base.cc revision 12284
1/* 2 * Copyright (c) 2012, 2015, 2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include "cpu/kvm/base.hh" 41 42#include <linux/kvm.h> 43#include <sys/ioctl.h> 44#include <sys/mman.h> 45#include <unistd.h> 46 47#include <cerrno> 48#include <csignal> 49#include <ostream> 50 51#include "arch/mmapped_ipr.hh" 52#include "arch/utility.hh" 53#include "debug/Checkpoint.hh" 54#include "debug/Drain.hh" 55#include "debug/Kvm.hh" 56#include "debug/KvmIO.hh" 57#include "debug/KvmRun.hh" 58#include "params/BaseKvmCPU.hh" 59#include "sim/process.hh" 60#include "sim/system.hh" 61 62/* Used by some KVM macros */ 63#define PAGE_SIZE pageSize 64 65BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 66 : BaseCPU(params), 67 vm(*params->system->getKvmVM()), 68 _status(Idle), 69 dataPort(name() + ".dcache_port", this), 70 instPort(name() + ".icache_port", this), 71 alwaysSyncTC(params->alwaysSyncTC), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent([this]{ tick(); }, "BaseKvmCPU tick", 78 false, Event::CPU_Tick_Pri), 79 activeInstPeriod(0), 80 perfControlledByTimer(params->usePerfOverflow), 81 hostFactor(params->hostFactor), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121} 122 123void 124BaseKvmCPU::startup() 125{ 126 const BaseKvmCPUParams * const p( 127 dynamic_cast<const BaseKvmCPUParams *>(params())); 128 129 Kvm &kvm(*vm.kvm); 130 131 BaseCPU::startup(); 132 133 assert(vcpuFD == -1); 134 135 // Tell the VM that a CPU is about to start. 136 vm.cpuStartup(); 137 138 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 139 // not guaranteed that the parent KVM VM has initialized at that 140 // point. Initialize virtual CPUs here instead. 141 vcpuFD = vm.createVCPU(vcpuID); 142 143 // Map the KVM run structure */ 144 vcpuMMapSize = kvm.getVCPUMMapSize(); 145 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 146 PROT_READ | PROT_WRITE, MAP_SHARED, 147 vcpuFD, 0); 148 if (_kvmRun == MAP_FAILED) 149 panic("KVM: Failed to map run data structure\n"); 150 151 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 152 // available. The offset into the KVM's communication page is 153 // provided by the coalesced MMIO capability. 154 int mmioOffset(kvm.capCoalescedMMIO()); 155 if (!p->useCoalescedMMIO) { 156 inform("KVM: Coalesced MMIO disabled by config.\n"); 157 } else if (mmioOffset) { 158 inform("KVM: Coalesced IO available\n"); 159 mmioRing = (struct kvm_coalesced_mmio_ring *)( 160 (char *)_kvmRun + (mmioOffset * pageSize)); 161 } else { 162 inform("KVM: Coalesced not supported by host OS\n"); 163 } 164 165 thread->startup(); 166 167 Event *startupEvent( 168 new EventFunctionWrapper([this]{ startupThread(); }, name(), true)); 169 schedule(startupEvent, curTick()); 170} 171 172BaseKvmCPU::Status 173BaseKvmCPU::KVMCpuPort::nextIOState() const 174{ 175 return (activeMMIOReqs || pendingMMIOPkts.size()) 176 ? RunningMMIOPending : RunningServiceCompletion; 177} 178 179Tick 180BaseKvmCPU::KVMCpuPort::submitIO(PacketPtr pkt) 181{ 182 if (cpu->system->isAtomicMode()) { 183 Tick delay = sendAtomic(pkt); 184 delete pkt->req; 185 delete pkt; 186 return delay; 187 } else { 188 if (pendingMMIOPkts.empty() && sendTimingReq(pkt)) { 189 activeMMIOReqs++; 190 } else { 191 pendingMMIOPkts.push(pkt); 192 } 193 // Return value is irrelevant for timing-mode accesses. 194 return 0; 195 } 196} 197 198bool 199BaseKvmCPU::KVMCpuPort::recvTimingResp(PacketPtr pkt) 200{ 201 DPRINTF(KvmIO, "KVM: Finished timing request\n"); 202 203 delete pkt->req; 204 delete pkt; 205 activeMMIOReqs--; 206 207 // We can switch back into KVM when all pending and in-flight MMIO 208 // operations have completed. 209 if (!(activeMMIOReqs || pendingMMIOPkts.size())) { 210 DPRINTF(KvmIO, "KVM: Finished all outstanding timing requests\n"); 211 cpu->finishMMIOPending(); 212 } 213 return true; 214} 215 216void 217BaseKvmCPU::KVMCpuPort::recvReqRetry() 218{ 219 DPRINTF(KvmIO, "KVM: Retry for timing request\n"); 220 221 assert(pendingMMIOPkts.size()); 222 223 // Assuming that we can issue infinite requests this cycle is a bit 224 // unrealistic, but it's not worth modeling something more complex in 225 // KVM. 226 while (pendingMMIOPkts.size() && sendTimingReq(pendingMMIOPkts.front())) { 227 pendingMMIOPkts.pop(); 228 activeMMIOReqs++; 229 } 230} 231 232void 233BaseKvmCPU::finishMMIOPending() 234{ 235 assert(_status = RunningMMIOPending); 236 assert(!tickEvent.scheduled()); 237 238 _status = RunningServiceCompletion; 239 schedule(tickEvent, nextCycle()); 240} 241 242void 243BaseKvmCPU::startupThread() 244{ 245 // Do thread-specific initialization. We need to setup signal 246 // delivery for counters and timers from within the thread that 247 // will execute the event queue to ensure that signals are 248 // delivered to the right threads. 