base.cc revision 10905
1/* 2 * Copyright (c) 2012, 2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 67 : BaseCPU(params), 68 vm(*params->kvmVM), 69 _status(Idle), 70 dataPort(name() + ".dcache_port", this), 71 instPort(name() + ".icache_port", this), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent(*this), 78 activeInstPeriod(0), 79 perfControlledByTimer(params->usePerfOverflow), 80 hostFactor(params->hostFactor), 81 drainManager(NULL), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121} 122 123void 124BaseKvmCPU::startup() 125{ 126 const BaseKvmCPUParams * const p( 127 dynamic_cast<const BaseKvmCPUParams *>(params())); 128 129 Kvm &kvm(vm.kvm); 130 131 BaseCPU::startup(); 132 133 assert(vcpuFD == -1); 134 135 // Tell the VM that a CPU is about to start. 136 vm.cpuStartup(); 137 138 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 139 // not guaranteed that the parent KVM VM has initialized at that 140 // point. Initialize virtual CPUs here instead. 141 vcpuFD = vm.createVCPU(vcpuID); 142 143 // Map the KVM run structure */ 144 vcpuMMapSize = kvm.getVCPUMMapSize(); 145 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 146 PROT_READ | PROT_WRITE, MAP_SHARED, 147 vcpuFD, 0); 148 if (_kvmRun == MAP_FAILED) 149 panic("KVM: Failed to map run data structure\n"); 150 151 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 152 // available. The offset into the KVM's communication page is 153 // provided by the coalesced MMIO capability. 154 int mmioOffset(kvm.capCoalescedMMIO()); 155 if (!p->useCoalescedMMIO) { 156 inform("KVM: Coalesced MMIO disabled by config.\n"); 157 } else if (mmioOffset) { 158 inform("KVM: Coalesced IO available\n"); 159 mmioRing = (struct kvm_coalesced_mmio_ring *)( 160 (char *)_kvmRun + (mmioOffset * pageSize)); 161 } else { 162 inform("KVM: Coalesced not supported by host OS\n"); 163 } 164 165 thread->startup(); 166 167 Event *startupEvent( 168 new EventWrapper<BaseKvmCPU, 169 &BaseKvmCPU::startupThread>(this, true)); 170 schedule(startupEvent, curTick()); 171} 172 173void 174BaseKvmCPU::startupThread() 175{ 176 // Do thread-specific initialization. We need to setup signal 177 // delivery for counters and timers from within the thread that 178 // will execute the event queue to ensure that signals are 179 // delivered to the right threads. 180 const BaseKvmCPUParams * const p( 181 dynamic_cast<const BaseKvmCPUParams *>(params())); 182 183 vcpuThread = pthread_self(); 184 185 // Setup signal handlers. This has to be done after the vCPU is 186 // created since it manipulates the vCPU signal mask. 187 setupSignalHandler(); 188 189 setupCounters(); 190 191 if (p->usePerfOverflow) 192 runTimer.reset(new PerfKvmTimer(hwCycles, 193 KVM_KICK_SIGNAL, 194 p->hostFactor, 195 p->hostFreq)); 196 else 197 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 198 p->hostFactor, 199 p->hostFreq)); 200 201} 202 203void 204BaseKvmCPU::regStats() 205{ 206 using namespace Stats; 207 208 BaseCPU::regStats(); 209 210 numInsts 211 .name(name() + ".committedInsts") 212 .desc("Number of instructions committed") 213 ; 214 215 numVMExits 216 .name(name() + ".numVMExits") 217 .desc("total number of KVM exits") 218 ; 219 220 numVMHalfEntries 221 .name(name() + ".numVMHalfEntries") 222 .desc("number of KVM entries to finalize pending operations") 223 ; 224 225 numExitSignal 226 .name(name() + ".numExitSignal") 227 .desc("exits due to signal delivery") 228 ; 229 230 numMMIO 231 .name(name() + ".numMMIO") 232 .desc("number of VM exits due to memory mapped IO") 233 ; 234 235 numCoalescedMMIO 236 .name(name() + ".numCoalescedMMIO") 237 .desc("number of coalesced memory mapped IO requests") 238 ; 239 240 numIO 241 .name(name() + ".numIO") 242 .desc("number of VM exits due to legacy IO") 243 ; 244 245 numHalt 246 .name(name() + ".numHalt") 247 .desc("number of VM exits due to wait for interrupt instructions") 248 ; 249 250 numInterrupts 251 .name(name() + ".numInterrupts") 252 .desc("number of interrupts delivered") 253 ; 254 255 numHypercalls 256 .name(name() + ".numHypercalls") 