base.cc revision 10553
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include <linux/kvm.h>
41#include <sys/ioctl.h>
42#include <sys/mman.h>
43#include <unistd.h>
44
45#include <cerrno>
46#include <csignal>
47#include <ostream>
48
49#include "arch/mmapped_ipr.hh"
50#include "arch/utility.hh"
51#include "cpu/kvm/base.hh"
52#include "debug/Checkpoint.hh"
53#include "debug/Drain.hh"
54#include "debug/Kvm.hh"
55#include "debug/KvmIO.hh"
56#include "debug/KvmRun.hh"
57#include "params/BaseKvmCPU.hh"
58#include "sim/process.hh"
59#include "sim/system.hh"
60
61#include <signal.h>
62
63/* Used by some KVM macros */
64#define PAGE_SIZE pageSize
65
66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
67    : BaseCPU(params),
68      vm(*params->kvmVM),
69      _status(Idle),
70      dataPort(name() + ".dcache_port", this),
71      instPort(name() + ".icache_port", this),
72      threadContextDirty(true),
73      kvmStateDirty(false),
74      vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
75      _kvmRun(NULL), mmioRing(NULL),
76      pageSize(sysconf(_SC_PAGE_SIZE)),
77      tickEvent(*this),
78      activeInstPeriod(0),
79      perfControlledByTimer(params->usePerfOverflow),
80      hostFactor(params->hostFactor),
81      drainManager(NULL),
82      ctrInsts(0)
83{
84    if (pageSize == -1)
85        panic("KVM: Failed to determine host page size (%i)\n",
86              errno);
87
88    if (FullSystem)
89        thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb,
90                                  params->isa[0]);
91    else
92        thread = new SimpleThread(this, /* thread_num */ 0, params->system,
93                                  params->workload[0], params->itb,
94                                  params->dtb, params->isa[0]);
95
96    thread->setStatus(ThreadContext::Halted);
97    tc = thread->getTC();
98    threadContexts.push_back(tc);
99}
100
101BaseKvmCPU::~BaseKvmCPU()
102{
103    if (_kvmRun)
104        munmap(_kvmRun, vcpuMMapSize);
105    close(vcpuFD);
106}
107
108void
109BaseKvmCPU::init()
110{
111    BaseCPU::init();
112
113    if (numThreads != 1)
114        fatal("KVM: Multithreading not supported");
115
116    tc->initMemProxies(tc);
117
118    // initialize CPU, including PC
119    if (FullSystem && !switchedOut())
120        TheISA::initCPU(tc, tc->contextId());
121
122    mmio_req.setThreadContext(tc->contextId(), 0);
123}
124
125void
126BaseKvmCPU::startup()
127{
128    const BaseKvmCPUParams * const p(
129        dynamic_cast<const BaseKvmCPUParams *>(params()));
130
131    Kvm &kvm(vm.kvm);
132
133    BaseCPU::startup();
134
135    assert(vcpuFD == -1);
136
137    // Tell the VM that a CPU is about to start.
138    vm.cpuStartup();
139
140    // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
141    // not guaranteed that the parent KVM VM has initialized at that
142    // point. Initialize virtual CPUs here instead.
143    vcpuFD = vm.createVCPU(vcpuID);
144
145    // Map the KVM run structure */
146    vcpuMMapSize = kvm.getVCPUMMapSize();
147    _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
148                                     PROT_READ | PROT_WRITE, MAP_SHARED,
149                                     vcpuFD, 0);
150    if (_kvmRun == MAP_FAILED)
151        panic("KVM: Failed to map run data structure\n");
152
153    // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
154    // available. The offset into the KVM's communication page is
155    // provided by the coalesced MMIO capability.
156    int mmioOffset(kvm.capCoalescedMMIO());
157    if (!p->useCoalescedMMIO) {
158        inform("KVM: Coalesced MMIO disabled by config.\n");
159    } else if (mmioOffset) {
160        inform("KVM: Coalesced IO available\n");
161        mmioRing = (struct kvm_coalesced_mmio_ring *)(
162            (char *)_kvmRun + (mmioOffset * pageSize));
163    } else {
164        inform("KVM: Coalesced not supported by host OS\n");
165    }
166
167    thread->startup();
168
169    Event *startupEvent(
170        new EventWrapper<BaseKvmCPU,
171                         &BaseKvmCPU::startupThread>(this, true));
172    schedule(startupEvent, curTick());
173}
174
175void
176BaseKvmCPU::startupThread()
177{
178    // Do thread-specific initialization. We need to setup signal
179    // delivery for counters and timers from within the thread that
180    // will execute the event queue to ensure that signals are
181    // delivered to the right threads.
