base.cc revision 10858
1/* 2 * Copyright (c) 2012, 2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 67 : BaseCPU(params), 68 vm(*params->kvmVM), 69 _status(Idle), 70 dataPort(name() + ".dcache_port", this), 71 instPort(name() + ".icache_port", this), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent(*this), 78 activeInstPeriod(0), 79 perfControlledByTimer(params->usePerfOverflow), 80 hostFactor(params->hostFactor), 81 drainManager(NULL), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121} 122 123void 124BaseKvmCPU::startup() 125{ 126 const BaseKvmCPUParams * const p( 127 dynamic_cast<const BaseKvmCPUParams *>(params())); 128 129 Kvm &kvm(vm.kvm); 130 131 BaseCPU::startup(); 132 133 assert(vcpuFD == -1); 134 135 // Tell the VM that a CPU is about to start. 136 vm.cpuStartup(); 137 138 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 139 // not guaranteed that the parent KVM VM has initialized at that 140 // point. Initialize virtual CPUs here instead. 141 vcpuFD = vm.createVCPU(vcpuID); 142 143 // Map the KVM run structure */ 144 vcpuMMapSize = kvm.getVCPUMMapSize(); 145 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 146 PROT_READ | PROT_WRITE, MAP_SHARED, 147 vcpuFD, 0); 148 if (_kvmRun == MAP_FAILED) 149 panic("KVM: Failed to map run data structure\n"); 150 151 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 152 // available. The offset into the KVM's communication page is 153 // provided by the coalesced MMIO capability. 154 int mmioOffset(kvm.capCoalescedMMIO()); 155 if (!p->useCoalescedMMIO) { 156 inform("KVM: Coalesced MMIO disabled by config.\n"); 157 } else if (mmioOffset) { 158 inform("KVM: Coalesced IO available\n"); 159 mmioRing = (struct kvm_coalesced_mmio_ring *)( 160 (char *)_kvmRun + (mmioOffset * pageSize)); 161 } else { 162 inform("KVM: Coalesced not supported by host OS\n"); 163 } 164 165 thread->startup(); 166 167 Event *startupEvent( 168 new EventWrapper<BaseKvmCPU, 169 &BaseKvmCPU::startupThread>(this, true)); 170 schedule(startupEvent, curTick()); 171} 172 173void 174BaseKvmCPU::startupThread() 175{ 176 // Do thread-specific initialization. We need to setup signal 177 // delivery for counters and timers from within the thread that 178 // will execute the event queue to ensure that signals are 179 // delivered to the right threads. 180 const BaseKvmCPUParams * const p( 181 dynamic_cast<const BaseKvmCPUParams *>(params())); 182 183 vcpuThread = pthread_self(); 184 185 // Setup signal handlers. This has to be done after the vCPU is 186 // created since it manipulates the vCPU signal mask. 187 setupSignalHandler(); 188 189 setupCounters(); 190 191 if (p->usePerfOverflow) 192 runTimer.reset(new PerfKvmTimer(hwCycles, 193 KVM_KICK_SIGNAL, 194 p->hostFactor, 195 p->hostFreq)); 196 else 197 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 198 p->hostFactor, 199 p->hostFreq)); 200 201} 202 203void 204BaseKvmCPU::regStats() 205{ 206 using namespace Stats; 207 208 BaseCPU::regStats(); 209 210 numInsts 211 .name(name() + ".committedInsts") 212 .desc("Number of instructions committed") 213 ; 214 215 numVMExits 216 .name(name() + ".numVMExits") 217 .desc("total number of KVM exits") 218 ; 219 220 numVMHalfEntries 221 .name(name() + ".numVMHalfEntries") 222 .desc("number of KVM entries to finalize pending operations") 223 ; 224 225 numExitSignal 226 .name(name() + ".numExitSignal") 227 .desc("exits due to signal delivery") 228 ; 229 230 numMMIO 231 .name(name() + ".numMMIO") 232 .desc("number of VM exits due to memory mapped IO") 233 ; 234 235 numCoalescedMMIO 236 .name(name() + ".numCoalescedMMIO") 237 .desc("number of coalesced memory mapped IO requests") 238 ; 239 240 numIO 241 .name(name() + ".numIO") 242 .desc("number of VM exits due to legacy IO") 243 ; 244 245 numHalt 246 .name(name() + ".numHalt") 247 .desc("number of VM exits due to wait for interrupt instructions") 248 ; 249 250 numInterrupts 251 .name(name() + ".numInterrupts") 252 .desc("number of interrupts delivered") 253 ; 254 255 numHypercalls 256 .name(name() + ".numHypercalls") 