257 .desc("number of hypercalls") 258 ; 259} 260 261void 262BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const 263{ 264 if (DTRACE(Checkpoint)) { 265 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 266 dump(); 267 } 268 269 assert(tid == 0); 270 assert(_status == Idle); 271 thread->serialize(cp); 272} 273 274void 275BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) 276{ 277 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 278 279 assert(tid == 0); 280 assert(_status == Idle); 281 thread->unserialize(cp); 282 threadContextDirty = true; 283} 284 285unsigned int 286BaseKvmCPU::drain(DrainManager *dm) 287{ 288 if (switchedOut()) 289 return 0; 290 291 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 292 switch (_status) { 293 case Running: 294 // The base KVM code is normally ready when it is in the 295 // Running state, but the architecture specific code might be 296 // of a different opinion. This may happen when the CPU been 297 // notified of an event that hasn't been accepted by the vCPU 298 // yet. 299 if (!archIsDrained()) { 300 drainManager = dm; 301 return 1; 302 } 303 304 // The state of the CPU is consistent, so we don't need to do 305 // anything special to drain it. We simply de-schedule the 306 // tick event and enter the Idle state to prevent nasty things 307 // like MMIOs from happening. 308 if (tickEvent.scheduled()) 309 deschedule(tickEvent); 310 _status = Idle; 311 312 /** FALLTHROUGH */ 313 case Idle: 314 // Idle, no need to drain 315 assert(!tickEvent.scheduled()); 316 317 // Sync the thread context here since we'll need it when we 318 // switch CPUs or checkpoint the CPU. 319 syncThreadContext(); 320 321 return 0; 322 323 case RunningServiceCompletion: 324 // The CPU has just requested a service that was handled in 325 // the RunningService state, but the results have still not 326 // been reported to the CPU. Now, we /could/ probably just 327 // update the register state ourselves instead of letting KVM 328 // handle it, but that would be tricky. Instead, we enter KVM 329 // and let it do its stuff. 330 drainManager = dm; 331 332 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 333 "requesting drain.\n"); 334 return 1; 335 336 case RunningService: 337 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 338 drainManager = dm; 339 340 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 341 return 1; 342 343 default: 344 panic("KVM: Unhandled CPU state in drain()\n"); 345 return 0; 346 } 347} 348 349void 350BaseKvmCPU::drainResume() 351{ 352 assert(!tickEvent.scheduled()); 353 354 // We might have been switched out. In that case, we don't need to 355 // do anything. 356 if (switchedOut()) 357 return; 358 359 DPRINTF(Kvm, "drainResume\n"); 360 verifyMemoryMode(); 361 362 // The tick event is de-scheduled as a part of the draining 363 // process. Re-schedule it if the thread context is active. 364 if (tc->status() == ThreadContext::Active) { 365 schedule(tickEvent, nextCycle()); 366 _status = Running; 367 } else { 368 _status = Idle; 369 } 370} 371 372void 373BaseKvmCPU::switchOut() 374{ 375 DPRINTF(Kvm, "switchOut\n"); 376 377 BaseCPU::switchOut(); 378 379 // We should have drained prior to executing a switchOut, which 380 // means that the tick event shouldn't be scheduled and the CPU is 381 // idle. 382 assert(!tickEvent.scheduled()); 383 assert(_status == Idle); 384} 385 386void 387BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 388{ 389 DPRINTF(Kvm, "takeOverFrom\n"); 390 391 BaseCPU::takeOverFrom(cpu); 392 393 // We should have drained prior to executing a switchOut, which 394 // means that the tick event shouldn't be scheduled and the CPU is 395 // idle. 396 assert(!tickEvent.scheduled()); 397 assert(_status == Idle); 398 assert(threadContexts.size() == 1); 399 400 // Force an update of the KVM state here instead of flagging the 401 // TC as dirty. This is not ideal from a performance point of 402 // view, but it makes debugging easier as it allows meaningful KVM 403 // state to be dumped before and after a takeover. 