249 const BaseKvmCPUParams * const p( 250 dynamic_cast<const BaseKvmCPUParams *>(params())); 251 252 vcpuThread = pthread_self(); 253 254 // Setup signal handlers. This has to be done after the vCPU is 255 // created since it manipulates the vCPU signal mask. 256 setupSignalHandler(); 257 258 setupCounters(); 259 260 if (p->usePerfOverflow) 261 runTimer.reset(new PerfKvmTimer(hwCycles, 262 KVM_KICK_SIGNAL, 263 p->hostFactor, 264 p->hostFreq)); 265 else 266 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 267 p->hostFactor, 268 p->hostFreq)); 269 270} 271 272void 273BaseKvmCPU::regStats() 274{ 275 using namespace Stats; 276 277 BaseCPU::regStats(); 278 279 numInsts 280 .name(name() + ".committedInsts") 281 .desc("Number of instructions committed") 282 ; 283 284 numVMExits 285 .name(name() + ".numVMExits") 286 .desc("total number of KVM exits") 287 ; 288 289 numVMHalfEntries 290 .name(name() + ".numVMHalfEntries") 291 .desc("number of KVM entries to finalize pending operations") 292 ; 293 294 numExitSignal 295 .name(name() + ".numExitSignal") 296 .desc("exits due to signal delivery") 297 ; 298 299 numMMIO 300 .name(name() + ".numMMIO") 301 .desc("number of VM exits due to memory mapped IO") 302 ; 303 304 numCoalescedMMIO 305 .name(name() + ".numCoalescedMMIO") 306 .desc("number of coalesced memory mapped IO requests") 307 ; 308 309 numIO 310 .name(name() + ".numIO") 311 .desc("number of VM exits due to legacy IO") 312 ; 313 314 numHalt 315 .name(name() + ".numHalt") 316 .desc("number of VM exits due to wait for interrupt instructions") 317 ; 318 319 numInterrupts 320 .name(name() + ".numInterrupts") 321 .desc("number of interrupts delivered") 322 ; 323 324 numHypercalls 325 .name(name() + ".numHypercalls") 326 .desc("number of hypercalls") 327 ; 328} 329 330void 331BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const 332{ 333 if (DTRACE(Checkpoint)) { 334 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 335 dump(); 336 } 337 338 assert(tid == 0); 339 assert(_status == Idle); 340 thread->serialize(cp); 341} 342 343void 344BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) 345{ 346 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 347 348 assert(tid == 0); 349 assert(_status == Idle); 350 thread->unserialize(cp); 351 threadContextDirty = true; 352} 353 354DrainState 355BaseKvmCPU::drain() 356{ 357 if (switchedOut()) 358 return DrainState::Drained; 359 360 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 361 362 // The event queue won't be locked when calling drain since that's 363 // not done from an event. Lock the event queue here to make sure 364 // that scoped migrations continue to work if we need to 365 // synchronize the thread context. 366 std::lock_guard<EventQueue> lock(*this->eventQueue()); 367 368 switch (_status) { 369 case Running: 370 // The base KVM code is normally ready when it is in the 371 // Running state, but the architecture specific code might be 372 // of a different opinion. This may happen when the CPU been 373 // notified of an event that hasn't been accepted by the vCPU 374 // yet. 375 if (!archIsDrained()) 376 return DrainState::Draining; 377 378 // The state of the CPU is consistent, so we don't need to do 379 // anything special to drain it. We simply de-schedule the 380 // tick event and enter the Idle state to prevent nasty things 381 // like MMIOs from happening. 382 if (tickEvent.scheduled()) 383 deschedule(tickEvent); 384 _status = Idle; 385 386 /** FALLTHROUGH */ 387 case Idle: 388 // Idle, no need to drain 389 assert(!tickEvent.scheduled()); 390 391 // Sync the thread context here since we'll need it when we 392 // switch CPUs or checkpoint the CPU. 393 syncThreadContext(); 394 395 return DrainState::Drained; 396 397 case RunningServiceCompletion: 398 // The CPU has just requested a service that was handled in 399 // the RunningService state, but the results have still not 400 // been reported to the CPU. Now, we /could/ probably just 401 // update the register state ourselves instead of letting KVM 402 // handle it, but that would be tricky. Instead, we enter KVM 403 // and let it do its stuff. 404 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 405 "requesting drain.\n"); 406 return DrainState::Draining; 407 408 case RunningMMIOPending: 409 // We need to drain since there are in-flight timing accesses 410 DPRINTF(Drain, "KVM CPU is waiting for timing accesses to complete, " 411 "requesting drain.