base.cc revision 11151
1/* 2 * Copyright (c) 2012, 2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 67 : BaseCPU(params), 68 vm(*params->kvmVM), 69 _status(Idle), 70 dataPort(name() + ".dcache_port", this), 71 instPort(name() + ".icache_port", this), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent(*this), 78 activeInstPeriod(0), 79 perfControlledByTimer(params->usePerfOverflow), 80 hostFactor(params->hostFactor), 81 ctrInsts(0) 82{ 83 if (pageSize == -1) 84 panic("KVM: Failed to determine host page size (%i)\n", 85 errno); 86 87 if (FullSystem) 88 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 89 params->isa[0]); 90 else 91 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 92 params->workload[0], params->itb, 93 params->dtb, params->isa[0]); 94 95 thread->setStatus(ThreadContext::Halted); 96 tc = thread->getTC(); 97 threadContexts.push_back(tc); 98} 99 100BaseKvmCPU::~BaseKvmCPU() 101{ 102 if (_kvmRun) 103 munmap(_kvmRun, vcpuMMapSize); 104 close(vcpuFD); 105} 106 107void 108BaseKvmCPU::init() 109{ 110 BaseCPU::init(); 111 112 if (numThreads != 1) 113 fatal("KVM: Multithreading not supported"); 114 115 tc->initMemProxies(tc); 116 117 // initialize CPU, including PC 118 if (FullSystem && !switchedOut()) 119 TheISA::initCPU(tc, tc->contextId()); 120} 121 122void 123BaseKvmCPU::startup() 124{ 125 const BaseKvmCPUParams * const p( 126 dynamic_cast<const BaseKvmCPUParams *>(params())); 127 128 Kvm &kvm(vm.kvm); 129 130 BaseCPU::startup(); 131 132 assert(vcpuFD == -1); 133 134 // Tell the VM that a CPU is about to start. 135 vm.cpuStartup(); 136 137 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 138 // not guaranteed that the parent KVM VM has initialized at that 139 // point. Initialize virtual CPUs here instead. 140 vcpuFD = vm.createVCPU(vcpuID); 141 142 // Map the KVM run structure */ 143 vcpuMMapSize = kvm.getVCPUMMapSize(); 144 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 145 PROT_READ | PROT_WRITE, MAP_SHARED, 146 vcpuFD, 0); 147 if (_kvmRun == MAP_FAILED) 148 panic("KVM: Failed to map run data structure\n"); 149 150 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 151 // available. The offset into the KVM's communication page is 152 // provided by the coalesced MMIO capability. 153 int mmioOffset(kvm.capCoalescedMMIO()); 154 if (!p->useCoalescedMMIO) { 155 inform("KVM: Coalesced MMIO disabled by config.\n"); 156 } else if (mmioOffset) { 157 inform("KVM: Coalesced IO available\n"); 158 mmioRing = (struct kvm_coalesced_mmio_ring *)( 159 (char *)_kvmRun + (mmioOffset * pageSize)); 160 } else { 161 inform("KVM: Coalesced not supported by host OS\n"); 162 } 163 164 thread->startup(); 165 166 Event *startupEvent( 167 new EventWrapper<BaseKvmCPU, 168 &BaseKvmCPU::startupThread>(this, true)); 169 schedule(startupEvent, curTick()); 170} 171 172void 173BaseKvmCPU::startupThread() 174{ 175 // Do thread-specific initialization. We need to setup signal 176 // delivery for counters and timers from within the thread that 177 // will execute the event queue to ensure that signals are 178 // delivered to the right threads. 179 const BaseKvmCPUParams * const p( 180 dynamic_cast<const BaseKvmCPUParams *>(params())); 181 182 vcpuThread = pthread_self(); 183 184 // Setup signal handlers. This has to be done after the vCPU is 185 // created since it manipulates the vCPU signal mask. 186 setupSignalHandler(); 187 188 setupCounters(); 189 190 if (p->usePerfOverflow) 191 runTimer.reset(new PerfKvmTimer(hwCycles, 192 KVM_KICK_SIGNAL, 193 p->hostFactor, 194 p->hostFreq)); 195 else 196 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 197 p->hostFactor, 198 p->hostFreq)); 199 200} 201 202void 203BaseKvmCPU::regStats() 204{ 205 using namespace Stats; 206 207 BaseCPU::regStats(); 208 209 numInsts 210 .name(name() + ".committedInsts") 211 .desc("Number of instructions committed") 212 ; 213 214 numVMExits 215 .name(name() + ".numVMExits") 216 .desc("total number of KVM exits") 217 ; 218 219 numVMHalfEntries 220 .name(name() + ".numVMHalfEntries") 221 .desc("number of KVM entries to finalize pending operations") 222 ; 223 224 numExitSignal 225 .name(name() + ".numExitSignal") 226 .desc("exits due to signal delivery") 227 ; 228 229 numMMIO 230 .name(name() + ".numMMIO") 231 .desc("number of VM exits due to memory mapped IO") 232 ; 233 234 numCoalescedMMIO 235 .name(name() + ".numCoalescedMMIO") 236 .desc("number of coalesced memory mapped IO requests") 237 ; 238 239 numIO 240 .name(name() + ".numIO") 241 .desc("number of VM exits due to legacy IO") 242 ; 243 244 numHalt 245 .name(name() + ".numHalt") 246 .desc("number of VM exits due to wait for interrupt instructions") 247 ; 248 249 numInterrupts 250 .name(name() + ".numInterrupts") 251 .desc("number of interrupts delivered") 252 ; 253 254 numHypercalls 255 .name(name() + ".numHypercalls") 256 .desc("number of hypercalls") 257 ; 258} 259 260void 261BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const 262{ 263 if (DTRACE(Checkpoint)) { 264 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 265 dump(); 266 } 267 268 assert(tid == 0); 269 assert(_status == Idle); 270 thread->serialize(cp); 271} 272 273void 274BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) 275{ 276 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 277 278 assert(tid == 0); 279 assert(_status == Idle); 280 thread->unserialize(cp); 281 threadContextDirty = true; 282} 283 284DrainState 285BaseKvmCPU::drain() 286{ 287 if (switchedOut()) 288 return DrainState::Drained; 289 290 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 291 switch (_status) { 292 case Running: 293 // The base KVM code is normally ready when it is in the 294 // Running state, but the architecture specific code might be 295 // of a different opinion. This may happen when the CPU been 296 // notified of an event that hasn't been accepted by the vCPU 297 // yet. 298 if (!archIsDrained()) 299 return DrainState::Draining; 300 301 // The state of the CPU is consistent, so we don't need to do 302 // anything special to drain it. We simply de-schedule the 303 // tick event and enter the Idle state to prevent nasty things 304 // like MMIOs from happening. 305 if (tickEvent.scheduled()) 306 deschedule(tickEvent); 307 _status = Idle; 308 309 /** FALLTHROUGH */ 310 case Idle: 311 // Idle, no need to drain 312 assert(!tickEvent.scheduled()); 313 314 // Sync the thread context here since we'll need it when we 315 // switch CPUs or checkpoint the CPU. 316 syncThreadContext(); 317 318 return DrainState::Drained; 319 320 case RunningServiceCompletion: 321 // The CPU has just requested a service that was handled in 322 // the RunningService state, but the results have still not 323 // been reported to the CPU. Now, we /could/ probably just 324 // update the register state ourselves instead of letting KVM 325 // handle it, but that would be tricky. Instead, we enter KVM 326 // and let it do its stuff. 327 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 328 "requesting drain.\n"); 329 return DrainState::Draining; 330 331 case RunningService: 332 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 333 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 334 return DrainState::Draining; 335 336 default: 337 panic("KVM: Unhandled CPU state in drain()\n"); 338 return DrainState::Drained; 339 } 340} 341 342void 343BaseKvmCPU::drainResume() 344{ 345 assert(!tickEvent.scheduled()); 346 347 // We might have been switched out. In that case, we don't need to 348 // do anything. 349 if (switchedOut()) 350 return; 351 352 DPRINTF(Kvm, "drainResume\n"); 353 verifyMemoryMode(); 354 355 // The tick event is de-scheduled as a part of the draining 356 // process. Re-schedule it if the thread context is active. 