404 updateKvmState(); 405 threadContextDirty = false; 406} 407 408void 409BaseKvmCPU::verifyMemoryMode() const 410{ 411 if (!(system->isAtomicMode() && system->bypassCaches())) { 412 fatal("The KVM-based CPUs requires the memory system to be in the " 413 "'atomic_noncaching' mode.\n"); 414 } 415} 416 417void 418BaseKvmCPU::wakeup() 419{ 420 DPRINTF(Kvm, "wakeup()\n"); 421 // This method might have been called from another 422 // context. Migrate to this SimObject's event queue when 423 // delivering the wakeup signal. 424 EventQueue::ScopedMigration migrate(eventQueue()); 425 426 // Kick the vCPU to get it to come out of KVM. 427 kick(); 428 429 if (thread->status() != ThreadContext::Suspended) 430 return; 431 432 thread->activate(); 433} 434 435void 436BaseKvmCPU::activateContext(ThreadID thread_num) 437{ 438 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 439 440 assert(thread_num == 0); 441 assert(thread); 442 443 assert(_status == Idle); 444 assert(!tickEvent.scheduled()); 445 446 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 447 448 schedule(tickEvent, clockEdge(Cycles(0))); 449 _status = Running; 450} 451 452 453void 454BaseKvmCPU::suspendContext(ThreadID thread_num) 455{ 456 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 457 458 assert(thread_num == 0); 459 assert(thread); 460 461 if (_status == Idle) 462 return; 463 464 assert(_status == Running || _status == RunningServiceCompletion); 465 466 // The tick event may no be scheduled if the quest has requested 467 // the monitor to wait for interrupts. The normal CPU models can 468 // get their tick events descheduled by quiesce instructions, but 469 // that can't happen here. 470 if (tickEvent.scheduled()) 471 deschedule(tickEvent); 472 473 _status = Idle; 474} 475 476void 477BaseKvmCPU::deallocateContext(ThreadID thread_num) 478{ 479 // for now, these are equivalent 480 suspendContext(thread_num); 481} 482 483void 484BaseKvmCPU::haltContext(ThreadID thread_num) 485{ 486 // for now, these are equivalent 487 suspendContext(thread_num); 488} 489 490ThreadContext * 491BaseKvmCPU::getContext(int tn) 492{ 493 assert(tn == 0); 494 syncThreadContext(); 495 return tc; 496} 497 498 499Counter 500BaseKvmCPU::totalInsts() const 501{ 502 return ctrInsts; 503} 504 505Counter 506BaseKvmCPU::totalOps() const 507{ 508 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 509 return ctrInsts; 510} 511 512void 513BaseKvmCPU::dump() const 514{ 515 inform("State dumping not implemented."); 516} 517 518void 519BaseKvmCPU::tick() 520{ 521 Tick delay(0); 522 assert(_status != Idle); 523 524 switch (_status) { 525 case RunningService: 526 // handleKvmExit() will determine the next state of the CPU 527 delay = handleKvmExit(); 528 529 if (tryDrain()) 530 _status = Idle; 531 break; 532 533 case RunningServiceCompletion: 534 case Running: { 535 const uint64_t nextInstEvent( 536 !comInstEventQueue[0]->empty() ? 537 comInstEventQueue[0]->nextTick() : UINT64_MAX); 538 // Enter into KVM and complete pending IO instructions if we 539 // have an instruction event pending. 540 const Tick ticksToExecute( 541 nextInstEvent > ctrInsts ? 542 curEventQueue()->nextTick() - curTick() : 0); 543 544 // We might need to update the KVM state. 545 syncKvmState(); 546 547 // Setup any pending instruction count breakpoints using 548 // PerfEvent if we are going to execute more than just an IO 549 // completion. 550 if (ticksToExecute > 0) 551 setupInstStop(); 552 553 DPRINTF(KvmRun, "Entering KVM...\n"); 554 if (drainManager) { 555 // Force an immediate exit from KVM after completing 556 // pending operations. The architecture-specific code 557 // takes care to run until it is in a state where it can 558 // safely be drained. 559 delay = kvmRunDrain(); 560 } else { 561 delay = kvmRun(ticksToExecute); 562 } 563 564 // The CPU might have been suspended before entering into 565 // KVM. Assume that the CPU was suspended /before/ entering 566 // into KVM and skip the exit handling. 