base.cc revision 10553
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 67 : BaseCPU(params), 68 vm(*params->kvmVM), 69 _status(Idle), 70 dataPort(name() + ".dcache_port", this), 71 instPort(name() + ".icache_port", this), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent(*this), 78 activeInstPeriod(0), 79 perfControlledByTimer(params->usePerfOverflow), 80 hostFactor(params->hostFactor), 81 drainManager(NULL), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121 122 mmio_req.setThreadContext(tc->contextId(), 0); 123} 124 125void 126BaseKvmCPU::startup() 127{ 128 const BaseKvmCPUParams * const p( 129 dynamic_cast<const BaseKvmCPUParams *>(params())); 130 131 Kvm &kvm(vm.kvm); 132 133 BaseCPU::startup(); 134 135 assert(vcpuFD == -1); 136 137 // Tell the VM that a CPU is about to start. 138 vm.cpuStartup(); 139 140 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 141 // not guaranteed that the parent KVM VM has initialized at that 142 // point. Initialize virtual CPUs here instead. 143 vcpuFD = vm.createVCPU(vcpuID); 144 145 // Map the KVM run structure */ 146 vcpuMMapSize = kvm.getVCPUMMapSize(); 147 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 148 PROT_READ | PROT_WRITE, MAP_SHARED, 149 vcpuFD, 0); 150 if (_kvmRun == MAP_FAILED) 151 panic("KVM: Failed to map run data structure\n"); 152 153 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 154 // available. The offset into the KVM's communication page is 155 // provided by the coalesced MMIO capability. 156 int mmioOffset(kvm.capCoalescedMMIO()); 157 if (!p->useCoalescedMMIO) { 158 inform("KVM: Coalesced MMIO disabled by config.\n"); 159 } else if (mmioOffset) { 160 inform("KVM: Coalesced IO available\n"); 161 mmioRing = (struct kvm_coalesced_mmio_ring *)( 162 (char *)_kvmRun + (mmioOffset * pageSize)); 163 } else { 164 inform("KVM: Coalesced not supported by host OS\n"); 165 } 166 167 thread->startup(); 168 169 Event *startupEvent( 170 new EventWrapper<BaseKvmCPU, 171 &BaseKvmCPU::startupThread>(this, true)); 172 schedule(startupEvent, curTick()); 173} 174 175void 176BaseKvmCPU::startupThread() 177{ 178 // Do thread-specific initialization. We need to setup signal 179 // delivery for counters and timers from within the thread that 180 // will execute the event queue to ensure that signals are 181 // delivered to the right threads. 182 const BaseKvmCPUParams * const p( 183 dynamic_cast<const BaseKvmCPUParams *>(params())); 184 185 vcpuThread = pthread_self(); 186 187 // Setup signal handlers. This has to be done after the vCPU is 188 // created since it manipulates the vCPU signal mask. 189 setupSignalHandler(); 190 191 setupCounters(); 192 193 if (p->usePerfOverflow) 194 runTimer.reset(new PerfKvmTimer(hwCycles, 195 KVM_KICK_SIGNAL, 196 p->hostFactor, 197 p->hostFreq)); 198 else 199 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 200 p->hostFactor, 201 p->hostFreq)); 202 203} 204 205void 206BaseKvmCPU::regStats() 207{ 208 using namespace Stats; 209 210 BaseCPU::regStats(); 211 212 numInsts 213 .name(name() + ".committedInsts") 214 .desc("Number of instructions committed") 215 ; 216 217 numVMExits 218 .name(name() + ".numVMExits") 219 .desc("total number of KVM exits") 220 ; 221 222 numVMHalfEntries 223 .name(name() + ".numVMHalfEntries") 224 .desc("number of KVM entries to finalize pending operations") 225 ; 226 227 numExitSignal 228 .name(name() + ".numExitSignal") 229 .desc("exits due to signal delivery") 230 ; 231 232 numMMIO 233 .name(name() + ".numMMIO") 234 .desc("number of VM exits due to memory mapped IO") 235 ; 236 237 numCoalescedMMIO 238 .name(name() + ".numCoalescedMMIO") 239 .desc("number of coalesced memory mapped IO requests") 240 ; 241 242 numIO 243 .name(name() + ".numIO") 244 .desc("number of VM exits due to legacy IO") 245 ; 246 247 numHalt 248 .name(name() + ".numHalt") 249 .desc("number of VM exits due to wait for interrupt instructions") 250 ; 251 252 numInterrupts 253 .name(name() + ".numInterrupts") 254 .desc("number of