182    const BaseKvmCPUParams * const p(
183        dynamic_cast<const BaseKvmCPUParams *>(params()));
184
185    vcpuThread = pthread_self();
186
187    // Setup signal handlers. This has to be done after the vCPU is
188    // created since it manipulates the vCPU signal mask.
189    setupSignalHandler();
190
191    setupCounters();
192
193    if (p->usePerfOverflow)
194        runTimer.reset(new PerfKvmTimer(hwCycles,
195                                        KVM_KICK_SIGNAL,
196                                        p->hostFactor,
197                                        p->hostFreq));
198    else
199        runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC,
200                                         p->hostFactor,
201                                         p->hostFreq));
202
203}
204
205void
206BaseKvmCPU::regStats()
207{
208    using namespace Stats;
209
210    BaseCPU::regStats();
211
212    numInsts
213        .name(name() + ".committedInsts")
214        .desc("Number of instructions committed")
215        ;
216
217    numVMExits
218        .name(name() + ".numVMExits")
219        .desc("total number of KVM exits")
220        ;
221
222    numVMHalfEntries
223        .name(name() + ".numVMHalfEntries")
224        .desc("number of KVM entries to finalize pending operations")
225        ;
226
227    numExitSignal
228        .name(name() + ".numExitSignal")
229        .desc("exits due to signal delivery")
230        ;
231
232    numMMIO
233        .name(name() + ".numMMIO")
234        .desc("number of VM exits due to memory mapped IO")
235        ;
236
237    numCoalescedMMIO
238        .name(name() + ".numCoalescedMMIO")
239        .desc("number of coalesced memory mapped IO requests")
240        ;
241
242    numIO
243        .name(name() + ".numIO")
244        .desc("number of VM exits due to legacy IO")
245        ;
246
247    numHalt
248        .name(name() + ".numHalt")
249        .desc("number of VM exits due to wait for interrupt instructions")
250        ;
251
252    numInterrupts
253        .name(name() + ".numInterrupts")
254        .desc("number of interrupts delivered")
255        ;
256
257    numHypercalls
258        .name(name() + ".numHypercalls")
259        .desc("number of hypercalls")
260        ;
261}
262
263void
264BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
265{
266    if (DTRACE(Checkpoint)) {
267        DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
268        dump();
269    }
270
271    assert(tid == 0);
272    assert(_status == Idle);
273    thread->serialize(os);
274}
275
276void
277BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
278                              ThreadID tid)
279{
280    DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
281
282    assert(tid == 0);
283    assert(_status == Idle);
284    thread->unserialize(cp, section);
285    threadContextDirty = true;
286}
287
288unsigned int
289BaseKvmCPU::drain(DrainManager *dm)
290{
291    if (switchedOut())
292        return 0;
293
294    DPRINTF(Drain, "BaseKvmCPU::drain\n");
295    switch (_status) {
296      case Running:
297        // The base KVM code is normally ready when it is in the
298        // Running state, but the architecture specific code might be
299        // of a different opinion. This may happen when the CPU been
300        // notified of an event that hasn't been accepted by the vCPU
301        // yet.
302        if (!archIsDrained()) {
303            drainManager = dm;
304            return 1;
305        }
306
307        // The state of the CPU is consistent, so we don't need to do
308        // anything special to drain it. We simply de-schedule the
309        // tick event and enter the Idle state to prevent nasty things
310        // like MMIOs from happening.
311        if (tickEvent.scheduled())
312            deschedule(tickEvent);
313        _status = Idle;
314
315        /** FALLTHROUGH */
316      case Idle:
317        // Idle, no need to drain
318        assert(!tickEvent.scheduled());
319
320        // Sync the thread context here since we'll need it when we
321        // switch CPUs or checkpoint the CPU.