567 if (_status == Idle) 568 break; 569 570 // Entering into KVM implies that we'll have to reload the thread 571 // context from KVM if we want to access it. Flag the KVM state as 572 // dirty with respect to the cached thread context. 573 kvmStateDirty = true; 574 575 // Enter into the RunningService state unless the 576 // simulation was stopped by a timer. 577 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 578 _status = RunningService; 579 } else { 580 ++numExitSignal; 581 _status = Running; 582 } 583 584 // Service any pending instruction events. The vCPU should 585 // have exited in time for the event using the instruction 586 // counter configured by setupInstStop(). 587 comInstEventQueue[0]->serviceEvents(ctrInsts); 588 system->instEventQueue.serviceEvents(system->totalNumInsts); 589 590 if (tryDrain()) 591 _status = Idle; 592 } break; 593 594 default: 595 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 596 _status); 597 } 598 599 // Schedule a new tick if we are still running 600 if (_status != Idle) 601 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 602} 603 604Tick 605BaseKvmCPU::kvmRunDrain() 606{ 607 // By default, the only thing we need to drain is a pending IO 608 // operation which assumes that we are in the 609 // RunningServiceCompletion state. 610 assert(_status == RunningServiceCompletion); 611 612 // Deliver the data from the pending IO operation and immediately 613 // exit. 614 return kvmRun(0); 615} 616 617uint64_t 618BaseKvmCPU::getHostCycles() const 619{ 620 return hwCycles.read(); 621} 622 623Tick 624BaseKvmCPU::kvmRun(Tick ticks) 625{ 626 Tick ticksExecuted; 627 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 628 629 if (ticks == 0) { 630 // Settings ticks == 0 is a special case which causes an entry 631 // into KVM that finishes pending operations (e.g., IO) and 632 // then immediately exits. 633 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 634 635 ++numVMHalfEntries; 636 637 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 638 // thread). The KVM control signal is masked while executing 639 // in gem5 and gets unmasked temporarily as when entering 640 // KVM. See setSignalMask() and setupSignalHandler(). 641 kick(); 642 643 // Start the vCPU. KVM will check for signals after completing 644 // pending operations (IO). Since the KVM_KICK_SIGNAL is 645 // pending, this forces an immediate exit to gem5 again. We 646 // don't bother to setup timers since this shouldn't actually 647 // execute any code (other than completing half-executed IO 648 // instructions) in the guest. 649 ioctlRun(); 650 651 // We always execute at least one cycle to prevent the 652 // BaseKvmCPU::tick() to be rescheduled on the same tick 653 // twice. 654 ticksExecuted = clockPeriod(); 655 } else { 656 // This method is executed as a result of a tick event. That 657 // means that the event queue will be locked when entering the 658 // method. We temporarily unlock the event queue to allow 659 // other threads to steal control of this thread to inject 660 // interrupts. They will typically lock the queue and then 661 // force an exit from KVM by kicking the vCPU. 662 EventQueue::ScopedRelease release(curEventQueue()); 663 664 if (ticks < runTimer->resolution()) { 665 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 666 ticks, runTimer->resolution()); 667 ticks = runTimer->resolution(); 668 } 669 670 // Get hardware statistics after synchronizing contexts. The KVM 671 // state update might affect guest cycle counters. 672 uint64_t baseCycles(getHostCycles()); 673 uint64_t baseInstrs(hwInstructions.read()); 674 675 // Arm the run timer and start the cycle timer if it isn't 676 // controlled by the overflow timer. Starting/stopping the cycle 677 // timer automatically starts the other perf timers as they are in 678 // the same counter group. 