interrupts delivered") 255 ; 256 257 numHypercalls 258 .name(name() + ".numHypercalls") 259 .desc("number of hypercalls") 260 ; 261} 262 263void 264BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid) 265{ 266 if (DTRACE(Checkpoint)) { 267 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 268 dump(); 269 } 270 271 assert(tid == 0); 272 assert(_status == Idle); 273 thread->serialize(os); 274} 275 276void 277BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string §ion, 278 ThreadID tid) 279{ 280 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 281 282 assert(tid == 0); 283 assert(_status == Idle); 284 thread->unserialize(cp, section); 285 threadContextDirty = true; 286} 287 288unsigned int 289BaseKvmCPU::drain(DrainManager *dm) 290{ 291 if (switchedOut()) 292 return 0; 293 294 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 295 switch (_status) { 296 case Running: 297 // The base KVM code is normally ready when it is in the 298 // Running state, but the architecture specific code might be 299 // of a different opinion. This may happen when the CPU been 300 // notified of an event that hasn't been accepted by the vCPU 301 // yet. 302 if (!archIsDrained()) { 303 drainManager = dm; 304 return 1; 305 } 306 307 // The state of the CPU is consistent, so we don't need to do 308 // anything special to drain it. We simply de-schedule the 309 // tick event and enter the Idle state to prevent nasty things 310 // like MMIOs from happening. 311 if (tickEvent.scheduled()) 312 deschedule(tickEvent); 313 _status = Idle; 314 315 /** FALLTHROUGH */ 316 case Idle: 317 // Idle, no need to drain 318 assert(!tickEvent.scheduled()); 319 320 // Sync the thread context here since we'll need it when we 321 // switch CPUs or checkpoint the CPU. 322 syncThreadContext(); 323 324 return 0; 325 326 case RunningServiceCompletion: 327 // The CPU has just requested a service that was handled in 328 // the RunningService state, but the results have still not 329 // been reported to the CPU. Now, we /could/ probably just 330 // update the register state ourselves instead of letting KVM 331 // handle it, but that would be tricky. Instead, we enter KVM 332 // and let it do its stuff. 333 drainManager = dm; 334 335 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 336 "requesting drain.\n"); 337 return 1; 338 339 case RunningService: 340 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 341 drainManager = dm; 342 343 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 344 return 1; 345 346 default: 347 panic("KVM: Unhandled CPU state in drain()\n"); 348 return 0; 349 } 350} 351 352void 353BaseKvmCPU::drainResume() 354{ 355 assert(!tickEvent.scheduled()); 356 357 // We might have been switched out. In that case, we don't need to 358 // do anything. 359 if (switchedOut()) 360 return; 361 362 DPRINTF(Kvm, "drainResume\n"); 363 verifyMemoryMode(); 364 365 // The tick event is de-scheduled as a part of the draining 366 // process. Re-schedule it if the thread context is active. 367 if (tc->status() == ThreadContext::Active) { 368 schedule(tickEvent, nextCycle()); 369 _status = Running; 370 } else { 371 _status = Idle; 372 } 373} 374 375void 376BaseKvmCPU::switchOut() 377{ 378 DPRINTF(Kvm, "switchOut\n"); 379 380 BaseCPU::switchOut(); 381 382 // We should have drained prior to executing a switchOut, which 383 // means that the tick event shouldn't be scheduled and the CPU is 384 // idle. 385 assert(!tickEvent.scheduled()); 386 assert(_status == Idle); 387} 388 389void 390BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 391{ 392 DPRINTF(Kvm, "takeOverFrom\n"); 393 394 BaseCPU::takeOverFrom(cpu); 395 396 // We should have drained prior to executing a switchOut, which 397 // means that the tick event shouldn't be scheduled and the CPU is 398 // idle. 399 assert(!tickEvent.scheduled()); 400 assert(_status == Idle); 401 assert(threadContexts.size() == 1); 402 403 // Force an update of the KVM state here instead of flagging the 404 // TC as dirty. This is not ideal from a performance point of 405 // view, but it makes debugging easier as it allows meaningful KVM 406 // state to be dumped before and after a takeover. 