\n"); 412 return DrainState::Draining; 413 414 case RunningService: 415 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 416 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 417 return DrainState::Draining; 418 419 default: 420 panic("KVM: Unhandled CPU state in drain()\n"); 421 return DrainState::Drained; 422 } 423} 424 425void 426BaseKvmCPU::drainResume() 427{ 428 assert(!tickEvent.scheduled()); 429 430 // We might have been switched out. In that case, we don't need to 431 // do anything. 432 if (switchedOut()) 433 return; 434 435 DPRINTF(Kvm, "drainResume\n"); 436 verifyMemoryMode(); 437 438 // The tick event is de-scheduled as a part of the draining 439 // process. Re-schedule it if the thread context is active. 440 if (tc->status() == ThreadContext::Active) { 441 schedule(tickEvent, nextCycle()); 442 _status = Running; 443 } else { 444 _status = Idle; 445 } 446} 447 448void 449BaseKvmCPU::notifyFork() 450{ 451 // We should have drained prior to forking, which means that the 452 // tick event shouldn't be scheduled and the CPU is idle. 453 assert(!tickEvent.scheduled()); 454 assert(_status == Idle); 455 456 if (vcpuFD != -1) { 457 if (close(vcpuFD) == -1) 458 warn("kvm CPU: notifyFork failed to close vcpuFD\n"); 459 460 if (_kvmRun) 461 munmap(_kvmRun, vcpuMMapSize); 462 463 vcpuFD = -1; 464 _kvmRun = NULL; 465 466 hwInstructions.detach(); 467 hwCycles.detach(); 468 } 469} 470 471void 472BaseKvmCPU::switchOut() 473{ 474 DPRINTF(Kvm, "switchOut\n"); 475 476 BaseCPU::switchOut(); 477 478 // We should have drained prior to executing a switchOut, which 479 // means that the tick event shouldn't be scheduled and the CPU is 480 // idle. 481 assert(!tickEvent.scheduled()); 482 assert(_status == Idle); 483} 484 485void 486BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 487{ 488 DPRINTF(Kvm, "takeOverFrom\n"); 489 490 BaseCPU::takeOverFrom(cpu); 491 492 // We should have drained prior to executing a switchOut, which 493 // means that the tick event shouldn't be scheduled and the CPU is 494 // idle. 495 assert(!tickEvent.scheduled()); 496 assert(_status == Idle); 497 assert(threadContexts.size() == 1); 498 499 // Force an update of the KVM state here instead of flagging the 500 // TC as dirty. This is not ideal from a performance point of 501 // view, but it makes debugging easier as it allows meaningful KVM 502 // state to be dumped before and after a takeover. 503 updateKvmState(); 504 threadContextDirty = false; 505} 506 507void 508BaseKvmCPU::verifyMemoryMode() const 509{ 510 if (!(system->bypassCaches())) { 511 fatal("The KVM-based CPUs requires the memory system to be in the " 512 "'noncaching' mode.\n"); 513 } 514} 515 516void 517BaseKvmCPU::wakeup(ThreadID tid) 518{ 519 DPRINTF(Kvm, "wakeup()\n"); 520 // This method might have been called from another 521 // context. Migrate to this SimObject's event queue when 522 // delivering the wakeup signal. 523 EventQueue::ScopedMigration migrate(eventQueue()); 524 525 // Kick the vCPU to get it to come out of KVM. 526 kick(); 527 528 if (thread->status() != ThreadContext::Suspended) 529 return; 530 531 thread->activate(); 532} 533 534void 535BaseKvmCPU::activateContext(ThreadID thread_num) 536{ 537 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 538 539 assert(thread_num == 0); 540 assert(thread); 541 542 assert(_status == Idle); 543 assert(!tickEvent.scheduled()); 544 545 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 546 547 schedule(tickEvent, clockEdge(Cycles(0))); 548 _status = Running; 549} 550 551 552void 553BaseKvmCPU::suspendContext(ThreadID thread_num) 554{ 555 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 556 557 assert(thread_num == 0); 558 assert(thread); 559 560 if (_status == Idle) 561 return; 562 563 assert(_status == Running || _status == RunningServiceCompletion); 564 565 // The tick event may no be scheduled if the quest has requested 566 // the monitor to wait for interrupts. The normal CPU models can 567 // get their tick events descheduled by quiesce instructions, but 568 // that can't happen here. 569 if (tickEvent.scheduled()) 570 deschedule(tickEvent); 571 572 _status = Idle; 573} 574 575void 576BaseKvmCPU::deallocateContext(ThreadID thread_num) 577{ 578 // for now, these are equivalent 579 suspendContext(thread_num); 580} 581 582void 583BaseKvmCPU::haltContext(ThreadID thread_num) 584{ 585 // for now, these are equivalent 586 suspendContext(thread_num); 587 updateCycleCounters(BaseCPU::CPU_STATE_SLEEP); 588} 589 