357 if (tc->status() == ThreadContext::Active) { 358 schedule(tickEvent, nextCycle()); 359 _status = Running; 360 } else { 361 _status = Idle; 362 } 363} 364 365void 366BaseKvmCPU::switchOut() 367{ 368 DPRINTF(Kvm, "switchOut\n"); 369 370 BaseCPU::switchOut(); 371 372 // We should have drained prior to executing a switchOut, which 373 // means that the tick event shouldn't be scheduled and the CPU is 374 // idle. 375 assert(!tickEvent.scheduled()); 376 assert(_status == Idle); 377} 378 379void 380BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 381{ 382 DPRINTF(Kvm, "takeOverFrom\n"); 383 384 BaseCPU::takeOverFrom(cpu); 385 386 // We should have drained prior to executing a switchOut, which 387 // means that the tick event shouldn't be scheduled and the CPU is 388 // idle. 389 assert(!tickEvent.scheduled()); 390 assert(_status == Idle); 391 assert(threadContexts.size() == 1); 392 393 // Force an update of the KVM state here instead of flagging the 394 // TC as dirty. This is not ideal from a performance point of 395 // view, but it makes debugging easier as it allows meaningful KVM 396 // state to be dumped before and after a takeover. 397 updateKvmState(); 398 threadContextDirty = false; 399} 400 401void 402BaseKvmCPU::verifyMemoryMode() const 403{ 404 if (!(system->isAtomicMode() && system->bypassCaches())) { 405 fatal("The KVM-based CPUs requires the memory system to be in the " 406 "'atomic_noncaching' mode.\n"); 407 } 408} 409 410void 411BaseKvmCPU::wakeup(ThreadID tid) 412{ 413 DPRINTF(Kvm, "wakeup()\n"); 414 // This method might have been called from another 415 // context. Migrate to this SimObject's event queue when 416 // delivering the wakeup signal. 417 EventQueue::ScopedMigration migrate(eventQueue()); 418 419 // Kick the vCPU to get it to come out of KVM. 420 kick(); 421 422 if (thread->status() != ThreadContext::Suspended) 423 return; 424 425 thread->activate(); 426} 427 428void 429BaseKvmCPU::activateContext(ThreadID thread_num) 430{ 431 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 432 433 assert(thread_num == 0); 434 assert(thread); 435 436 assert(_status == Idle); 437 assert(!tickEvent.scheduled()); 438 439 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 440 441 schedule(tickEvent, clockEdge(Cycles(0))); 442 _status = Running; 443} 444 445 446void 447BaseKvmCPU::suspendContext(ThreadID thread_num) 448{ 449 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 450 451 assert(thread_num == 0); 452 assert(thread); 453 454 if (_status == Idle) 455 return; 456 457 assert(_status == Running || _status == RunningServiceCompletion); 458 459 // The tick event may no be scheduled if the quest has requested 460 // the monitor to wait for interrupts. The normal CPU models can 461 // get their tick events descheduled by quiesce instructions, but 462 // that can't happen here. 463 if (tickEvent.scheduled()) 464 deschedule(tickEvent); 465 466 _status = Idle; 467} 468 469void 470BaseKvmCPU::deallocateContext(ThreadID thread_num) 471{ 472 // for now, these are equivalent 473 suspendContext(thread_num); 474} 475 476void 477BaseKvmCPU::haltContext(ThreadID thread_num) 478{ 479 // for now, these are equivalent 480 suspendContext(thread_num); 481} 482 483ThreadContext * 484BaseKvmCPU::getContext(int tn) 485{ 486 assert(tn == 0); 487 syncThreadContext(); 488 return tc; 489} 490 491 492Counter 493BaseKvmCPU::totalInsts() const 494{ 495 return ctrInsts; 496} 497 498Counter 499BaseKvmCPU::totalOps() const 500{ 501 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 502 return ctrInsts; 503} 504 505void 506BaseKvmCPU::dump() const 507{ 508 inform("State dumping not implemented."); 509} 510 511void 512BaseKvmCPU::tick() 513{ 514 Tick delay(0); 515 assert(_status != Idle); 516 517 switch (_status) { 518 case RunningService: 519 // handleKvmExit() will determine the next state of the CPU 520 delay = handleKvmExit(); 521 522 if (tryDrain()) 523 _status = Idle; 524 break; 525 526 case RunningServiceCompletion: 527 case Running: { 528 const uint64_t nextInstEvent( 529 !comInstEventQueue[0]->empty() ? 530 comInstEventQueue[0]->nextTick() : UINT64_MAX); 531 // Enter into KVM and complete pending IO instructions if we 532 // have an instruction event pending. 533 const Tick ticksToExecute( 534 nextInstEvent > ctrInsts ? 535 curEventQueue()->nextTick() - curTick() : 0); 536 537 // We might need to update the KVM state. 538 syncKvmState(); 539 540 // Setup any pending instruction count breakpoints using 541 // PerfEvent if we are going to execute more than just an IO 542 // completion. 543 if (ticksToExecute > 0) 544 setupInstStop(); 545 546 DPRINTF(KvmRun, "Entering KVM...