407 updateKvmState(); 408 threadContextDirty = false; 409} 410 411void 412BaseKvmCPU::verifyMemoryMode() const 413{ 414 if (!(system->isAtomicMode() && system->bypassCaches())) { 415 fatal("The KVM-based CPUs requires the memory system to be in the " 416 "'atomic_noncaching' mode.\n"); 417 } 418} 419 420void 421BaseKvmCPU::wakeup() 422{ 423 DPRINTF(Kvm, "wakeup()\n"); 424 // This method might have been called from another 425 // context. Migrate to this SimObject's event queue when 426 // delivering the wakeup signal. 427 EventQueue::ScopedMigration migrate(eventQueue()); 428 429 // Kick the vCPU to get it to come out of KVM. 430 kick(); 431 432 if (thread->status() != ThreadContext::Suspended) 433 return; 434 435 thread->activate(); 436} 437 438void 439BaseKvmCPU::activateContext(ThreadID thread_num) 440{ 441 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 442 443 assert(thread_num == 0); 444 assert(thread); 445 446 assert(_status == Idle); 447 assert(!tickEvent.scheduled()); 448 449 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 450 451 schedule(tickEvent, clockEdge(Cycles(0))); 452 _status = Running; 453} 454 455 456void 457BaseKvmCPU::suspendContext(ThreadID thread_num) 458{ 459 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 460 461 assert(thread_num == 0); 462 assert(thread); 463 464 if (_status == Idle) 465 return; 466 467 assert(_status == Running || _status == RunningServiceCompletion); 468 469 // The tick event may no be scheduled if the quest has requested 470 // the monitor to wait for interrupts. The normal CPU models can 471 // get their tick events descheduled by quiesce instructions, but 472 // that can't happen here. 473 if (tickEvent.scheduled()) 474 deschedule(tickEvent); 475 476 _status = Idle; 477} 478 479void 480BaseKvmCPU::deallocateContext(ThreadID thread_num) 481{ 482 // for now, these are equivalent 483 suspendContext(thread_num); 484} 485 486void 487BaseKvmCPU::haltContext(ThreadID thread_num) 488{ 489 // for now, these are equivalent 490 suspendContext(thread_num); 491} 492 493ThreadContext * 494BaseKvmCPU::getContext(int tn) 495{ 496 assert(tn == 0); 497 syncThreadContext(); 498 return tc; 499} 500 501 502Counter 503BaseKvmCPU::totalInsts() const 504{ 505 return ctrInsts; 506} 507 508Counter 509BaseKvmCPU::totalOps() const 510{ 511 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 512 return ctrInsts; 513} 514 515void 516BaseKvmCPU::dump() 517{ 518 inform("State dumping not implemented."); 519} 520 521void 522BaseKvmCPU::tick() 523{ 524 Tick delay(0); 525 assert(_status != Idle); 526 527 switch (_status) { 528 case RunningService: 529 // handleKvmExit() will determine the next state of the CPU 530 delay = handleKvmExit(); 531 532 if (tryDrain()) 533 _status = Idle; 534 break; 535 536 case RunningServiceCompletion: 537 case Running: { 538 EventQueue *q = curEventQueue(); 539 Tick ticksToExecute(q->nextTick() - curTick()); 540 541 // We might need to update the KVM state. 542 syncKvmState(); 543 544 // Setup any pending instruction count breakpoints using 545 // PerfEvent. 546 setupInstStop(); 547 548 DPRINTF(KvmRun, "Entering KVM...\n"); 549 if (drainManager) { 550 // Force an immediate exit from KVM after completing 551 // pending operations. The architecture-specific code 552 // takes care to run until it is in a state where it can 553 // safely be drained. 554 delay = kvmRunDrain(); 555 } else { 556 delay = kvmRun(ticksToExecute); 557 } 558 559 // The CPU might have been suspended before entering into 560 // KVM. Assume that the CPU was suspended /before/ entering 561 // into KVM and skip the exit handling. 562 if (_status == Idle) 563 break; 564 565 // Entering into KVM implies that we'll have to reload the thread 566 // context from KVM if we want to access it. Flag the KVM state as 567 // dirty with respect to the cached thread context. 