590ThreadContext * 591BaseKvmCPU::getContext(int tn) 592{ 593 assert(tn == 0); 594 syncThreadContext(); 595 return tc; 596} 597 598 599Counter 600BaseKvmCPU::totalInsts() const 601{ 602 return ctrInsts; 603} 604 605Counter 606BaseKvmCPU::totalOps() const 607{ 608 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 609 return ctrInsts; 610} 611 612void 613BaseKvmCPU::dump() const 614{ 615 inform("State dumping not implemented."); 616} 617 618void 619BaseKvmCPU::tick() 620{ 621 Tick delay(0); 622 assert(_status != Idle && _status != RunningMMIOPending); 623 624 switch (_status) { 625 case RunningService: 626 // handleKvmExit() will determine the next state of the CPU 627 delay = handleKvmExit(); 628 629 if (tryDrain()) 630 _status = Idle; 631 break; 632 633 case RunningServiceCompletion: 634 case Running: { 635 const uint64_t nextInstEvent( 636 !comInstEventQueue[0]->empty() ? 637 comInstEventQueue[0]->nextTick() : UINT64_MAX); 638 // Enter into KVM and complete pending IO instructions if we 639 // have an instruction event pending. 640 const Tick ticksToExecute( 641 nextInstEvent > ctrInsts ? 642 curEventQueue()->nextTick() - curTick() : 0); 643 644 if (alwaysSyncTC) 645 threadContextDirty = true; 646 647 // We might need to update the KVM state. 648 syncKvmState(); 649 650 // Setup any pending instruction count breakpoints using 651 // PerfEvent if we are going to execute more than just an IO 652 // completion. 653 if (ticksToExecute > 0) 654 setupInstStop(); 655 656 DPRINTF(KvmRun, "Entering KVM...\n"); 657 if (drainState() == DrainState::Draining) { 658 // Force an immediate exit from KVM after completing 659 // pending operations. The architecture-specific code 660 // takes care to run until it is in a state where it can 661 // safely be drained. 662 delay = kvmRunDrain(); 663 } else { 664 delay = kvmRun(ticksToExecute); 665 } 666 667 // The CPU might have been suspended before entering into 668 // KVM. Assume that the CPU was suspended /before/ entering 669 // into KVM and skip the exit handling. 670 if (_status == Idle) 671 break; 672 673 // Entering into KVM implies that we'll have to reload the thread 674 // context from KVM if we want to access it. Flag the KVM state as 675 // dirty with respect to the cached thread context. 676 kvmStateDirty = true; 677 678 if (alwaysSyncTC) 679 syncThreadContext(); 680 681 // Enter into the RunningService state unless the 682 // simulation was stopped by a timer. 683 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 684 _status = RunningService; 685 } else { 686 ++numExitSignal; 687 _status = Running; 688 } 689 690 // Service any pending instruction events. The vCPU should 691 // have exited in time for the event using the instruction 692 // counter configured by setupInstStop(). 693 comInstEventQueue[0]->serviceEvents(ctrInsts); 694 system->instEventQueue.serviceEvents(system->totalNumInsts); 695 696 if (tryDrain()) 697 _status = Idle; 698 } break; 699 700 default: 701 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 702 _status); 703 } 704 705 // Schedule a new tick if we are still running 706 if (_status != Idle && _status != RunningMMIOPending) 707 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 708} 709 710Tick 711BaseKvmCPU::kvmRunDrain() 712{ 713 // By default, the only thing we need to drain is a pending IO 714 // operation which assumes that we are in the 715 // RunningServiceCompletion or RunningMMIOPending state. 716 assert(_status == RunningServiceCompletion || 717 _status == RunningMMIOPending); 718 719 // Deliver the data from the pending IO operation and immediately 720 // exit. 721 return kvmRun(0); 722} 723 724uint64_t 725BaseKvmCPU::getHostCycles() const 726{ 727 return hwCycles.read(); 728} 729 730Tick 731BaseKvmCPU::kvmRun(Tick ticks) 732{ 733 Tick ticksExecuted; 734 fatal_if(vcpuFD == -1, 735 "Trying to run a KVM CPU in a forked child process. " 736 "This is not supported.\n"); 737 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 738 739 if (ticks == 0) { 740 // Settings ticks == 0 is a special case which causes an entry 741 // into KVM that finishes pending operations (e.g., IO) and 742 // then immediately exits. 743 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 744 745 ++numVMHalfEntries; 746 747 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 748 // thread). The KVM control signal is masked while executing 749 // in gem5 and gets unmasked temporarily as when entering 750 // KVM. See setSignalMask() and setupSignalHandler(). 