\n"); 547 if (drainState() == DrainState::Draining) { 548 // Force an immediate exit from KVM after completing 549 // pending operations. The architecture-specific code 550 // takes care to run until it is in a state where it can 551 // safely be drained. 552 delay = kvmRunDrain(); 553 } else { 554 delay = kvmRun(ticksToExecute); 555 } 556 557 // The CPU might have been suspended before entering into 558 // KVM. Assume that the CPU was suspended /before/ entering 559 // into KVM and skip the exit handling. 560 if (_status == Idle) 561 break; 562 563 // Entering into KVM implies that we'll have to reload the thread 564 // context from KVM if we want to access it. Flag the KVM state as 565 // dirty with respect to the cached thread context. 566 kvmStateDirty = true; 567 568 // Enter into the RunningService state unless the 569 // simulation was stopped by a timer. 570 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 571 _status = RunningService; 572 } else { 573 ++numExitSignal; 574 _status = Running; 575 } 576 577 // Service any pending instruction events. The vCPU should 578 // have exited in time for the event using the instruction 579 // counter configured by setupInstStop(). 580 comInstEventQueue[0]->serviceEvents(ctrInsts); 581 system->instEventQueue.serviceEvents(system->totalNumInsts); 582 583 if (tryDrain()) 584 _status = Idle; 585 } break; 586 587 default: 588 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 589 _status); 590 } 591 592 // Schedule a new tick if we are still running 593 if (_status != Idle) 594 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 595} 596 597Tick 598BaseKvmCPU::kvmRunDrain() 599{ 600 // By default, the only thing we need to drain is a pending IO 601 // operation which assumes that we are in the 602 // RunningServiceCompletion state. 603 assert(_status == RunningServiceCompletion); 604 605 // Deliver the data from the pending IO operation and immediately 606 // exit. 607 return kvmRun(0); 608} 609 610uint64_t 611BaseKvmCPU::getHostCycles() const 612{ 613 return hwCycles.read(); 614} 615 616Tick 617BaseKvmCPU::kvmRun(Tick ticks) 618{ 619 Tick ticksExecuted; 620 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 621 622 if (ticks == 0) { 623 // Settings ticks == 0 is a special case which causes an entry 624 // into KVM that finishes pending operations (e.g., IO) and 625 // then immediately exits. 626 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 627 628 ++numVMHalfEntries; 629 630 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 631 // thread). The KVM control signal is masked while executing 632 // in gem5 and gets unmasked temporarily as when entering 633 // KVM. See setSignalMask() and setupSignalHandler(). 634 kick(); 635 636 // Start the vCPU. KVM will check for signals after completing 637 // pending operations (IO). Since the KVM_KICK_SIGNAL is 638 // pending, this forces an immediate exit to gem5 again. We 639 // don't bother to setup timers since this shouldn't actually 640 // execute any code (other than completing half-executed IO 641 // instructions) in the guest. 642 ioctlRun(); 643 644 // We always execute at least one cycle to prevent the 645 // BaseKvmCPU::tick() to be rescheduled on the same tick 646 // twice. 647 ticksExecuted = clockPeriod(); 648 } else { 649 // This method is executed as a result of a tick event. That 650 // means that the event queue will be locked when entering the 651 // method. We temporarily unlock the event queue to allow 652 // other threads to steal control of this thread to inject 653 // interrupts. They will typically lock the queue and then 654 // force an exit from KVM by kicking the vCPU. 655 EventQueue::ScopedRelease release(curEventQueue()); 656 657 if (ticks < runTimer->resolution()) { 658 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 659 ticks, runTimer->resolution()); 660 ticks = runTimer->resolution(); 661 } 662 663 // Get hardware statistics after synchronizing contexts. The KVM 664 // state update might affect guest cycle counters. 