568 kvmStateDirty = true; 569 570 // Enter into the RunningService state unless the 571 // simulation was stopped by a timer. 572 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 573 _status = RunningService; 574 } else { 575 ++numExitSignal; 576 _status = Running; 577 } 578 579 // Service any pending instruction events. The vCPU should 580 // have exited in time for the event using the instruction 581 // counter configured by setupInstStop(). 582 comInstEventQueue[0]->serviceEvents(ctrInsts); 583 system->instEventQueue.serviceEvents(system->totalNumInsts); 584 585 if (tryDrain()) 586 _status = Idle; 587 } break; 588 589 default: 590 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 591 _status); 592 } 593 594 // Schedule a new tick if we are still running 595 if (_status != Idle) 596 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 597} 598 599Tick 600BaseKvmCPU::kvmRunDrain() 601{ 602 // By default, the only thing we need to drain is a pending IO 603 // operation which assumes that we are in the 604 // RunningServiceCompletion state. 605 assert(_status == RunningServiceCompletion); 606 607 // Deliver the data from the pending IO operation and immediately 608 // exit. 609 return kvmRun(0); 610} 611 612uint64_t 613BaseKvmCPU::getHostCycles() const 614{ 615 return hwCycles.read(); 616} 617 618Tick 619BaseKvmCPU::kvmRun(Tick ticks) 620{ 621 Tick ticksExecuted; 622 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 623 624 if (ticks == 0) { 625 // Settings ticks == 0 is a special case which causes an entry 626 // into KVM that finishes pending operations (e.g., IO) and 627 // then immediately exits. 628 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 629 630 ++numVMHalfEntries; 631 632 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 633 // thread). The KVM control signal is masked while executing 634 // in gem5 and gets unmasked temporarily as when entering 635 // KVM. See setSignalMask() and setupSignalHandler(). 636 kick(); 637 638 // Start the vCPU. KVM will check for signals after completing 639 // pending operations (IO). Since the KVM_KICK_SIGNAL is 640 // pending, this forces an immediate exit to gem5 again. We 641 // don't bother to setup timers since this shouldn't actually 642 // execute any code (other than completing half-executed IO 643 // instructions) in the guest. 644 ioctlRun(); 645 646 // We always execute at least one cycle to prevent the 647 // BaseKvmCPU::tick() to be rescheduled on the same tick 648 // twice. 649 ticksExecuted = clockPeriod(); 650 } else { 651 // This method is executed as a result of a tick event. That 652 // means that the event queue will be locked when entering the 653 // method. We temporarily unlock the event queue to allow 654 // other threads to steal control of this thread to inject 655 // interrupts. They will typically lock the queue and then 656 // force an exit from KVM by kicking the vCPU. 657 EventQueue::ScopedRelease release(curEventQueue()); 658 659 if (ticks < runTimer->resolution()) { 660 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 661 ticks, runTimer->resolution()); 662 ticks = runTimer->resolution(); 663 } 664 665 // Get hardware statistics after synchronizing contexts. The KVM 666 // state update might affect guest cycle counters. 667 uint64_t baseCycles(getHostCycles()); 668 uint64_t baseInstrs(hwInstructions.read()); 669 670 // Arm the run timer and start the cycle timer if it isn't 671 // controlled by the overflow timer. Starting/stopping the cycle 672 // timer automatically starts the other perf timers as they are in 673 // the same counter group. 