257 .desc("number of hypercalls") 258 ; 259} 260 261void 262BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid) 263{ 264 if (DTRACE(Checkpoint)) { 265 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 266 dump(); 267 } 268 269 assert(tid == 0); 270 assert(_status == Idle); 271 thread->serialize(os); 272} 273 274void 275BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string §ion, 276 ThreadID tid) 277{ 278 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 279 280 assert(tid == 0); 281 assert(_status == Idle); 282 thread->unserialize(cp, section); 283 threadContextDirty = true; 284} 285 286unsigned int 287BaseKvmCPU::drain(DrainManager *dm) 288{ 289 if (switchedOut()) 290 return 0; 291 292 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 293 switch (_status) { 294 case Running: 295 // The base KVM code is normally ready when it is in the 296 // Running state, but the architecture specific code might be 297 // of a different opinion. This may happen when the CPU been 298 // notified of an event that hasn't been accepted by the vCPU 299 // yet. 300 if (!archIsDrained()) { 301 drainManager = dm; 302 return 1; 303 } 304 305 // The state of the CPU is consistent, so we don't need to do 306 // anything special to drain it. We simply de-schedule the 307 // tick event and enter the Idle state to prevent nasty things 308 // like MMIOs from happening. 309 if (tickEvent.scheduled()) 310 deschedule(tickEvent); 311 _status = Idle; 312 313 /** FALLTHROUGH */ 314 case Idle: 315 // Idle, no need to drain 316 assert(!tickEvent.scheduled()); 317 318 // Sync the thread context here since we'll need it when we 319 // switch CPUs or checkpoint the CPU. 320 syncThreadContext(); 321 322 return 0; 323 324 case RunningServiceCompletion: 325 // The CPU has just requested a service that was handled in 326 // the RunningService state, but the results have still not 327 // been reported to the CPU. Now, we /could/ probably just 328 // update the register state ourselves instead of letting KVM 329 // handle it, but that would be tricky. Instead, we enter KVM 330 // and let it do its stuff. 331 drainManager = dm; 332 333 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 334 "requesting drain.\n"); 335 return 1; 336 337 case RunningService: 338 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 339 drainManager = dm; 340 341 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 342 return 1; 343 344 default: 345 panic("KVM: Unhandled CPU state in drain()\n"); 346 return 0; 347 } 348} 349 350void 351BaseKvmCPU::drainResume() 352{ 353 assert(!tickEvent.scheduled()); 354 355 // We might have been switched out. In that case, we don't need to 356 // do anything. 357 if (switchedOut()) 358 return; 359 360 DPRINTF(Kvm, "drainResume\n"); 361 verifyMemoryMode(); 362 363 // The tick event is de-scheduled as a part of the draining 364 // process. Re-schedule it if the thread context is active. 365 if (tc->status() == ThreadContext::Active) { 366 schedule(tickEvent, nextCycle()); 367 _status = Running; 368 } else { 369 _status = Idle; 370 } 371} 372 373void 374BaseKvmCPU::switchOut() 375{ 376 DPRINTF(Kvm, "switchOut\n"); 377 378 BaseCPU::switchOut(); 379 380 // We should have drained prior to executing a switchOut, which 381 // means that the tick event shouldn't be scheduled and the CPU is 382 // idle. 383 assert(!tickEvent.scheduled()); 384 assert(_status == Idle); 385} 386 387void 388BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 389{ 390 DPRINTF(Kvm, "takeOverFrom\n"); 391 392 BaseCPU::takeOverFrom(cpu); 393 394 // We should have drained prior to executing a switchOut, which 395 // means that the tick event shouldn't be scheduled and the CPU is 396 // idle. 397 assert(!tickEvent.scheduled()); 398 assert(_status == Idle); 399 assert(threadContexts.size() == 1); 400 401 // Force an update of the KVM state here instead of flagging the 402 // TC as dirty. This is not ideal from a performance point of 403 // view, but it makes debugging easier as it allows meaningful KVM 404 // state to be dumped before and after a takeover. 