665 uint64_t baseCycles(getHostCycles()); 666 uint64_t baseInstrs(hwInstructions.read()); 667 668 // Arm the run timer and start the cycle timer if it isn't 669 // controlled by the overflow timer. Starting/stopping the cycle 670 // timer automatically starts the other perf timers as they are in 671 // the same counter group. 672 runTimer->arm(ticks); 673 if (!perfControlledByTimer) 674 hwCycles.start(); 675 676 ioctlRun(); 677 678 runTimer->disarm(); 679 if (!perfControlledByTimer) 680 hwCycles.stop(); 681 682 // The control signal may have been delivered after we exited 683 // from KVM. It will be pending in that case since it is 684 // masked when we aren't executing in KVM. Discard it to make 685 // sure we don't deliver it immediately next time we try to 686 // enter into KVM. 687 discardPendingSignal(KVM_KICK_SIGNAL); 688 689 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 690 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 691 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 692 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 693 694 /* Update statistics */ 695 numCycles += simCyclesExecuted;; 696 numInsts += instsExecuted; 697 ctrInsts += instsExecuted; 698 system->totalNumInsts += instsExecuted; 699 700 DPRINTF(KvmRun, 701 "KVM: Executed %i instructions in %i cycles " 702 "(%i ticks, sim cycles: %i).\n", 703 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 704 } 705 706 ++numVMExits; 707 708 return ticksExecuted + flushCoalescedMMIO(); 709} 710 711void 712BaseKvmCPU::kvmNonMaskableInterrupt() 713{ 714 ++numInterrupts; 715 if (ioctl(KVM_NMI) == -1) 716 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 717} 718 719void 720BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 721{ 722 ++numInterrupts; 723 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 724 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 725} 726 727void 728BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 729{ 730 if (ioctl(KVM_GET_REGS, ®s) == -1) 731 panic("KVM: Failed to get guest registers\n"); 732} 733 734void 735BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 736{ 737 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 738 panic("KVM: Failed to set guest registers\n"); 739} 740 741void 742BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 743{ 744 if (ioctl(KVM_GET_SREGS, ®s) == -1) 745 panic("KVM: Failed to get guest special registers\n"); 746} 747 748void 749BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 750{ 751 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 752 panic("KVM: Failed to set guest special registers\n"); 753} 754 755void 756BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 757{ 758 if (ioctl(KVM_GET_FPU, &state) == -1) 759 panic("KVM: Failed to get guest FPU state\n"); 760} 761 762void 763BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 764{ 765 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 766 panic("KVM: Failed to set guest FPU state\n"); 767} 768 769 770void 771BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 772{ 773#ifdef KVM_SET_ONE_REG 774 struct kvm_one_reg reg; 775 reg.id = id; 776 reg.addr = (uint64_t)addr; 777 778 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 779 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 780 id, errno); 781 } 782#else 783 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 784#endif 785} 786 787void 788BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 789{ 790#ifdef KVM_GET_ONE_REG 791 struct kvm_one_reg reg; 792 reg.id = id; 793 reg.addr = (uint64_t)addr; 794 795 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 796 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 797 id, errno); 798 } 799#else 800 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 801#endif 802} 803 804std::string 805BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 806{ 807#ifdef KVM_GET_ONE_REG 808 std::ostringstream ss; 809 810 ss.setf(std::ios::hex, std::ios::basefield); 811 ss.setf(std::ios::showbase); 812#define HANDLE_INTTYPE(len) \ 813 case KVM_REG_SIZE_U ## len: { \ 814 uint ## len ## _t value; \ 815 getOneReg(id, &value); \ 816 ss << value; \ 817 } break 818 819#define HANDLE_ARRAY(len) \ 820 case KVM_REG_SIZE_U ## len: { \ 821 uint8_t value[len / 8]; \ 822 getOneReg(id, value); \ 