674 runTimer->arm(ticks); 675 if (!perfControlledByTimer) 676 hwCycles.start(); 677 678 ioctlRun(); 679 680 runTimer->disarm(); 681 if (!perfControlledByTimer) 682 hwCycles.stop(); 683 684 // The control signal may have been delivered after we exited 685 // from KVM. It will be pending in that case since it is 686 // masked when we aren't executing in KVM. Discard it to make 687 // sure we don't deliver it immediately next time we try to 688 // enter into KVM. 689 discardPendingSignal(KVM_KICK_SIGNAL); 690 691 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 692 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 693 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 694 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 695 696 /* Update statistics */ 697 numCycles += simCyclesExecuted;; 698 numInsts += instsExecuted; 699 ctrInsts += instsExecuted; 700 system->totalNumInsts += instsExecuted; 701 702 DPRINTF(KvmRun, 703 "KVM: Executed %i instructions in %i cycles " 704 "(%i ticks, sim cycles: %i).\n", 705 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 706 } 707 708 ++numVMExits; 709 710 return ticksExecuted + flushCoalescedMMIO(); 711} 712 713void 714BaseKvmCPU::kvmNonMaskableInterrupt() 715{ 716 ++numInterrupts; 717 if (ioctl(KVM_NMI) == -1) 718 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 719} 720 721void 722BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 723{ 724 ++numInterrupts; 725 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 726 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 727} 728 729void 730BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 731{ 732 if (ioctl(KVM_GET_REGS, ®s) == -1) 733 panic("KVM: Failed to get guest registers\n"); 734} 735 736void 737BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 738{ 739 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 740 panic("KVM: Failed to set guest registers\n"); 741} 742 743void 744BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 745{ 746 if (ioctl(KVM_GET_SREGS, ®s) == -1) 747 panic("KVM: Failed to get guest special registers\n"); 748} 749 750void 751BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 752{ 753 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 754 panic("KVM: Failed to set guest special registers\n"); 755} 756 757void 758BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 759{ 760 if (ioctl(KVM_GET_FPU, &state) == -1) 761 panic("KVM: Failed to get guest FPU state\n"); 762} 763 764void 765BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 766{ 767 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 768 panic("KVM: Failed to set guest FPU state\n"); 769} 770 771 772void 773BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 774{ 775#ifdef KVM_SET_ONE_REG 776 struct kvm_one_reg reg; 777 reg.id = id; 778 reg.addr = (uint64_t)addr; 779 780 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 781 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 782 id, errno); 783 } 784#else 785 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 786#endif 787} 788 789void 790BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 791{ 792#ifdef KVM_GET_ONE_REG 793 struct kvm_one_reg reg; 794 reg.id = id; 795 reg.addr = (uint64_t)addr; 796 797 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 798 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 799 id, errno); 800 } 801#else 802 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 803#endif 804} 805 806std::string 807BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 808{ 809#ifdef KVM_GET_ONE_REG 810 std::ostringstream ss; 811 812 ss.setf(std::ios::hex, std::ios::basefield); 813 ss.setf(std::ios::showbase); 814#define HANDLE_INTTYPE(len) \ 815 case KVM_REG_SIZE_U ## len: { \ 816 uint ## len ## _t value; \ 817 getOneReg(id, &value); \ 818 ss << value; \ 819 } break 820 821#define HANDLE_ARRAY(len) \ 822 case KVM_REG_SIZE_U ## len: { \ 823 uint8_t value[len / 8]; \ 824 getOneReg(id, value); \ 825 ss << "[" << value[0]; \ 826 for (int i = 1; i < len / 8; ++i) \ 827 ss << ", " << value[i]; \ 828 ss << "]"; \ 829 } break 830 831 switch (id & KVM_REG_SIZE_MASK) { 832 HANDLE_INTTYPE(8); 833 HANDLE_INTTYPE(16); 834 HANDLE_INTTYPE(32); 835 HANDLE_INTTYPE(64); 836 HANDLE_ARRAY(128); 837 HANDLE_ARRAY(256); 838 HANDLE_ARRAY(512); 839 HANDLE_ARRAY(1024); 840 default: 841 