751 kick(); 752 753 // Start the vCPU. KVM will check for signals after completing 754 // pending operations (IO). Since the KVM_KICK_SIGNAL is 755 // pending, this forces an immediate exit to gem5 again. We 756 // don't bother to setup timers since this shouldn't actually 757 // execute any code (other than completing half-executed IO 758 // instructions) in the guest. 759 ioctlRun(); 760 761 // We always execute at least one cycle to prevent the 762 // BaseKvmCPU::tick() to be rescheduled on the same tick 763 // twice. 764 ticksExecuted = clockPeriod(); 765 } else { 766 // This method is executed as a result of a tick event. That 767 // means that the event queue will be locked when entering the 768 // method. We temporarily unlock the event queue to allow 769 // other threads to steal control of this thread to inject 770 // interrupts. They will typically lock the queue and then 771 // force an exit from KVM by kicking the vCPU. 772 EventQueue::ScopedRelease release(curEventQueue()); 773 774 if (ticks < runTimer->resolution()) { 775 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 776 ticks, runTimer->resolution()); 777 ticks = runTimer->resolution(); 778 } 779 780 // Get hardware statistics after synchronizing contexts. The KVM 781 // state update might affect guest cycle counters. 782 uint64_t baseCycles(getHostCycles()); 783 uint64_t baseInstrs(hwInstructions.read()); 784 785 // Arm the run timer and start the cycle timer if it isn't 786 // controlled by the overflow timer. Starting/stopping the cycle 787 // timer automatically starts the other perf timers as they are in 788 // the same counter group. 789 runTimer->arm(ticks); 790 if (!perfControlledByTimer) 791 hwCycles.start(); 792 793 ioctlRun(); 794 795 runTimer->disarm(); 796 if (!perfControlledByTimer) 797 hwCycles.stop(); 798 799 // The control signal may have been delivered after we exited 800 // from KVM. It will be pending in that case since it is 801 // masked when we aren't executing in KVM. Discard it to make 802 // sure we don't deliver it immediately next time we try to 803 // enter into KVM. 804 discardPendingSignal(KVM_KICK_SIGNAL); 805 806 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 807 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 808 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 809 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 810 811 /* Update statistics */ 812 numCycles += simCyclesExecuted;; 813 numInsts += instsExecuted; 814 ctrInsts += instsExecuted; 815 system->totalNumInsts += instsExecuted; 816 817 DPRINTF(KvmRun, 818 "KVM: Executed %i instructions in %i cycles " 819 "(%i ticks, sim cycles: %i).\n", 820 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 821 } 822 823 ++numVMExits; 824 825 return ticksExecuted + flushCoalescedMMIO(); 826} 827 828void 829BaseKvmCPU::kvmNonMaskableInterrupt() 830{ 831 ++numInterrupts; 832 if (ioctl(KVM_NMI) == -1) 833 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 834} 835 836void 837BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 838{ 839 ++numInterrupts; 840 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 841 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 842} 843 844void 845BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 846{ 847 if (ioctl(KVM_GET_REGS, ®s) == -1) 848 panic("KVM: Failed to get guest registers\n"); 849} 850 851void 852BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 853{ 854 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 855 panic("KVM: Failed to set guest registers\n"); 856} 857 858void 859BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 860{ 861 if (ioctl(KVM_GET_SREGS, ®s) == -1) 862 panic("KVM: Failed to get guest special registers\n"); 863} 864 865void 866BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 867{ 868 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 869 panic("KVM: Failed to set guest special registers\n"); 870} 871 872void 873BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 874{ 875 if (ioctl(KVM_GET_FPU, &state) == -1) 876 panic("KVM: Failed to get guest FPU state\n"); 877} 878 879void 880BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 881{ 882 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 883 panic("KVM: Failed to set guest FPU state\n"); 884} 885 886 887void 888BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 889{ 890#ifdef KVM_SET_ONE_REG 891 struct kvm_one_reg reg; 892 reg.id = id; 893 reg.addr = (uint64_t)addr; 894 895 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 896 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 897 id, errno); 898 } 899#else 900 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 