823 ccprintf(ss, "[0x%x", value[0]); \ 824 for (int i = 1; i < len / 8; ++i) \ 825 ccprintf(ss, ", 0x%x", value[i]); \ 826 ccprintf(ss, "]"); \ 827 } break 828 829 switch (id & KVM_REG_SIZE_MASK) { 830 HANDLE_INTTYPE(8); 831 HANDLE_INTTYPE(16); 832 HANDLE_INTTYPE(32); 833 HANDLE_INTTYPE(64); 834 HANDLE_ARRAY(128); 835 HANDLE_ARRAY(256); 836 HANDLE_ARRAY(512); 837 HANDLE_ARRAY(1024); 838 default: 839 ss << "??"; 840 } 841 842#undef HANDLE_INTTYPE 843#undef HANDLE_ARRAY 844 845 return ss.str(); 846#else 847 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 848#endif 849} 850 851void 852BaseKvmCPU::syncThreadContext() 853{ 854 if (!kvmStateDirty) 855 return; 856 857 assert(!threadContextDirty); 858 859 updateThreadContext(); 860 kvmStateDirty = false; 861} 862 863void 864BaseKvmCPU::syncKvmState() 865{ 866 if (!threadContextDirty) 867 return; 868 869 assert(!kvmStateDirty); 870 871 updateKvmState(); 872 threadContextDirty = false; 873} 874 875Tick 876BaseKvmCPU::handleKvmExit() 877{ 878 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 879 assert(_status == RunningService); 880 881 // Switch into the running state by default. Individual handlers 882 // can override this. 883 _status = Running; 884 switch (_kvmRun->exit_reason) { 885 case KVM_EXIT_UNKNOWN: 886 return handleKvmExitUnknown(); 887 888 case KVM_EXIT_EXCEPTION: 889 return handleKvmExitException(); 890 891 case KVM_EXIT_IO: 892 _status = RunningServiceCompletion; 893 ++numIO; 894 return handleKvmExitIO(); 895 896 case KVM_EXIT_HYPERCALL: 897 ++numHypercalls; 898 return handleKvmExitHypercall(); 899 900 case KVM_EXIT_HLT: 901 /* The guest has halted and is waiting for interrupts */ 902 DPRINTF(Kvm, "handleKvmExitHalt\n"); 903 ++numHalt; 904 905 // Suspend the thread until the next interrupt arrives 906 thread->suspend(); 907 908 // This is actually ignored since the thread is suspended. 909 return 0; 910 911 case KVM_EXIT_MMIO: 912 _status = RunningServiceCompletion; 913 /* Service memory mapped IO requests */ 914 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 915 _kvmRun->mmio.is_write, 916 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 917 918 ++numMMIO; 919 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 920 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 921 922 case KVM_EXIT_IRQ_WINDOW_OPEN: 923 return handleKvmExitIRQWindowOpen(); 924 925 case KVM_EXIT_FAIL_ENTRY: 926 return handleKvmExitFailEntry(); 927 928 case KVM_EXIT_INTR: 929 /* KVM was interrupted by a signal, restart it in the next 930 * tick. */ 931 return 0; 932 933 case KVM_EXIT_INTERNAL_ERROR: 934 panic("KVM: Internal error (suberror: %u)\n", 935 _kvmRun->internal.suberror); 936 937 default: 938 dump(); 939 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 940 } 941} 942 943Tick 944BaseKvmCPU::handleKvmExitIO() 945{ 946 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 947 _kvmRun->io.direction, _kvmRun->io.size, 948 _kvmRun->io.port, _kvmRun->io.count); 949} 950 951Tick 952BaseKvmCPU::handleKvmExitHypercall() 953{ 954 panic("KVM: Unhandled hypercall\n"); 955} 956 957Tick 958BaseKvmCPU::handleKvmExitIRQWindowOpen() 959{ 960 warn("KVM: Unhandled IRQ window.\n"); 961 return 0; 962} 963 964 965Tick 966BaseKvmCPU::handleKvmExitUnknown() 967{ 968 dump(); 969 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 970 _kvmRun->hw.hardware_exit_reason); 971} 972 973Tick 974BaseKvmCPU::handleKvmExitException() 975{ 976 dump(); 977 panic("KVM: Got exception when starting vCPU " 978 "(exception: %u, error_code: %u)\n", 979 _kvmRun->ex.exception, _kvmRun->ex.error_code); 980} 981 982Tick 983BaseKvmCPU::handleKvmExitFailEntry() 984{ 985 dump(); 986 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 987 _kvmRun->fail_entry.hardware_entry_failure_reason); 988} 989 990Tick 991BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 992{ 993 ThreadContext *tc(thread->getTC()); 994 syncThreadContext(); 995 996 Request mmio_req(paddr, size, Request::UNCACHEABLE, dataMasterId()); 997 mmio_req.setThreadContext(tc->contextId(), 0); 998 // Some architectures do need to massage physical addresses a bit 999 // before they are inserted into the memory system. This enables 1000 // APIC accesses on x86 and m5ops where supported through a MMIO 1001 // interface. 