 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 744#endif 745} 746 747void 748BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 749{ 750#ifdef KVM_GET_ONE_REG 751 struct kvm_one_reg reg; 752 reg.id = id; 753 reg.addr = (uint64_t)addr; 754 755 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 756 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 757 id, errno); 758 } 759#else 760 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 761#endif 762} 763 764std::string 765BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 766{ 767#ifdef KVM_GET_ONE_REG 768 std::ostringstream ss; 769 770 ss.setf(std::ios::hex, std::ios::basefield); 771 ss.setf(std::ios::showbase); 772#define HANDLE_INTTYPE(len) \ 773 case KVM_REG_SIZE_U ## len: { \ 774 uint ## len ## _t value; \ 775 getOneReg(id, &value); \ 776 ss << value; \ 777 } break 778 779#define HANDLE_ARRAY(len) \ 780 case KVM_REG_SIZE_U ## len: { \ 781 uint8_t value[len / 8]; \ 782 getOneReg(id, value); \ 783 ss << "[" << value[0]; \ 784 for (int i = 1; i < len / 8; ++i) \ 785 ss << ", " << value[i]; \ 786 ss << "]"; \ 787 } break 788 789 switch (id & KVM_REG_SIZE_MASK) { 790 HANDLE_INTTYPE(8); 791 HANDLE_INTTYPE(16); 792 HANDLE_INTTYPE(32); 793 HANDLE_INTTYPE(64); 794 HANDLE_ARRAY(128); 795 HANDLE_ARRAY(256); 796 HANDLE_ARRAY(512); 797 HANDLE_ARRAY(1024); 798 default: 799 ss << "??"; 800 } 801 802#undef HANDLE_INTTYPE 803#undef HANDLE_ARRAY 804 805 return ss.str(); 806#else 807 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 808#endif 809} 810 811void 812BaseKvmCPU::syncThreadContext() 813{ 814 if (!kvmStateDirty) 815 return; 816 817 assert(!threadContextDirty); 818 819 updateThreadContext(); 820 kvmStateDirty = false; 821} 822 823void 824BaseKvmCPU::syncKvmState() 825{ 826 if (!threadContextDirty) 827 return; 828 829 assert(!kvmStateDirty); 830 831 updateKvmState(); 832 threadContextDirty = false; 833} 834 835Tick 836BaseKvmCPU::handleKvmExit() 837{ 838 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 839 assert(_status == RunningService); 840 841 // Switch into the running state by default. Individual handlers 842 // can override this. 843 _status = Running; 844 switch (_kvmRun->exit_reason) { 845 case KVM_EXIT_UNKNOWN: 846 return handleKvmExitUnknown(); 847 848 case KVM_EXIT_EXCEPTION: 849 return handleKvmExitException(); 850 851 case KVM_EXIT_IO: 852 _status = RunningServiceCompletion; 853 ++numIO; 854 return handleKvmExitIO(); 855 856 case KVM_EXIT_HYPERCALL: 857 ++numHypercalls; 858 return handleKvmExitHypercall(); 859 860 case KVM_EXIT_HLT: 861 /* The guest has halted and is waiting for interrupts */ 862 DPRINTF(Kvm, "handleKvmExitHalt\n"); 863 ++numHalt; 864 865 // Suspend the thread until the next interrupt arrives 866 thread->suspend(); 867 868 // This is actually ignored since the thread is suspended. 869 return 0; 870 871 case KVM_EXIT_MMIO: 872 _status = RunningServiceCompletion; 873 /* Service memory mapped IO requests */ 874 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 875 _kvmRun->mmio.is_write, 876 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 877 878 ++numMMIO; 879 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 880 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 881 882 case KVM_EXIT_IRQ_WINDOW_OPEN: 883 return handleKvmExitIRQWindowOpen(); 884 885 case KVM_EXIT_FAIL_ENTRY: 886 return handleKvmExitFailEntry(); 887 888 case KVM_EXIT_INTR: 889 /* KVM was interrupted by a signal, restart it in the next 890 * tick. */ 891 return 0; 892 893 case KVM_EXIT_INTERNAL_ERROR: 894 panic("KVM: Internal error (suberror: %u)\n", 895 _kvmRun->internal.suberror); 896 897 default: 898 dump(); 899 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 900 } 901} 902 903Tick 904BaseKvmCPU::handleKvmExitIO() 905{ 906 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 907 _kvmRun->io.direction, _kvmRun->io.size, 908 _kvmRun->io.port, _kvmRun->io.count); 909} 910 911Tick 912BaseKvmCPU::handleKvmExitHypercall() 913{ 914 panic("KVM: Unhandled hypercall\n"); 915} 916 917Tick 918BaseKvmCPU::handleKvmExitIRQWindowOpen() 919{ 920 warn("KVM: Unhandled IRQ window.\n"); 921 return 0; 922} 923 924 925Tick 926BaseKvmCPU::handleKvmExitUnknown() 927{ 928 dump(); 929 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 930 _kvmRun->hw.hardware_exit_reason); 931} 932 933Tick 934BaseKvmCPU::handleKvmExitException() 935{ 936 dump(); 937 panic("KVM: Got exception when starting vCPU " 938 "(exception: %u, error_code: %u)\n", 939 _kvmRun->ex.exception, _kvmRun->ex.error_code); 940} 941 942Tick 943BaseKvmCPU::handleKvmExitFailEntry() 944{ 945 dump(); 946 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 947 _kvmRun->fail_entry.hardware_entry_failure_reason); 948} 949 950Tick 951BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 952{ 953 ThreadContext *tc(thread->getTC()); 954 syncThreadContext(); 955 956 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId()); 957 // Some architectures do need to massage physical addresses a bit 958 // before they are inserted into the memory system. This enables 959 // APIC accesses on x86 and m5ops where supported through a MMIO 960 // interface. 961 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 962 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 963 if (fault != NoFault) 964 warn("Finalization of MMIO address failed: %s\n", fault->name()); 965 966 967 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 968 Packet pkt(&mmio_req, cmd); 969 pkt.dataStatic(data); 970 971 if (mmio_req.isMmappedIpr()) { 972 const Cycles ipr_delay(write ? 