901#endif 902} 903 904void 905BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 906{ 907#ifdef KVM_GET_ONE_REG 908 struct kvm_one_reg reg; 909 reg.id = id; 910 reg.addr = (uint64_t)addr; 911 912 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 913 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 914 id, errno); 915 } 916#else 917 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 918#endif 919} 920 921std::string 922BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 923{ 924#ifdef KVM_GET_ONE_REG 925 std::ostringstream ss; 926 927 ss.setf(std::ios::hex, std::ios::basefield); 928 ss.setf(std::ios::showbase); 929#define HANDLE_INTTYPE(len) \ 930 case KVM_REG_SIZE_U ## len: { \ 931 uint ## len ## _t value; \ 932 getOneReg(id, &value); \ 933 ss << value; \ 934 } break 935 936#define HANDLE_ARRAY(len) \ 937 case KVM_REG_SIZE_U ## len: { \ 938 uint8_t value[len / 8]; \ 939 getOneReg(id, value); \ 940 ccprintf(ss, "[0x%x", value[0]); \ 941 for (int i = 1; i < len / 8; ++i) \ 942 ccprintf(ss, ", 0x%x", value[i]); \ 943 ccprintf(ss, "]"); \ 944 } break 945 946 switch (id & KVM_REG_SIZE_MASK) { 947 HANDLE_INTTYPE(8); 948 HANDLE_INTTYPE(16); 949 HANDLE_INTTYPE(32); 950 HANDLE_INTTYPE(64); 951 HANDLE_ARRAY(128); 952 HANDLE_ARRAY(256); 953 HANDLE_ARRAY(512); 954 HANDLE_ARRAY(1024); 955 default: 956 ss << "??"; 957 } 958 959#undef HANDLE_INTTYPE 960#undef HANDLE_ARRAY 961 962 return ss.str(); 963#else 964 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 965#endif 966} 967 968void 969BaseKvmCPU::syncThreadContext() 970{ 971 if (!kvmStateDirty) 972 return; 973 974 assert(!threadContextDirty); 975 976 updateThreadContext(); 977 kvmStateDirty = false; 978} 979 980void 981BaseKvmCPU::syncKvmState() 982{ 983 if (!threadContextDirty) 984 return; 985 986 assert(!kvmStateDirty); 987 988 updateKvmState(); 989 threadContextDirty = false; 990} 991 992Tick 993BaseKvmCPU::handleKvmExit() 994{ 995 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 996 assert(_status == RunningService); 997 998 // Switch into the running state by default. Individual handlers 999 // can override this. 1000 _status = Running; 1001 switch (_kvmRun->exit_reason) { 1002 case KVM_EXIT_UNKNOWN: 1003 return handleKvmExitUnknown(); 1004 1005 case KVM_EXIT_EXCEPTION: 1006 return handleKvmExitException(); 1007 1008 case KVM_EXIT_IO: 1009 { 1010 ++numIO; 1011 Tick ticks = handleKvmExitIO(); 1012 _status = dataPort.nextIOState(); 1013 return ticks; 1014 } 1015 1016 case KVM_EXIT_HYPERCALL: 1017 ++numHypercalls; 1018 return handleKvmExitHypercall(); 1019 1020 case KVM_EXIT_HLT: 1021 /* The guest has halted and is waiting for interrupts */ 1022 DPRINTF(Kvm, "handleKvmExitHalt\n"); 1023 ++numHalt; 1024 1025 // Suspend the thread until the next interrupt arrives 1026 thread->suspend(); 1027 1028 // This is actually ignored since the thread is suspended. 1029 return 0; 1030 1031 case KVM_EXIT_MMIO: 1032 { 1033 /* Service memory mapped IO requests */ 1034 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 1035 _kvmRun->mmio.is_write, 1036 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 1037 1038 ++numMMIO; 1039 Tick ticks = doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 1040 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 1041 // doMMIOAccess could have triggered a suspend, in which case we don't 1042 // want to overwrite the _status. 1043 if (_status != Idle) 1044 _status = dataPort.nextIOState(); 1045 return ticks; 1046 } 1047 1048 case KVM_EXIT_IRQ_WINDOW_OPEN: 1049 return handleKvmExitIRQWindowOpen(); 1050 1051 case KVM_EXIT_FAIL_ENTRY: 1052 return handleKvmExitFailEntry(); 1053 1054 case KVM_EXIT_INTR: 1055 /* KVM was interrupted by a signal, restart it in the next 1056 * tick. */ 1057 return 0; 1058 1059 case KVM_EXIT_INTERNAL_ERROR: 1060 panic("KVM: Internal error (suberror: %u)\n", 1061 _kvmRun->internal.suberror); 1062 1063 default: 1064 dump(); 1065 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 1066 } 1067} 1068 1069Tick 1070BaseKvmCPU::handleKvmExitIO() 1071{ 1072 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 1073 _kvmRun->io.direction, _kvmRun->io.size, 1074 _kvmRun->io.port, _kvmRun->io.count); 1075} 1076 1077Tick 1078BaseKvmCPU::handleKvmExitHypercall() 1079{ 1080 panic("KVM: Unhandled hypercall\n"); 1081} 1082 1083Tick 1084BaseKvmCPU::handleKvmExitIRQWindowOpen() 1085{ 1086 warn("KVM: Unhandled IRQ window.