679 runTimer->arm(ticks); 680 if (!perfControlledByTimer) 681 hwCycles.start(); 682 683 ioctlRun(); 684 685 runTimer->disarm(); 686 if (!perfControlledByTimer) 687 hwCycles.stop(); 688 689 // The control signal may have been delivered after we exited 690 // from KVM. It will be pending in that case since it is 691 // masked when we aren't executing in KVM. Discard it to make 692 // sure we don't deliver it immediately next time we try to 693 // enter into KVM. 694 discardPendingSignal(KVM_KICK_SIGNAL); 695 696 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 697 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 698 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 699 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 700 701 /* Update statistics */ 702 numCycles += simCyclesExecuted;; 703 numInsts += instsExecuted; 704 ctrInsts += instsExecuted; 705 system->totalNumInsts += instsExecuted; 706 707 DPRINTF(KvmRun, 708 "KVM: Executed %i instructions in %i cycles " 709 "(%i ticks, sim cycles: %i).\n", 710 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 711 } 712 713 ++numVMExits; 714 715 return ticksExecuted + flushCoalescedMMIO(); 716} 717 718void 719BaseKvmCPU::kvmNonMaskableInterrupt() 720{ 721 ++numInterrupts; 722 if (ioctl(KVM_NMI) == -1) 723 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 724} 725 726void 727BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 728{ 729 ++numInterrupts; 730 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 731 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 732} 733 734void 735BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 736{ 737 if (ioctl(KVM_GET_REGS, ®s) == -1) 738 panic("KVM: Failed to get guest registers\n"); 739} 740 741void 742BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 743{ 744 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 745 panic("KVM: Failed to set guest registers\n"); 746} 747 748void 749BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 750{ 751 if (ioctl(KVM_GET_SREGS, ®s) == -1) 752 panic("KVM: Failed to get guest special registers\n"); 753} 754 755void 756BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 757{ 758 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 759 panic("KVM: Failed to set guest special registers\n"); 760} 761 762void 763BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 764{ 765 if (ioctl(KVM_GET_FPU, &state) == -1) 766 panic("KVM: Failed to get guest FPU state\n"); 767} 768 769void 770BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 771{ 772 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 773 panic("KVM: Failed to set guest FPU state\n"); 774} 775 776 777void 778BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 779{ 780#ifdef KVM_SET_ONE_REG 781 struct kvm_one_reg reg; 782 reg.id = id; 783 reg.addr = (uint64_t)addr; 784 785 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 786 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 787 id, errno); 788 } 789#else 790 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 791#endif 792} 793 794void 795BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 796{ 797#ifdef KVM_GET_ONE_REG 798 struct kvm_one_reg reg; 799 reg.id = id; 800 reg.addr = (uint64_t)addr; 801 802 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 803 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 804 id, errno); 805 } 806#else 807 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 808#endif 809} 810 811std::string 812BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 813{ 814#ifdef KVM_GET_ONE_REG 815 std::ostringstream ss; 816 817 ss.setf(std::ios::hex, std::ios::basefield); 818 ss.setf(std::ios::showbase); 819#define HANDLE_INTTYPE(len) \ 820 case KVM_REG_SIZE_U ## len: { \ 821 uint ## len ## _t value; \ 822 getOneReg(id, &value); \ 823 ss << value; \ 824 } break 825 826#define HANDLE_ARRAY(len) \ 827 case KVM_REG_SIZE_U ## len: { \ 828 uint8_t value[len / 8]; \ 829 getOneReg(id, value); \ 830 ccprintf(ss, "[0x%x", value[0]); \ 831 for (int i = 1; i < len / 8; ++i) \ 832 ccprintf(ss, ", 0x%x", value[i]); \ 833 ccprintf(ss, "]"); \ 834 } break 835 836 switch (id & KVM_REG_SIZE_MASK) { 837 HANDLE_INTTYPE(8); 838 HANDLE_INTTYPE(16); 839 HANDLE_INTTYPE(32); 840 HANDLE_INTTYPE(64); 841 HANDLE_ARRAY(128); 842 