973 TheISA::handleIprWrite(tc, &pkt) : 974 TheISA::handleIprRead(tc, &pkt)); 975 return clockEdge(ipr_delay); 976 } else { 977 return dataPort.sendAtomic(&pkt); 978 } 979} 980 981void 982BaseKvmCPU::setSignalMask(const sigset_t *mask) 983{ 984 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 985 986 if (mask) { 987 kvm_mask.reset((struct kvm_signal_mask *)operator new( 988 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 989 // The kernel and the user-space headers have different ideas 990 // about the size of sigset_t. This seems like a massive hack, 991 // but is actually what qemu does. 992 assert(sizeof(*mask) >= 8); 993 kvm_mask->len = 8; 994 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 995 } 996 997 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 998 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 999 errno); 1000} 1001 1002int 1003BaseKvmCPU::ioctl(int request, long p1) const 1004{ 1005 if (vcpuFD == -1) 1006 panic("KVM: CPU ioctl called before initialization\n"); 1007 1008 return ::ioctl(vcpuFD, request, p1); 1009} 1010 1011Tick 1012BaseKvmCPU::flushCoalescedMMIO() 1013{ 1014 if (!mmioRing) 1015 return 0; 1016 1017 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1018 1019 // TODO: We might need to do synchronization when we start to 1020 // support multiple CPUs 1021 Tick ticks(0); 1022 while (mmioRing->first != mmioRing->last) { 1023 struct kvm_coalesced_mmio &ent( 1024 mmioRing->coalesced_mmio[mmioRing->first]); 1025 1026 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1027 ent.phys_addr, ent.len); 1028 1029 ++numCoalescedMMIO; 1030 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1031 1032 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1033 } 1034 1035 return ticks; 1036} 1037 1038void 1039BaseKvmCPU::setupSignalHandler() 1040{ 1041 struct sigaction sa; 1042 1043 memset(&sa, 0, sizeof(sa)); 1044 sa.sa_sigaction = onTimerOverflow; 1045 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1046 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1) 1047 panic("KVM: Failed to setup vCPU signal handler\n"); 1048 1049 sigset_t sigset; 1050 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1) 1051 panic("KVM: Failed get signal mask\n"); 1052 1053 // Request KVM to setup the same signal mask as we're currently 1054 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL 1055 // to cause immediate exits from KVM after servicing IO 1056 // requests. See kvmRun(). 1057 setSignalMask(&sigset); 1058 1059 // Mask the KVM_TIMER_SIGNAL so it isn't delivered unless we're 1060 // actually executing inside KVM. 1061 sigaddset(&sigset, KVM_TIMER_SIGNAL); 1062 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1) 1063 panic("KVM: Failed mask the KVM timer signal\n"); 1064} 1065 1066bool 1067BaseKvmCPU::discardPendingSignal(int signum) const 1068{ 1069 int discardedSignal; 1070 1071 // Setting the timeout to zero causes sigtimedwait to return 1072 // immediately. 1073 struct timespec timeout; 1074 timeout.tv_sec = 0; 1075 timeout.tv_nsec = 0; 1076 1077 sigset_t sigset; 1078 sigemptyset(&sigset); 1079 sigaddset(&sigset, signum); 1080 1081 do { 1082 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1083 } while (discardedSignal == -1 && errno == EINTR); 1084 1085 if (discardedSignal == signum) 1086 return true; 1087 else if (discardedSignal == -1 && errno == EAGAIN) 1088 return false; 1089 else 1090 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1091 discardedSignal, errno); 1092} 1093 1094void 1095BaseKvmCPU::setupCounters() 1096{ 1097 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1098 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1099 PERF_COUNT_HW_CPU_CYCLES); 1100 cfgCycles.disabled(true) 1101 .pinned(true); 1102 1103 if (perfControlledByTimer) { 1104 // We need to configure the cycles counter to send overflows 1105 // since we are going to use it to trigger timer signals that 1106 // trap back into m5 from KVM. In practice, this means that we 1107 // need to set some non-zero sample period that gets 1108 // overridden when the timer is armed. 1109 cfgCycles.wakeupEvents(1) 1110 .samplePeriod(42); 1111 } 1112 1113 hwCycles.attach(cfgCycles, 1114 0); // TID (0 => currentThread) 1115 1116 DPRINTF(Kvm, "Attaching instruction counter...\n"); 1117 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1118 PERF_COUNT_HW_INSTRUCTIONS); 1119 hwInstructions.attach(cfgInstructions, 1120 0, // TID (0 => currentThread) 1121 hwCycles); 1122} 1123 1124bool 1125BaseKvmCPU::tryDrain() 1126{ 1127 if (!drainManager) 1128 return false; 1129 1130 if (!archIsDrained()) { 1131 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1132 return false; 1133 } 1134 1135 if (_status == Idle || _status == Running) { 1136 DPRINTF(Drain, 1137 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1138 drainManager->signalDrainDone(); 1139 drainManager = NULL; 1140 return true; 1141 } else { 1142 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1143 return false; 1144 } 1145} 1146 1147void 1148BaseKvmCPU::ioctlRun() 1149{ 1150 if (ioctl(KVM_RUN) == -1) { 1151 if (errno != EINTR) 1152 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1153 errno); 1154 } 1155} 1156