405 updateKvmState(); 406 threadContextDirty = false; 407} 408 409void 410BaseKvmCPU::verifyMemoryMode() const 411{ 412 if (!(system->isAtomicMode() && system->bypassCaches())) { 413 fatal("The KVM-based CPUs requires the memory system to be in the " 414 "'atomic_noncaching' mode.\n"); 415 } 416} 417 418void 419BaseKvmCPU::wakeup() 420{ 421 DPRINTF(Kvm, "wakeup()\n"); 422 // This method might have been called from another 423 // context. Migrate to this SimObject's event queue when 424 // delivering the wakeup signal. 425 EventQueue::ScopedMigration migrate(eventQueue()); 426 427 // Kick the vCPU to get it to come out of KVM. 428 kick(); 429 430 if (thread->status() != ThreadContext::Suspended) 431 return; 432 433 thread->activate(); 434} 435 436void 437BaseKvmCPU::activateContext(ThreadID thread_num) 438{ 439 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 440 441 assert(thread_num == 0); 442 assert(thread); 443 444 assert(_status == Idle); 445 assert(!tickEvent.scheduled()); 446 447 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 448 449 schedule(tickEvent, clockEdge(Cycles(0))); 450 _status = Running; 451} 452 453 454void 455BaseKvmCPU::suspendContext(ThreadID thread_num) 456{ 457 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 458 459 assert(thread_num == 0); 460 assert(thread); 461 462 if (_status == Idle) 463 return; 464 465 assert(_status == Running || _status == RunningServiceCompletion); 466 467 // The tick event may no be scheduled if the quest has requested 468 // the monitor to wait for interrupts. The normal CPU models can 469 // get their tick events descheduled by quiesce instructions, but 470 // that can't happen here. 471 if (tickEvent.scheduled()) 472 deschedule(tickEvent); 473 474 _status = Idle; 475} 476 477void 478BaseKvmCPU::deallocateContext(ThreadID thread_num) 479{ 480 // for now, these are equivalent 481 suspendContext(thread_num); 482} 483 484void 485BaseKvmCPU::haltContext(ThreadID thread_num) 486{ 487 // for now, these are equivalent 488 suspendContext(thread_num); 489} 490 491ThreadContext * 492BaseKvmCPU::getContext(int tn) 493{ 494 assert(tn == 0); 495 syncThreadContext(); 496 return tc; 497} 498 499 500Counter 501BaseKvmCPU::totalInsts() const 502{ 503 return ctrInsts; 504} 505 506Counter 507BaseKvmCPU::totalOps() const 508{ 509 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 510 return ctrInsts; 511} 512 513void 514BaseKvmCPU::dump() 515{ 516 inform("State dumping not implemented."); 517} 518 519void 520BaseKvmCPU::tick() 521{ 522 Tick delay(0); 523 assert(_status != Idle); 524 525 switch (_status) { 526 case RunningService: 527 // handleKvmExit() will determine the next state of the CPU 528 delay = handleKvmExit(); 529 530 if (tryDrain()) 531 _status = Idle; 532 break; 533 534 case RunningServiceCompletion: 535 case Running: { 536 const uint64_t nextInstEvent( 537 !comInstEventQueue[0]->empty() ? 538 comInstEventQueue[0]->nextTick() : UINT64_MAX); 539 // Enter into KVM and complete pending IO instructions if we 540 // have an instruction event pending. 541 const Tick ticksToExecute( 542 nextInstEvent > ctrInsts ? 543 curEventQueue()->nextTick() - curTick() : 0); 544 545 // We might need to update the KVM state. 546 syncKvmState(); 547 548 // Setup any pending instruction count breakpoints using 549 // PerfEvent if we are going to execute more than just an IO 550 // completion. 551 if (ticksToExecute > 0) 552 setupInstStop(); 553 554 DPRINTF(KvmRun, "Entering KVM...\n"); 555 if (drainManager) { 556 // Force an immediate exit from KVM after completing 557 // pending operations. The architecture-specific code 558 // takes care to run until it is in a state where it can 559 // safely be drained. 560 delay = kvmRunDrain(); 561 } else { 562 delay = kvmRun(ticksToExecute); 563 } 564 565 // The CPU might have been suspended before entering into 566 // KVM. Assume that the CPU was suspended /before/ entering 567 // into KVM and skip the exit handling. 