\n"); 1087 return 0; 1088} 1089 1090 1091Tick 1092BaseKvmCPU::handleKvmExitUnknown() 1093{ 1094 dump(); 1095 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 1096 _kvmRun->hw.hardware_exit_reason); 1097} 1098 1099Tick 1100BaseKvmCPU::handleKvmExitException() 1101{ 1102 dump(); 1103 panic("KVM: Got exception when starting vCPU " 1104 "(exception: %u, error_code: %u)\n", 1105 _kvmRun->ex.exception, _kvmRun->ex.error_code); 1106} 1107 1108Tick 1109BaseKvmCPU::handleKvmExitFailEntry() 1110{ 1111 dump(); 1112 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 1113 _kvmRun->fail_entry.hardware_entry_failure_reason); 1114} 1115 1116Tick 1117BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 1118{ 1119 ThreadContext *tc(thread->getTC()); 1120 syncThreadContext(); 1121 1122 RequestPtr mmio_req = new Request(paddr, size, Request::UNCACHEABLE, 1123 dataMasterId()); 1124 mmio_req->setContext(tc->contextId()); 1125 // Some architectures do need to massage physical addresses a bit 1126 // before they are inserted into the memory system. This enables 1127 // APIC accesses on x86 and m5ops where supported through a MMIO 1128 // interface. 1129 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1130 Fault fault(tc->getDTBPtr()->finalizePhysical(mmio_req, tc, tlb_mode)); 1131 if (fault != NoFault) 1132 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1133 1134 1135 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1136 PacketPtr pkt = new Packet(mmio_req, cmd); 1137 pkt->dataStatic(data); 1138 1139 if (mmio_req->isMmappedIpr()) { 1140 // We currently assume that there is no need to migrate to a 1141 // different event queue when doing IPRs. Currently, IPRs are 1142 // only used for m5ops, so it should be a valid assumption. 1143 const Cycles ipr_delay(write ? 1144 TheISA::handleIprWrite(tc, pkt) : 1145 TheISA::handleIprRead(tc, pkt)); 1146 threadContextDirty = true; 1147 delete pkt->req; 1148 delete pkt; 1149 return clockPeriod() * ipr_delay; 1150 } else { 1151 // Temporarily lock and migrate to the device event queue to 1152 // prevent races in multi-core mode. 1153 EventQueue::ScopedMigration migrate(deviceEventQueue()); 1154 1155 return dataPort.submitIO(pkt); 1156 } 1157} 1158 1159void 1160BaseKvmCPU::setSignalMask(const sigset_t *mask) 1161{ 1162 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1163 1164 if (mask) { 1165 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1166 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1167 // The kernel and the user-space headers have different ideas 1168 // about the size of sigset_t. This seems like a massive hack, 1169 // but is actually what qemu does. 1170 assert(sizeof(*mask) >= 8); 1171 kvm_mask->len = 8; 1172 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1173 } 1174 1175 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1176 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1177 errno); 1178} 1179 1180int 1181BaseKvmCPU::ioctl(int request, long p1) const 1182{ 1183 if (vcpuFD == -1) 1184 panic("KVM: CPU ioctl called before initialization\n"); 1185 1186 return ::ioctl(vcpuFD, request, p1); 1187} 1188 1189Tick 1190BaseKvmCPU::flushCoalescedMMIO() 1191{ 1192 if (!mmioRing) 1193 return 0; 1194 1195 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1196 1197 // TODO: We might need to do synchronization when we start to 1198 // support multiple CPUs 1199 Tick ticks(0); 1200 while (mmioRing->first != mmioRing->last) { 1201 struct kvm_coalesced_mmio &ent( 1202 mmioRing->coalesced_mmio[mmioRing->first]); 1203 1204 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1205 ent.phys_addr, ent.len); 1206 1207 ++numCoalescedMMIO; 1208 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1209 1210 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1211 } 1212 1213 return ticks; 1214} 1215 1216/** 1217 * Dummy handler for KVM kick signals. 1218 * 1219 * @note This function is usually not called since the kernel doesn't 1220 * seem to deliver signals when the signal is only unmasked when 1221 * running in KVM. This doesn't matter though since we are only 1222 * interested in getting KVM to exit, which happens as expected. See 1223 * setupSignalHandler() and kvmRun() for details about KVM signal 1224 * handling. 1225 */ 1226static void 1227onKickSignal(int signo, siginfo_t *si, void *data) 1228{ 1229} 1230 1231void 1232BaseKvmCPU::setupSignalHandler() 1233{ 1234 struct sigaction sa; 1235 1236 memset(&sa, 0, sizeof(sa)); 1237 sa.sa_sigaction = onKickSignal; 1238 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1239 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1240 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1241 1242 sigset_t sigset; 1243 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1244 panic("KVM: Failed get signal mask\n"); 1245 1246 // Request KVM to setup the same signal mask as we're currently 1247 // running with except for the KVM control signal. We'll sometimes 1248 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1249 // KVM after servicing IO requests. See kvmRun(). 