HANDLE_ARRAY(256); 843 HANDLE_ARRAY(512); 844 HANDLE_ARRAY(1024); 845 default: 846 ss << "??"; 847 } 848 849#undef HANDLE_INTTYPE 850#undef HANDLE_ARRAY 851 852 return ss.str(); 853#else 854 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 855#endif 856} 857 858void 859BaseKvmCPU::syncThreadContext() 860{ 861 if (!kvmStateDirty) 862 return; 863 864 assert(!threadContextDirty); 865 866 updateThreadContext(); 867 kvmStateDirty = false; 868} 869 870void 871BaseKvmCPU::syncKvmState() 872{ 873 if (!threadContextDirty) 874 return; 875 876 assert(!kvmStateDirty); 877 878 updateKvmState(); 879 threadContextDirty = false; 880} 881 882Tick 883BaseKvmCPU::handleKvmExit() 884{ 885 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 886 assert(_status == RunningService); 887 888 // Switch into the running state by default. Individual handlers 889 // can override this. 890 _status = Running; 891 switch (_kvmRun->exit_reason) { 892 case KVM_EXIT_UNKNOWN: 893 return handleKvmExitUnknown(); 894 895 case KVM_EXIT_EXCEPTION: 896 return handleKvmExitException(); 897 898 case KVM_EXIT_IO: 899 _status = RunningServiceCompletion; 900 ++numIO; 901 return handleKvmExitIO(); 902 903 case KVM_EXIT_HYPERCALL: 904 ++numHypercalls; 905 return handleKvmExitHypercall(); 906 907 case KVM_EXIT_HLT: 908 /* The guest has halted and is waiting for interrupts */ 909 DPRINTF(Kvm, "handleKvmExitHalt\n"); 910 ++numHalt; 911 912 // Suspend the thread until the next interrupt arrives 913 thread->suspend(); 914 915 // This is actually ignored since the thread is suspended. 916 return 0; 917 918 case KVM_EXIT_MMIO: 919 _status = RunningServiceCompletion; 920 /* Service memory mapped IO requests */ 921 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 922 _kvmRun->mmio.is_write, 923 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 924 925 ++numMMIO; 926 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 927 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 928 929 case KVM_EXIT_IRQ_WINDOW_OPEN: 930 return handleKvmExitIRQWindowOpen(); 931 932 case KVM_EXIT_FAIL_ENTRY: 933 return handleKvmExitFailEntry(); 934 935 case KVM_EXIT_INTR: 936 /* KVM was interrupted by a signal, restart it in the next 937 * tick. */ 938 return 0; 939 940 case KVM_EXIT_INTERNAL_ERROR: 941 panic("KVM: Internal error (suberror: %u)\n", 942 _kvmRun->internal.suberror); 943 944 default: 945 dump(); 946 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 947 } 948} 949 950Tick 951BaseKvmCPU::handleKvmExitIO() 952{ 953 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 954 _kvmRun->io.direction, _kvmRun->io.size, 955 _kvmRun->io.port, _kvmRun->io.count); 956} 957 958Tick 959BaseKvmCPU::handleKvmExitHypercall() 960{ 961 panic("KVM: Unhandled hypercall\n"); 962} 963 964Tick 965BaseKvmCPU::handleKvmExitIRQWindowOpen() 966{ 967 warn("KVM: Unhandled IRQ window.\n"); 968 return 0; 969} 970 971 972Tick 973BaseKvmCPU::handleKvmExitUnknown() 974{ 975 dump(); 976 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 977 _kvmRun->hw.hardware_exit_reason); 978} 979 980Tick 981BaseKvmCPU::handleKvmExitException() 982{ 983 dump(); 984 panic("KVM: Got exception when starting vCPU " 985 "(exception: %u, error_code: %u)\n", 986 _kvmRun->ex.exception, _kvmRun->ex.error_code); 987} 988 989Tick 990BaseKvmCPU::handleKvmExitFailEntry() 991{ 992 dump(); 993 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 994 _kvmRun->fail_entry.hardware_entry_failure_reason); 995} 996 997Tick 998BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 999{ 1000 ThreadContext *tc(thread->getTC()); 1001 syncThreadContext(); 1002 1003 Request mmio_req(paddr, size, Request::UNCACHEABLE, dataMasterId()); 1004 mmio_req.setThreadContext(tc->contextId(), 0); 1005 // Some architectures do need to massage physical addresses a bit 1006 // before they are inserted into the memory system. This enables 1007 // APIC accesses on x86 and m5ops where supported through a MMIO 1008 // interface. 