568 if (_status == Idle) 569 break; 570 571 // Entering into KVM implies that we'll have to reload the thread 572 // context from KVM if we want to access it. Flag the KVM state as 573 // dirty with respect to the cached thread context. 574 kvmStateDirty = true; 575 576 // Enter into the RunningService state unless the 577 // simulation was stopped by a timer. 578 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 579 _status = RunningService; 580 } else { 581 ++numExitSignal; 582 _status = Running; 583 } 584 585 // Service any pending instruction events. The vCPU should 586 // have exited in time for the event using the instruction 587 // counter configured by setupInstStop(). 588 comInstEventQueue[0]->serviceEvents(ctrInsts); 589 system->instEventQueue.serviceEvents(system->totalNumInsts); 590 591 if (tryDrain()) 592 _status = Idle; 593 } break; 594 595 default: 596 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 597 _status); 598 } 599 600 // Schedule a new tick if we are still running 601 if (_status != Idle) 602 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 603} 604 605Tick 606BaseKvmCPU::kvmRunDrain() 607{ 608 // By default, the only thing we need to drain is a pending IO 609 // operation which assumes that we are in the 610 // RunningServiceCompletion state. 611 assert(_status == RunningServiceCompletion); 612 613 // Deliver the data from the pending IO operation and immediately 614 // exit. 615 return kvmRun(0); 616} 617 618uint64_t 619BaseKvmCPU::getHostCycles() const 620{ 621 return hwCycles.read(); 622} 623 624Tick 625BaseKvmCPU::kvmRun(Tick ticks) 626{ 627 Tick ticksExecuted; 628 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 629 630 if (ticks == 0) { 631 // Settings ticks == 0 is a special case which causes an entry 632 // into KVM that finishes pending operations (e.g., IO) and 633 // then immediately exits. 634 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 635 636 ++numVMHalfEntries; 637 638 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 639 // thread). The KVM control signal is masked while executing 640 // in gem5 and gets unmasked temporarily as when entering 641 // KVM. See setSignalMask() and setupSignalHandler(). 642 kick(); 643 644 // Start the vCPU. KVM will check for signals after completing 645 // pending operations (IO). Since the KVM_KICK_SIGNAL is 646 // pending, this forces an immediate exit to gem5 again. We 647 // don't bother to setup timers since this shouldn't actually 648 // execute any code (other than completing half-executed IO 649 // instructions) in the guest. 650 ioctlRun(); 651 652 // We always execute at least one cycle to prevent the 653 // BaseKvmCPU::tick() to be rescheduled on the same tick 654 // twice. 655 ticksExecuted = clockPeriod(); 656 } else { 657 // This method is executed as a result of a tick event. That 658 // means that the event queue will be locked when entering the 659 // method. We temporarily unlock the event queue to allow 660 // other threads to steal control of this thread to inject 661 // interrupts. They will typically lock the queue and then 662 // force an exit from KVM by kicking the vCPU. 663 EventQueue::ScopedRelease release(curEventQueue()); 664 665 if (ticks < runTimer->resolution()) { 666 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 667 ticks, runTimer->resolution()); 668 ticks = runTimer->resolution(); 669 } 670 671 // Get hardware statistics after synchronizing contexts. The KVM 672 // state update might affect guest cycle counters. 673 uint64_t baseCycles(getHostCycles()); 674 uint64_t baseInstrs(hwInstructions.read()); 675 676 // Arm the run timer and start the cycle timer if it isn't 677 // controlled by the overflow timer. Starting/stopping the cycle 678 // timer automatically starts the other perf timers as they are in 679 // the same counter group. 