ss << "??"; 842 } 843 844#undef HANDLE_INTTYPE 845#undef HANDLE_ARRAY 846 847 return ss.str(); 848#else 849 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 850#endif 851} 852 853void 854BaseKvmCPU::syncThreadContext() 855{ 856 if (!kvmStateDirty) 857 return; 858 859 assert(!threadContextDirty); 860 861 updateThreadContext(); 862 kvmStateDirty = false; 863} 864 865void 866BaseKvmCPU::syncKvmState() 867{ 868 if (!threadContextDirty) 869 return; 870 871 assert(!kvmStateDirty); 872 873 updateKvmState(); 874 threadContextDirty = false; 875} 876 877Tick 878BaseKvmCPU::handleKvmExit() 879{ 880 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 881 assert(_status == RunningService); 882 883 // Switch into the running state by default. Individual handlers 884 // can override this. 885 _status = Running; 886 switch (_kvmRun->exit_reason) { 887 case KVM_EXIT_UNKNOWN: 888 return handleKvmExitUnknown(); 889 890 case KVM_EXIT_EXCEPTION: 891 return handleKvmExitException(); 892 893 case KVM_EXIT_IO: 894 _status = RunningServiceCompletion; 895 ++numIO; 896 return handleKvmExitIO(); 897 898 case KVM_EXIT_HYPERCALL: 899 ++numHypercalls; 900 return handleKvmExitHypercall(); 901 902 case KVM_EXIT_HLT: 903 /* The guest has halted and is waiting for interrupts */ 904 DPRINTF(Kvm, "handleKvmExitHalt\n"); 905 ++numHalt; 906 907 // Suspend the thread until the next interrupt arrives 908 thread->suspend(); 909 910 // This is actually ignored since the thread is suspended. 911 return 0; 912 913 case KVM_EXIT_MMIO: 914 _status = RunningServiceCompletion; 915 /* Service memory mapped IO requests */ 916 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 917 _kvmRun->mmio.is_write, 918 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 919 920 ++numMMIO; 921 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 922 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 923 924 case KVM_EXIT_IRQ_WINDOW_OPEN: 925 return handleKvmExitIRQWindowOpen(); 926 927 case KVM_EXIT_FAIL_ENTRY: 928 return handleKvmExitFailEntry(); 929 930 case KVM_EXIT_INTR: 931 /* KVM was interrupted by a signal, restart it in the next 932 * tick. */ 933 return 0; 934 935 case KVM_EXIT_INTERNAL_ERROR: 936 panic("KVM: Internal error (suberror: %u)\n", 937 _kvmRun->internal.suberror); 938 939 default: 940 dump(); 941 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 942 } 943} 944 945Tick 946BaseKvmCPU::handleKvmExitIO() 947{ 948 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 949 _kvmRun->io.direction, _kvmRun->io.size, 950 _kvmRun->io.port, _kvmRun->io.count); 951} 952 953Tick 954BaseKvmCPU::handleKvmExitHypercall() 955{ 956 panic("KVM: Unhandled hypercall\n"); 957} 958 959Tick 960BaseKvmCPU::handleKvmExitIRQWindowOpen() 961{ 962 warn("KVM: Unhandled IRQ window.\n"); 963 return 0; 964} 965 966 967Tick 968BaseKvmCPU::handleKvmExitUnknown() 969{ 970 dump(); 971 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 972 _kvmRun->hw.hardware_exit_reason); 973} 974 975Tick 976BaseKvmCPU::handleKvmExitException() 977{ 978 dump(); 979 panic("KVM: Got exception when starting vCPU " 980 "(exception: %u, error_code: %u)\n", 981 _kvmRun->ex.exception, _kvmRun->ex.error_code); 982} 983 984Tick 985BaseKvmCPU::handleKvmExitFailEntry() 986{ 987 dump(); 988 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 989 _kvmRun->fail_entry.hardware_entry_failure_reason); 990} 991 992Tick 993BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 994{ 995 ThreadContext *tc(thread->getTC()); 996 syncThreadContext(); 997 998 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId()); 999 // Some architectures do need to massage physical addresses a bit 1000 // before they are inserted into the memory system. This enables 1001 // APIC accesses on x86 and m5ops where supported through a MMIO 1002 // interface. 