1009 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1010 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 1011 if (fault != NoFault) 1012 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1013 1014 1015 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1016 Packet pkt(&mmio_req, cmd); 1017 pkt.dataStatic(data); 1018 1019 if (mmio_req.isMmappedIpr()) { 1020 // We currently assume that there is no need to migrate to a 1021 // different event queue when doing IPRs. Currently, IPRs are 1022 // only used for m5ops, so it should be a valid assumption. 1023 const Cycles ipr_delay(write ? 1024 TheISA::handleIprWrite(tc, &pkt) : 1025 TheISA::handleIprRead(tc, &pkt)); 1026 threadContextDirty = true; 1027 return clockPeriod() * ipr_delay; 1028 } else { 1029 // Temporarily lock and migrate to the event queue of the 1030 // VM. This queue is assumed to "own" all devices we need to 1031 // access if running in multi-core mode. 1032 EventQueue::ScopedMigration migrate(vm.eventQueue()); 1033 1034 return dataPort.sendAtomic(&pkt); 1035 } 1036} 1037 1038void 1039BaseKvmCPU::setSignalMask(const sigset_t *mask) 1040{ 1041 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1042 1043 if (mask) { 1044 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1045 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1046 // The kernel and the user-space headers have different ideas 1047 // about the size of sigset_t. This seems like a massive hack, 1048 // but is actually what qemu does. 1049 assert(sizeof(*mask) >= 8); 1050 kvm_mask->len = 8; 1051 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1052 } 1053 1054 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1055 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1056 errno); 1057} 1058 1059int 1060BaseKvmCPU::ioctl(int request, long p1) const 1061{ 1062 if (vcpuFD == -1) 1063 panic("KVM: CPU ioctl called before initialization\n"); 1064 1065 return ::ioctl(vcpuFD, request, p1); 1066} 1067 1068Tick 1069BaseKvmCPU::flushCoalescedMMIO() 1070{ 1071 if (!mmioRing) 1072 return 0; 1073 1074 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1075 1076 // TODO: We might need to do synchronization when we start to 1077 // support multiple CPUs 1078 Tick ticks(0); 1079 while (mmioRing->first != mmioRing->last) { 1080 struct kvm_coalesced_mmio &ent( 1081 mmioRing->coalesced_mmio[mmioRing->first]); 1082 1083 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1084 ent.phys_addr, ent.len); 1085 1086 ++numCoalescedMMIO; 1087 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1088 1089 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1090 } 1091 1092 return ticks; 1093} 1094 1095/** 1096 * Dummy handler for KVM kick signals. 1097 * 1098 * @note This function is usually not called since the kernel doesn't 1099 * seem to deliver signals when the signal is only unmasked when 1100 * running in KVM. This doesn't matter though since we are only 1101 * interested in getting KVM to exit, which happens as expected. See 1102 * setupSignalHandler() and kvmRun() for details about KVM signal 1103 * handling. 1104 */ 1105static void 1106onKickSignal(int signo, siginfo_t *si, void *data) 1107{ 1108} 1109 1110void 1111BaseKvmCPU::setupSignalHandler() 1112{ 1113 struct sigaction sa; 1114 1115 memset(&sa, 0, sizeof(sa)); 1116 sa.sa_sigaction = onKickSignal; 1117 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1118 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1119 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1120 1121 sigset_t sigset; 1122 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1123 panic("KVM: Failed get signal mask\n"); 1124 1125 // Request KVM to setup the same signal mask as we're currently 1126 // running with except for the KVM control signal. We'll sometimes 1127 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1128 // KVM after servicing IO requests. See kvmRun(). 