680 runTimer->arm(ticks); 681 if (!perfControlledByTimer) 682 hwCycles.start(); 683 684 ioctlRun(); 685 686 runTimer->disarm(); 687 if (!perfControlledByTimer) 688 hwCycles.stop(); 689 690 // The control signal may have been delivered after we exited 691 // from KVM. It will be pending in that case since it is 692 // masked when we aren't executing in KVM. Discard it to make 693 // sure we don't deliver it immediately next time we try to 694 // enter into KVM. 695 discardPendingSignal(KVM_KICK_SIGNAL); 696 697 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 698 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 699 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 700 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 701 702 /* Update statistics */ 703 numCycles += simCyclesExecuted;; 704 numInsts += instsExecuted; 705 ctrInsts += instsExecuted; 706 system->totalNumInsts += instsExecuted; 707 708 DPRINTF(KvmRun, 709 "KVM: Executed %i instructions in %i cycles " 710 "(%i ticks, sim cycles: %i).\n", 711 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 712 } 713 714 ++numVMExits; 715 716 return ticksExecuted + flushCoalescedMMIO(); 717} 718 719void 720BaseKvmCPU::kvmNonMaskableInterrupt() 721{ 722 ++numInterrupts; 723 if (ioctl(KVM_NMI) == -1) 724 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 725} 726 727void 728BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 729{ 730 ++numInterrupts; 731 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 732 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 733} 734 735void 736BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 737{ 738 if (ioctl(KVM_GET_REGS, ®s) == -1) 739 panic("KVM: Failed to get guest registers\n"); 740} 741 742void 743BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 744{ 745 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 746 panic("KVM: Failed to set guest registers\n"); 747} 748 749void 750BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 751{ 752 if (ioctl(KVM_GET_SREGS, ®s) == -1) 753 panic("KVM: Failed to get guest special registers\n"); 754} 755 756void 757BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 758{ 759 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 760 panic("KVM: Failed to set guest special registers\n"); 761} 762 763void 764BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 765{ 766 if (ioctl(KVM_GET_FPU, &state) == -1) 767 panic("KVM: Failed to get guest FPU state\n"); 768} 769 770void 771BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 772{ 773 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 774 panic("KVM: Failed to set guest FPU state\n"); 775} 776 777 778void 779BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 780{ 781#ifdef KVM_SET_ONE_REG 782 struct kvm_one_reg reg; 783 reg.id = id; 784 reg.addr = (uint64_t)addr; 785 786 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 787 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 788 id, errno); 789 } 790#else 791 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 792#endif 793} 794 795void 796BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 797{ 798#ifdef KVM_GET_ONE_REG 799 struct kvm_one_reg reg; 800 reg.id = id; 801 reg.addr = (uint64_t)addr; 802 803 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 804 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 805 id, errno); 806 } 807#else 808 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 809#endif 810} 811 812std::string 813BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 814{ 815#ifdef KVM_GET_ONE_REG 816 std::ostringstream ss; 817 818 ss.setf(std::ios::hex, std::ios::basefield); 819 ss.setf(std::ios::showbase); 820#define HANDLE_INTTYPE(len) \ 821 case KVM_REG_SIZE_U ## len: { \ 822 uint ## len ## _t value; \ 823 getOneReg(id, &value); \ 824 ss << value; \ 825 } break 826 827#define HANDLE_ARRAY(len) \ 828 case KVM_REG_SIZE_U ## len: { \ 829 uint8_t value[len / 8]; \ 830 getOneReg(id, value); \ 831 ccprintf(ss, "[0x%x", value[0]); \ 832 for (int i = 1; i < len / 8; ++i) \ 833 ccprintf(ss, ", 0x%x", value[i]); \ 834 ccprintf(ss, "]"); \ 835 } break 836 837 switch (id & KVM_REG_SIZE_MASK) { 838 HANDLE_INTTYPE(8); 839 HANDLE_INTTYPE(16); 840 HANDLE_INTTYPE(32); 841 HANDLE_INTTYPE(64); 842 HANDLE_ARRAY(128); 