1002 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1003 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 1004 if (fault != NoFault) 1005 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1006 1007 1008 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1009 Packet pkt(&mmio_req, cmd); 1010 pkt.dataStatic(data); 1011 1012 if (mmio_req.isMmappedIpr()) { 1013 // We currently assume that there is no need to migrate to a 1014 // different event queue when doing IPRs. Currently, IPRs are 1015 // only used for m5ops, so it should be a valid assumption. 1016 const Cycles ipr_delay(write ? 1017 TheISA::handleIprWrite(tc, &pkt) : 1018 TheISA::handleIprRead(tc, &pkt)); 1019 threadContextDirty = true; 1020 return clockPeriod() * ipr_delay; 1021 } else { 1022 // Temporarily lock and migrate to the event queue of the 1023 // VM. This queue is assumed to "own" all devices we need to 1024 // access if running in multi-core mode. 1025 EventQueue::ScopedMigration migrate(vm.eventQueue()); 1026 1027 return dataPort.sendAtomic(&pkt); 1028 } 1029} 1030 1031void 1032BaseKvmCPU::setSignalMask(const sigset_t *mask) 1033{ 1034 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1035 1036 if (mask) { 1037 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1038 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1039 // The kernel and the user-space headers have different ideas 1040 // about the size of sigset_t. This seems like a massive hack, 1041 // but is actually what qemu does. 1042 assert(sizeof(*mask) >= 8); 1043 kvm_mask->len = 8; 1044 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1045 } 1046 1047 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1048 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1049 errno); 1050} 1051 1052int 1053BaseKvmCPU::ioctl(int request, long p1) const 1054{ 1055 if (vcpuFD == -1) 1056 panic("KVM: CPU ioctl called before initialization\n"); 1057 1058 return ::ioctl(vcpuFD, request, p1); 1059} 1060 1061Tick 1062BaseKvmCPU::flushCoalescedMMIO() 1063{ 1064 if (!mmioRing) 1065 return 0; 1066 1067 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1068 1069 // TODO: We might need to do synchronization when we start to 1070 // support multiple CPUs 1071 Tick ticks(0); 1072 while (mmioRing->first != mmioRing->last) { 1073 struct kvm_coalesced_mmio &ent( 1074 mmioRing->coalesced_mmio[mmioRing->first]); 1075 1076 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1077 ent.phys_addr, ent.len); 1078 1079 ++numCoalescedMMIO; 1080 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1081 1082 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1083 } 1084 1085 return ticks; 1086} 1087 1088/** 1089 * Dummy handler for KVM kick signals. 1090 * 1091 * @note This function is usually not called since the kernel doesn't 1092 * seem to deliver signals when the signal is only unmasked when 1093 * running in KVM. This doesn't matter though since we are only 1094 * interested in getting KVM to exit, which happens as expected. See 1095 * setupSignalHandler() and kvmRun() for details about KVM signal 1096 * handling. 1097 */ 1098static void 1099onKickSignal(int signo, siginfo_t *si, void *data) 1100{ 1101} 1102 1103void 1104BaseKvmCPU::setupSignalHandler() 1105{ 1106 struct sigaction sa; 1107 1108 memset(&sa, 0, sizeof(sa)); 1109 sa.sa_sigaction = onKickSignal; 1110 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1111 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1112 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1113 1114 sigset_t sigset; 1115 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1116 panic("KVM: Failed get signal mask\n"); 1117 1118 // Request KVM to setup the same signal mask as we're currently 1119 // running with except for the KVM control signal. We'll sometimes 1120 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1121 // KVM after servicing IO requests. See kvmRun(). 