1003 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1004 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode)); 1005 if (fault != NoFault) 1006 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1007 1008 1009 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1010 Packet pkt(&mmio_req, cmd); 1011 pkt.dataStatic(data); 1012 1013 if (mmio_req.isMmappedIpr()) { 1014 // We currently assume that there is no need to migrate to a 1015 // different event queue when doing IPRs. Currently, IPRs are 1016 // only used for m5ops, so it should be a valid assumption. 1017 const Cycles ipr_delay(write ? 1018 TheISA::handleIprWrite(tc, &pkt) : 1019 TheISA::handleIprRead(tc, &pkt)); 1020 threadContextDirty = true; 1021 return clockPeriod() * ipr_delay; 1022 } else { 1023 // Temporarily lock and migrate to the event queue of the 1024 // VM. This queue is assumed to "own" all devices we need to 1025 // access if running in multi-core mode. 1026 EventQueue::ScopedMigration migrate(vm.eventQueue()); 1027 1028 return dataPort.sendAtomic(&pkt); 1029 } 1030} 1031 1032void 1033BaseKvmCPU::setSignalMask(const sigset_t *mask) 1034{ 1035 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1036 1037 if (mask) { 1038 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1039 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1040 // The kernel and the user-space headers have different ideas 1041 // about the size of sigset_t. This seems like a massive hack, 1042 // but is actually what qemu does. 1043 assert(sizeof(*mask) >= 8); 1044 kvm_mask->len = 8; 1045 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1046 } 1047 1048 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1049 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1050 errno); 1051} 1052 1053int 1054BaseKvmCPU::ioctl(int request, long p1) const 1055{ 1056 if (vcpuFD == -1) 1057 panic("KVM: CPU ioctl called before initialization\n"); 1058 1059 return ::ioctl(vcpuFD, request, p1); 1060} 1061 1062Tick 1063BaseKvmCPU::flushCoalescedMMIO() 1064{ 1065 if (!mmioRing) 1066 return 0; 1067 1068 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1069 1070 // TODO: We might need to do synchronization when we start to 1071 // support multiple CPUs 1072 Tick ticks(0); 1073 while (mmioRing->first != mmioRing->last) { 1074 struct kvm_coalesced_mmio &ent( 1075 mmioRing->coalesced_mmio[mmioRing->first]); 1076 1077 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1078 ent.phys_addr, ent.len); 1079 1080 ++numCoalescedMMIO; 1081 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1082 1083 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1084 } 1085 1086 return ticks; 1087} 1088 1089/** 1090 * Dummy handler for KVM kick signals. 1091 * 1092 * @note This function is usually not called since the kernel doesn't 1093 * seem to deliver signals when the signal is only unmasked when 1094 * running in KVM. This doesn't matter though since we are only 1095 * interested in getting KVM to exit, which happens as expected. See 1096 * setupSignalHandler() and kvmRun() for details about KVM signal 1097 * handling. 1098 */ 1099static void 1100onKickSignal(int signo, siginfo_t *si, void *data) 1101{ 1102} 1103 1104void 1105BaseKvmCPU::setupSignalHandler() 1106{ 1107 struct sigaction sa; 1108 1109 memset(&sa, 0, sizeof(sa)); 1110 sa.sa_sigaction = onKickSignal; 1111 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1112 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1113 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1114 1115 sigset_t sigset; 1116 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1117 panic("KVM: Failed get signal mask\n"); 1118 1119 // Request KVM to setup the same signal mask as we're currently 1120 // running with except for the KVM control signal. We'll sometimes 1121 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1122 // KVM after servicing IO requests. See kvmRun(). 1123 sigdelset(&sigset, KVM_KICK_SIGNAL); 1124 setSignalMask(&sigset); 1125 1126 // Mask our control signals so they aren't delivered unless we're 1127 // actually executing inside KVM. 1128 sigaddset(&sigset, KVM_KICK_SIGNAL); 1129 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1130 panic("KVM: Failed mask the KVM control signals\n"); 1131} 1132 1133bool 1134BaseKvmCPU::discardPendingSignal(int signum) const 1135{ 1136 int discardedSignal; 1137 1138 // Setting the timeout to zero causes sigtimedwait to return 1139 // immediately. 