843 HANDLE_ARRAY(256); 844 HANDLE_ARRAY(512); 845 HANDLE_ARRAY(1024); 846 default: 847 ss << "??"; 848 } 849 850#undef HANDLE_INTTYPE 851#undef HANDLE_ARRAY 852 853 return ss.str(); 854#else 855 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 856#endif 857} 858 859void 860BaseKvmCPU::syncThreadContext() 861{ 862 if (!kvmStateDirty) 863 return; 864 865 assert(!threadContextDirty); 866 867 updateThreadContext(); 868 kvmStateDirty = false; 869} 870 871void 872BaseKvmCPU::syncKvmState() 873{ 874 if (!threadContextDirty) 875 return; 876 877 assert(!kvmStateDirty); 878 879 updateKvmState(); 880 threadContextDirty = false; 881} 882 883Tick 884BaseKvmCPU::handleKvmExit() 885{ 886 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 887 assert(_status == RunningService); 888 889 // Switch into the running state by default. Individual handlers 890 // can override this. 891 _status = Running; 892 switch (_kvmRun->exit_reason) { 893 case KVM_EXIT_UNKNOWN: 894 return handleKvmExitUnknown(); 895 896 case KVM_EXIT_EXCEPTION: 897 return handleKvmExitException(); 898 899 case KVM_EXIT_IO: 900 _status = RunningServiceCompletion; 901 ++numIO; 902 return handleKvmExitIO(); 903 904 case KVM_EXIT_HYPERCALL: 905 ++numHypercalls; 906 return handleKvmExitHypercall(); 907 908 case KVM_EXIT_HLT: 909 /* The guest has halted and is waiting for interrupts */ 910 DPRINTF(Kvm, "handleKvmExitHalt\n"); 911 ++numHalt; 912 913 // Suspend the thread until the next interrupt arrives 914 thread->suspend(); 915 916 // This is actually ignored since the thread is suspended. 917 return 0; 918 919 case KVM_EXIT_MMIO: 920 _status = RunningServiceCompletion; 921 /* Service memory mapped IO requests */ 922 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 923 _kvmRun->mmio.is_write, 924 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 925 926 ++numMMIO; 927 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 928 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 929 930 case KVM_EXIT_IRQ_WINDOW_OPEN: 931 return handleKvmExitIRQWindowOpen(); 932 933 case KVM_EXIT_FAIL_ENTRY: 934 return handleKvmExitFailEntry(); 935 936 case KVM_EXIT_INTR: 937 /* KVM was interrupted by a signal, restart it in the next 938 * tick. */ 939 return 0; 940 941 case KVM_EXIT_INTERNAL_ERROR: 942 panic("KVM: Internal error (suberror: %u)\n", 943 _kvmRun->internal.suberror); 944 945 default: 946 dump(); 947 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 948 } 949} 950 951Tick 952BaseKvmCPU::handleKvmExitIO() 953{ 954 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 955 _kvmRun->io.direction, _kvmRun->io.size, 956 _kvmRun->io.port, _kvmRun->io.count); 957} 958 959Tick 960BaseKvmCPU::handleKvmExitHypercall() 961{ 962 panic("KVM: Unhandled hypercall\n"); 963} 964 965Tick 966BaseKvmCPU::handleKvmExitIRQWindowOpen() 967{ 968 warn("KVM: Unhandled IRQ window.\n"); 969 return 0; 970} 971 972 973Tick 974BaseKvmCPU::handleKvmExitUnknown() 975{ 976 dump(); 977 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 978 _kvmRun->hw.hardware_exit_reason); 979} 980 981Tick 982BaseKvmCPU::handleKvmExitException() 983{ 984 dump(); 985 panic("KVM: Got exception when starting vCPU " 986 "(exception: %u, error_code: %u)\n", 987 _kvmRun->ex.exception, _kvmRun->ex.error_code); 988} 989 990Tick 991BaseKvmCPU::handleKvmExitFailEntry() 992{ 993 dump(); 994 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 995 _kvmRun->fail_entry.hardware_entry_failure_reason); 996} 997 998Tick 999BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 1000{ 1001 ThreadContext *tc(thread->getTC()); 1002 syncThreadContext(); 1003 1004 Request mmio_req(paddr, size, Request::UNCACHEABLE, dataMasterId()); 1005 mmio_req.setThreadContext(tc->contextId(), 0); 1006 // Some architectures do need to massage physical addresses a bit 1007 // before they are inserted into the memory system. This enables 1008 // APIC accesses on x86 and m5ops where supported through a MMIO 1009 // interface. 