1129 sigdelset(&sigset, KVM_KICK_SIGNAL); 1130 setSignalMask(&sigset); 1131 1132 // Mask our control signals so they aren't delivered unless we're 1133 // actually executing inside KVM. 1134 sigaddset(&sigset, KVM_KICK_SIGNAL); 1135 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1136 panic("KVM: Failed mask the KVM control signals\n"); 1137} 1138 1139bool 1140BaseKvmCPU::discardPendingSignal(int signum) const 1141{ 1142 int discardedSignal; 1143 1144 // Setting the timeout to zero causes sigtimedwait to return 1145 // immediately. 1146 struct timespec timeout; 1147 timeout.tv_sec = 0; 1148 timeout.tv_nsec = 0; 1149 1150 sigset_t sigset; 1151 sigemptyset(&sigset); 1152 sigaddset(&sigset, signum); 1153 1154 do { 1155 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1156 } while (discardedSignal == -1 && errno == EINTR); 1157 1158 if (discardedSignal == signum) 1159 return true; 1160 else if (discardedSignal == -1 && errno == EAGAIN) 1161 return false; 1162 else 1163 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1164 discardedSignal, errno); 1165} 1166 1167void 1168BaseKvmCPU::setupCounters() 1169{ 1170 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1171 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1172 PERF_COUNT_HW_CPU_CYCLES); 1173 cfgCycles.disabled(true) 1174 .pinned(true); 1175 1176 // Try to exclude the host. We set both exclude_hv and 1177 // exclude_host since different architectures use slightly 1178 // different APIs in the kernel. 1179 cfgCycles.exclude_hv(true) 1180 .exclude_host(true); 1181 1182 if (perfControlledByTimer) { 1183 // We need to configure the cycles counter to send overflows 1184 // since we are going to use it to trigger timer signals that 1185 // trap back into m5 from KVM. In practice, this means that we 1186 // need to set some non-zero sample period that gets 1187 // overridden when the timer is armed. 1188 cfgCycles.wakeupEvents(1) 1189 .samplePeriod(42); 1190 } 1191 1192 hwCycles.attach(cfgCycles, 1193 0); // TID (0 => currentThread) 1194 1195 setupInstCounter(); 1196} 1197 1198bool 1199BaseKvmCPU::tryDrain() 1200{ 1201 if (!drainManager) 1202 return false; 1203 1204 if (!archIsDrained()) { 1205 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1206 return false; 1207 } 1208 1209 if (_status == Idle || _status == Running) { 1210 DPRINTF(Drain, 1211 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1212 drainManager->signalDrainDone(); 1213 drainManager = NULL; 1214 return true; 1215 } else { 1216 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1217 return false; 1218 } 1219} 1220 1221void 1222BaseKvmCPU::ioctlRun() 1223{ 1224 if (ioctl(KVM_RUN) == -1) { 1225 if (errno != EINTR) 1226 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1227 errno); 1228 } 1229} 1230 1231void 1232BaseKvmCPU::setupInstStop() 1233{ 1234 if (comInstEventQueue[0]->empty()) { 1235 setupInstCounter(0); 1236 } else { 1237 const uint64_t next(comInstEventQueue[0]->nextTick()); 1238 1239 assert(next > ctrInsts); 1240 setupInstCounter(next - ctrInsts); 1241 } 1242} 1243 1244void 1245BaseKvmCPU::setupInstCounter(uint64_t period) 1246{ 1247 // No need to do anything if we aren't attaching for the first 1248 // time or the period isn't changing. 1249 if (period == activeInstPeriod && hwInstructions.attached()) 1250 return; 1251 1252 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1253 PERF_COUNT_HW_INSTRUCTIONS); 1254 1255 // Try to exclude the host. We set both exclude_hv and 1256 // exclude_host since different architectures use slightly 1257 // different APIs in the kernel. 1258 cfgInstructions.exclude_hv(true) 1259 .exclude_host(true); 1260 1261 if (period) { 1262 // Setup a sampling counter if that has been requested. 1263 cfgInstructions.wakeupEvents(1) 1264 .samplePeriod(period); 1265 } 1266 1267 // We need to detach and re-attach the counter to reliably change 1268 // sampling settings. See PerfKvmCounter::period() for details. 1269 if (hwInstructions.attached()) 1270 hwInstructions.detach(); 1271 assert(hwCycles.attached()); 1272 hwInstructions.attach(cfgInstructions, 1273 0, // TID (0 => currentThread) 1274 hwCycles); 1275 1276 if (period) 1277 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1278 1279 activeInstPeriod = period; 1280} 1281