1140 struct timespec timeout; 1141 timeout.tv_sec = 0; 1142 timeout.tv_nsec = 0; 1143 1144 sigset_t sigset; 1145 sigemptyset(&sigset); 1146 sigaddset(&sigset, signum); 1147 1148 do { 1149 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1150 } while (discardedSignal == -1 && errno == EINTR); 1151 1152 if (discardedSignal == signum) 1153 return true; 1154 else if (discardedSignal == -1 && errno == EAGAIN) 1155 return false; 1156 else 1157 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1158 discardedSignal, errno); 1159} 1160 1161void 1162BaseKvmCPU::setupCounters() 1163{ 1164 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1165 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1166 PERF_COUNT_HW_CPU_CYCLES); 1167 cfgCycles.disabled(true) 1168 .pinned(true); 1169 1170 // Try to exclude the host. We set both exclude_hv and 1171 // exclude_host since different architectures use slightly 1172 // different APIs in the kernel. 1173 cfgCycles.exclude_hv(true) 1174 .exclude_host(true); 1175 1176 if (perfControlledByTimer) { 1177 // We need to configure the cycles counter to send overflows 1178 // since we are going to use it to trigger timer signals that 1179 // trap back into m5 from KVM. In practice, this means that we 1180 // need to set some non-zero sample period that gets 1181 // overridden when the timer is armed. 1182 cfgCycles.wakeupEvents(1) 1183 .samplePeriod(42); 1184 } 1185 1186 hwCycles.attach(cfgCycles, 1187 0); // TID (0 => currentThread) 1188 1189 setupInstCounter(); 1190} 1191 1192bool 1193BaseKvmCPU::tryDrain() 1194{ 1195 if (!drainManager) 1196 return false; 1197 1198 if (!archIsDrained()) { 1199 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1200 return false; 1201 } 1202 1203 if (_status == Idle || _status == Running) { 1204 DPRINTF(Drain, 1205 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1206 drainManager->signalDrainDone(); 1207 drainManager = NULL; 1208 return true; 1209 } else { 1210 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1211 return false; 1212 } 1213} 1214 1215void 1216BaseKvmCPU::ioctlRun() 1217{ 1218 if (ioctl(KVM_RUN) == -1) { 1219 if (errno != EINTR) 1220 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1221 errno); 1222 } 1223} 1224 1225void 1226BaseKvmCPU::setupInstStop() 1227{ 1228 if (comInstEventQueue[0]->empty()) { 1229 setupInstCounter(0); 1230 } else { 1231 const uint64_t next(comInstEventQueue[0]->nextTick()); 1232 1233 assert(next > ctrInsts); 1234 setupInstCounter(next - ctrInsts); 1235 } 1236} 1237 1238void 1239BaseKvmCPU::setupInstCounter(uint64_t period) 1240{ 1241 // No need to do anything if we aren't attaching for the first 1242 // time or the period isn't changing. 1243 if (period == activeInstPeriod && hwInstructions.attached()) 1244 return; 1245 1246 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1247 PERF_COUNT_HW_INSTRUCTIONS); 1248 1249 // Try to exclude the host. We set both exclude_hv and 1250 // exclude_host since different architectures use slightly 1251 // different APIs in the kernel. 1252 cfgInstructions.exclude_hv(true) 1253 .exclude_host(true); 1254 1255 if (period) { 1256 // Setup a sampling counter if that has been requested. 1257 cfgInstructions.wakeupEvents(1) 1258 .samplePeriod(period); 1259 } 1260 1261 // We need to detach and re-attach the counter to reliably change 1262 // sampling settings. See PerfKvmCounter::period() for details. 1263 if (hwInstructions.attached()) 1264 hwInstructions.detach(); 1265 assert(hwCycles.attached()); 1266 hwInstructions.attach(cfgInstructions, 1267 0, // TID (0 => currentThread) 1268 hwCycles); 1269 1270 if (period) 1271 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1272 1273 activeInstPeriod = period; 1274} 1275