1010 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1011 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 1012 if (fault != NoFault) 1013 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1014 1015 1016 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1017 Packet pkt(&mmio_req, cmd); 1018 pkt.dataStatic(data); 1019 1020 if (mmio_req.isMmappedIpr()) { 1021 // We currently assume that there is no need to migrate to a 1022 // different event queue when doing IPRs. Currently, IPRs are 1023 // only used for m5ops, so it should be a valid assumption. 1024 const Cycles ipr_delay(write ? 1025 TheISA::handleIprWrite(tc, &pkt) : 1026 TheISA::handleIprRead(tc, &pkt)); 1027 threadContextDirty = true; 1028 return clockPeriod() * ipr_delay; 1029 } else { 1030 // Temporarily lock and migrate to the event queue of the 1031 // VM. This queue is assumed to "own" all devices we need to 1032 // access if running in multi-core mode. 1033 EventQueue::ScopedMigration migrate(vm.eventQueue()); 1034 1035 return dataPort.sendAtomic(&pkt); 1036 } 1037} 1038 1039void 1040BaseKvmCPU::setSignalMask(const sigset_t *mask) 1041{ 1042 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1043 1044 if (mask) { 1045 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1046 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1047 // The kernel and the user-space headers have different ideas 1048 // about the size of sigset_t. This seems like a massive hack, 1049 // but is actually what qemu does. 1050 assert(sizeof(*mask) >= 8); 1051 kvm_mask->len = 8; 1052 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1053 } 1054 1055 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1056 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1057 errno); 1058} 1059 1060int 1061BaseKvmCPU::ioctl(int request, long p1) const 1062{ 1063 if (vcpuFD == -1) 1064 panic("KVM: CPU ioctl called before initialization\n"); 1065 1066 return ::ioctl(vcpuFD, request, p1); 1067} 1068 1069Tick 1070BaseKvmCPU::flushCoalescedMMIO() 1071{ 1072 if (!mmioRing) 1073 return 0; 1074 1075 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1076 1077 // TODO: We might need to do synchronization when we start to 1078 // support multiple CPUs 1079 Tick ticks(0); 1080 while (mmioRing->first != mmioRing->last) { 1081 struct kvm_coalesced_mmio &ent( 1082 mmioRing->coalesced_mmio[mmioRing->first]); 1083 1084 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1085 ent.phys_addr, ent.len); 1086 1087 ++numCoalescedMMIO; 1088 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1089 1090 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1091 } 1092 1093 return ticks; 1094} 1095 1096/** 1097 * Dummy handler for KVM kick signals. 1098 * 1099 * @note This function is usually not called since the kernel doesn't 1100 * seem to deliver signals when the signal is only unmasked when 1101 * running in KVM. This doesn't matter though since we are only 1102 * interested in getting KVM to exit, which happens as expected. See 1103 * setupSignalHandler() and kvmRun() for details about KVM signal 1104 * handling. 1105 */ 1106static void 1107onKickSignal(int signo, siginfo_t *si, void *data) 1108{ 1109} 1110 1111void 1112BaseKvmCPU::setupSignalHandler() 1113{ 1114 struct sigaction sa; 1115 1116 memset(&sa, 0, sizeof(sa)); 1117 sa.sa_sigaction = onKickSignal; 1118 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1119 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1120 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1121 1122 sigset_t sigset; 1123 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1124 panic("KVM: Failed get signal mask\n"); 1125 1126 // Request KVM to setup the same signal mask as we're currently 1127 // running with except for the KVM control signal. We'll sometimes 1128 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1129 // KVM after servicing IO requests. See kvmRun(). 