1250 sigdelset(&sigset, KVM_KICK_SIGNAL); 1251 setSignalMask(&sigset); 1252 1253 // Mask our control signals so they aren't delivered unless we're 1254 // actually executing inside KVM. 1255 sigaddset(&sigset, KVM_KICK_SIGNAL); 1256 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1257 panic("KVM: Failed mask the KVM control signals\n"); 1258} 1259 1260bool 1261BaseKvmCPU::discardPendingSignal(int signum) const 1262{ 1263 int discardedSignal; 1264 1265 // Setting the timeout to zero causes sigtimedwait to return 1266 // immediately. 1267 struct timespec timeout; 1268 timeout.tv_sec = 0; 1269 timeout.tv_nsec = 0; 1270 1271 sigset_t sigset; 1272 sigemptyset(&sigset); 1273 sigaddset(&sigset, signum); 1274 1275 do { 1276 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1277 } while (discardedSignal == -1 && errno == EINTR); 1278 1279 if (discardedSignal == signum) 1280 return true; 1281 else if (discardedSignal == -1 && errno == EAGAIN) 1282 return false; 1283 else 1284 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1285 discardedSignal, errno); 1286} 1287 1288void 1289BaseKvmCPU::setupCounters() 1290{ 1291 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1292 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1293 PERF_COUNT_HW_CPU_CYCLES); 1294 cfgCycles.disabled(true) 1295 .pinned(true); 1296 1297 // Try to exclude the host. We set both exclude_hv and 1298 // exclude_host since different architectures use slightly 1299 // different APIs in the kernel. 1300 cfgCycles.exclude_hv(true) 1301 .exclude_host(true); 1302 1303 if (perfControlledByTimer) { 1304 // We need to configure the cycles counter to send overflows 1305 // since we are going to use it to trigger timer signals that 1306 // trap back into m5 from KVM. In practice, this means that we 1307 // need to set some non-zero sample period that gets 1308 // overridden when the timer is armed. 1309 cfgCycles.wakeupEvents(1) 1310 .samplePeriod(42); 1311 } 1312 1313 hwCycles.attach(cfgCycles, 1314 0); // TID (0 => currentThread) 1315 1316 setupInstCounter(); 1317} 1318 1319bool 1320BaseKvmCPU::tryDrain() 1321{ 1322 if (drainState() != DrainState::Draining) 1323 return false; 1324 1325 if (!archIsDrained()) { 1326 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1327 return false; 1328 } 1329 1330 if (_status == Idle || _status == Running) { 1331 DPRINTF(Drain, 1332 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1333 signalDrainDone(); 1334 return true; 1335 } else { 1336 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1337 return false; 1338 } 1339} 1340 1341void 1342BaseKvmCPU::ioctlRun() 1343{ 1344 if (ioctl(KVM_RUN) == -1) { 1345 if (errno != EINTR) 1346 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1347 errno); 1348 } 1349} 1350 1351void 1352BaseKvmCPU::setupInstStop() 1353{ 1354 if (comInstEventQueue[0]->empty()) { 1355 setupInstCounter(0); 1356 } else { 1357 const uint64_t next(comInstEventQueue[0]->nextTick()); 1358 1359 assert(next > ctrInsts); 1360 setupInstCounter(next - ctrInsts); 1361 } 1362} 1363 1364void 1365BaseKvmCPU::setupInstCounter(uint64_t period) 1366{ 1367 // No need to do anything if we aren't attaching for the first 1368 // time or the period isn't changing. 1369 if (period == activeInstPeriod && hwInstructions.attached()) 1370 return; 1371 1372 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1373 PERF_COUNT_HW_INSTRUCTIONS); 1374 1375 // Try to exclude the host. We set both exclude_hv and 1376 // exclude_host since different architectures use slightly 1377 // different APIs in the kernel. 1378 cfgInstructions.exclude_hv(true) 1379 .exclude_host(true); 1380 1381 if (period) { 1382 // Setup a sampling counter if that has been requested. 1383 cfgInstructions.wakeupEvents(1) 1384 .samplePeriod(period); 1385 } 1386 1387 // We need to detach and re-attach the counter to reliably change 1388 // sampling settings. See PerfKvmCounter::period() for details. 1389 if (hwInstructions.attached()) 1390 hwInstructions.detach(); 1391 assert(hwCycles.attached()); 1392 hwInstructions.attach(cfgInstructions, 1393 0, // TID (0 => currentThread) 1394 hwCycles); 1395 1396 if (period) 1397 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1398 1399 activeInstPeriod = period; 1400} 1401