1122 sigdelset(&sigset, KVM_KICK_SIGNAL); 1123 setSignalMask(&sigset); 1124 1125 // Mask our control signals so they aren't delivered unless we're 1126 // actually executing inside KVM. 1127 sigaddset(&sigset, KVM_KICK_SIGNAL); 1128 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1129 panic("KVM: Failed mask the KVM control signals\n"); 1130} 1131 1132bool 1133BaseKvmCPU::discardPendingSignal(int signum) const 1134{ 1135 int discardedSignal; 1136 1137 // Setting the timeout to zero causes sigtimedwait to return 1138 // immediately. 1139 struct timespec timeout; 1140 timeout.tv_sec = 0; 1141 timeout.tv_nsec = 0; 1142 1143 sigset_t sigset; 1144 sigemptyset(&sigset); 1145 sigaddset(&sigset, signum); 1146 1147 do { 1148 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1149 } while (discardedSignal == -1 && errno == EINTR); 1150 1151 if (discardedSignal == signum) 1152 return true; 1153 else if (discardedSignal == -1 && errno == EAGAIN) 1154 return false; 1155 else 1156 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1157 discardedSignal, errno); 1158} 1159 1160void 1161BaseKvmCPU::setupCounters() 1162{ 1163 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1164 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1165 PERF_COUNT_HW_CPU_CYCLES); 1166 cfgCycles.disabled(true) 1167 .pinned(true); 1168 1169 // Try to exclude the host. We set both exclude_hv and 1170 // exclude_host since different architectures use slightly 1171 // different APIs in the kernel. 1172 cfgCycles.exclude_hv(true) 1173 .exclude_host(true); 1174 1175 if (perfControlledByTimer) { 1176 // We need to configure the cycles counter to send overflows 1177 // since we are going to use it to trigger timer signals that 1178 // trap back into m5 from KVM. In practice, this means that we 1179 // need to set some non-zero sample period that gets 1180 // overridden when the timer is armed. 1181 cfgCycles.wakeupEvents(1) 1182 .samplePeriod(42); 1183 } 1184 1185 hwCycles.attach(cfgCycles, 1186 0); // TID (0 => currentThread) 1187 1188 setupInstCounter(); 1189} 1190 1191bool 1192BaseKvmCPU::tryDrain() 1193{ 1194 if (drainState() != DrainState::Draining) 1195 return false; 1196 1197 if (!archIsDrained()) { 1198 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1199 return false; 1200 } 1201 1202 if (_status == Idle || _status == Running) { 1203 DPRINTF(Drain, 1204 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1205 signalDrainDone(); 1206 return true; 1207 } else { 1208 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1209 return false; 1210 } 1211} 1212 1213void 1214BaseKvmCPU::ioctlRun() 1215{ 1216 if (ioctl(KVM_RUN) == -1) { 1217 if (errno != EINTR) 1218 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1219 errno); 1220 } 1221} 1222 1223void 1224BaseKvmCPU::setupInstStop() 1225{ 1226 if (comInstEventQueue[0]->empty()) { 1227 setupInstCounter(0); 1228 } else { 1229 const uint64_t next(comInstEventQueue[0]->nextTick()); 1230 1231 assert(next > ctrInsts); 1232 setupInstCounter(next - ctrInsts); 1233 } 1234} 1235 1236void 1237BaseKvmCPU::setupInstCounter(uint64_t period) 1238{ 1239 // No need to do anything if we aren't attaching for the first 1240 // time or the period isn't changing. 1241 if (period == activeInstPeriod && hwInstructions.attached()) 1242 return; 1243 1244 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1245 PERF_COUNT_HW_INSTRUCTIONS); 1246 1247 // Try to exclude the host. We set both exclude_hv and 1248 // exclude_host since different architectures use slightly 1249 // different APIs in the kernel. 1250 cfgInstructions.exclude_hv(true) 1251 .exclude_host(true); 1252 1253 if (period) { 1254 // Setup a sampling counter if that has been requested. 1255 cfgInstructions.wakeupEvents(1) 1256 .samplePeriod(period); 1257 } 1258 1259 // We need to detach and re-attach the counter to reliably change 1260 // sampling settings. See PerfKvmCounter::period() for details. 1261 if (hwInstructions.attached()) 1262 hwInstructions.detach(); 1263 assert(hwCycles.attached()); 1264 hwInstructions.attach(cfgInstructions, 1265 0, // TID (0 => currentThread) 1266 hwCycles); 1267 1268 if (period) 1269 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1270 1271 activeInstPeriod = period; 1272} 1273