1130 sigdelset(&sigset, KVM_KICK_SIGNAL); 1131 setSignalMask(&sigset); 1132 1133 // Mask our control signals so they aren't delivered unless we're 1134 // actually executing inside KVM. 1135 sigaddset(&sigset, KVM_KICK_SIGNAL); 1136 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1137 panic("KVM: Failed mask the KVM control signals\n"); 1138} 1139 1140bool 1141BaseKvmCPU::discardPendingSignal(int signum) const 1142{ 1143 int discardedSignal; 1144 1145 // Setting the timeout to zero causes sigtimedwait to return 1146 // immediately. 1147 struct timespec timeout; 1148 timeout.tv_sec = 0; 1149 timeout.tv_nsec = 0; 1150 1151 sigset_t sigset; 1152 sigemptyset(&sigset); 1153 sigaddset(&sigset, signum); 1154 1155 do { 1156 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1157 } while (discardedSignal == -1 && errno == EINTR); 1158 1159 if (discardedSignal == signum) 1160 return true; 1161 else if (discardedSignal == -1 && errno == EAGAIN) 1162 return false; 1163 else 1164 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1165 discardedSignal, errno); 1166} 1167 1168void 1169BaseKvmCPU::setupCounters() 1170{ 1171 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1172 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1173 PERF_COUNT_HW_CPU_CYCLES); 1174 cfgCycles.disabled(true) 1175 .pinned(true); 1176 1177 // Try to exclude the host. We set both exclude_hv and 1178 // exclude_host since different architectures use slightly 1179 // different APIs in the kernel. 1180 cfgCycles.exclude_hv(true) 1181 .exclude_host(true); 1182 1183 if (perfControlledByTimer) { 1184 // We need to configure the cycles counter to send overflows 1185 // since we are going to use it to trigger timer signals that 1186 // trap back into m5 from KVM. In practice, this means that we 1187 // need to set some non-zero sample period that gets 1188 // overridden when the timer is armed. 1189 cfgCycles.wakeupEvents(1) 1190 .samplePeriod(42); 1191 } 1192 1193 hwCycles.attach(cfgCycles, 1194 0); // TID (0 => currentThread) 1195 1196 setupInstCounter(); 1197} 1198 1199bool 1200BaseKvmCPU::tryDrain() 1201{ 1202 if (!drainManager) 1203 return false; 1204 1205 if (!archIsDrained()) { 1206 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1207 return false; 1208 } 1209 1210 if (_status == Idle || _status == Running) { 1211 DPRINTF(Drain, 1212 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1213 drainManager->signalDrainDone(); 1214 drainManager = NULL; 1215 return true; 1216 } else { 1217 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1218 return false; 1219 } 1220} 1221 1222void 1223BaseKvmCPU::ioctlRun() 1224{ 1225 if (ioctl(KVM_RUN) == -1) { 1226 if (errno != EINTR) 1227 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1228 errno); 1229 } 1230} 1231 1232void 1233BaseKvmCPU::setupInstStop() 1234{ 1235 if (comInstEventQueue[0]->empty()) { 1236 setupInstCounter(0); 1237 } else { 1238 const uint64_t next(comInstEventQueue[0]->nextTick()); 1239 1240 assert(next > ctrInsts); 1241 setupInstCounter(next - ctrInsts); 1242 } 1243} 1244 1245void 1246BaseKvmCPU::setupInstCounter(uint64_t period) 1247{ 1248 // No need to do anything if we aren't attaching for the first 1249 // time or the period isn't changing. 1250 if (period == activeInstPeriod && hwInstructions.attached()) 1251 return; 1252 1253 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1254 PERF_COUNT_HW_INSTRUCTIONS); 1255 1256 // Try to exclude the host. We set both exclude_hv and 1257 // exclude_host since different architectures use slightly 1258 // different APIs in the kernel. 1259 cfgInstructions.exclude_hv(true) 1260 .exclude_host(true); 1261 1262 if (period) { 1263 // Setup a sampling counter if that has been requested. 1264 cfgInstructions.wakeupEvents(1) 1265 .samplePeriod(period); 1266 } 1267 1268 // We need to detach and re-attach the counter to reliably change 1269 // sampling settings. See PerfKvmCounter::period() for details. 1270 if (hwInstructions.attached()) 1271 hwInstructions.detach(); 1272 assert(hwCycles.attached()); 1273 hwInstructions.attach(cfgInstructions, 1274 0, // TID (0 => currentThread) 1275 hwCycles); 1276 1277 if (period) 1278 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1279 1280 activeInstPeriod = period; 1281} 1282