322        syncThreadContext();
323
324        return 0;
325
326      case RunningServiceCompletion:
327        // The CPU has just requested a service that was handled in
328        // the RunningService state, but the results have still not
329        // been reported to the CPU. Now, we /could/ probably just
330        // update the register state ourselves instead of letting KVM
331        // handle it, but that would be tricky. Instead, we enter KVM
332        // and let it do its stuff.
333        drainManager = dm;
334
335        DPRINTF(Drain, "KVM CPU is waiting for service completion, "
336                "requesting drain.\n");
337        return 1;
338
339      case RunningService:
340        // We need to drain since the CPU is waiting for service (e.g., MMIOs)
341        drainManager = dm;
342
343        DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
344        return 1;
345
346      default:
347        panic("KVM: Unhandled CPU state in drain()\n");
348        return 0;
349    }
350}
351
352void
353BaseKvmCPU::drainResume()
354{
355    assert(!tickEvent.scheduled());
356
357    // We might have been switched out. In that case, we don't need to
358    // do anything.
359    if (switchedOut())
360        return;
361
362    DPRINTF(Kvm, "drainResume\n");
363    verifyMemoryMode();
364
365    // The tick event is de-scheduled as a part of the draining
366    // process. Re-schedule it if the thread context is active.
367    if (tc->status() == ThreadContext::Active) {
368        schedule(tickEvent, nextCycle());
369        _status = Running;
370    } else {
371        _status = Idle;
372    }
373}
374
375void
376BaseKvmCPU::switchOut()
377{
378    DPRINTF(Kvm, "switchOut\n");
379
380    BaseCPU::switchOut();
381
382    // We should have drained prior to executing a switchOut, which
383    // means that the tick event shouldn't be scheduled and the CPU is
384    // idle.
385    assert(!tickEvent.scheduled());
386    assert(_status == Idle);
387}
388
389void
390BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
391{
392    DPRINTF(Kvm, "takeOverFrom\n");
393
394    BaseCPU::takeOverFrom(cpu);
395
396    // We should have drained prior to executing a switchOut, which
397    // means that the tick event shouldn't be scheduled and the CPU is
398    // idle.
399    assert(!tickEvent.scheduled());
400    assert(_status == Idle);
401    assert(threadContexts.size() == 1);
402
403    // Force an update of the KVM state here instead of flagging the
404    // TC as dirty. This is not ideal from a performance point of
405    // view, but it makes debugging easier as it allows meaningful KVM
406    // state to be dumped before and after a takeover.
407    updateKvmState();
408    threadContextDirty = false;
409}
410
411void
412BaseKvmCPU::verifyMemoryMode() const
413{
414    if (!(system->isAtomicMode() && system->bypassCaches())) {
415        fatal("The KVM-based CPUs requires the memory system to be in the "
416              "'atomic_noncaching' mode.\n");
417    }
418}
419
420void
421BaseKvmCPU::wakeup()
422{
423    DPRINTF(Kvm, "wakeup()\n");
424    // This method might have been called from another
425    // context. Migrate to this SimObject's event queue when
426    // delivering the wakeup signal.
427    EventQueue::ScopedMigration migrate(eventQueue());
428
429    // Kick the vCPU to get it to come out of KVM.
430    kick();
431
432    if (thread->status() != ThreadContext::Suspended)
433        return;
434
435    thread->activate();
436}
437
438void
439BaseKvmCPU::activateContext(ThreadID thread_num)
440{
441    DPRINTF(Kvm, "ActivateContext %d\n", thread_num);
442
443    assert(thread_num == 0);
444    assert(thread);
445
446    assert(_status == Idle);
447    assert(!tickEvent.scheduled());
448
449    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
450
451    schedule(tickEvent, clockEdge(Cycles(0)));
452    _status = Running;
453}
454
455
456void
457BaseKvmCPU::suspendContext(ThreadID thread_num)
458{
459    DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
460
461    assert(thread_num == 0);
462    assert(thread);
463
464    if (_status == Idle)
465        return;
466
467    assert(_status == Running || _status == RunningServiceCompletion);
468
469    // The tick event may no be scheduled if the quest has requested
470    // the monitor to wait for interrupts. The normal CPU models can
471    // get their tick events descheduled by quiesce instructions, but
472    // that can't happen here.
473    if (tickEvent.scheduled())
474        deschedule(tickEvent);
475
476    _status = Idle;
477}
478
479void
480BaseKvmCPU::deallocateContext(ThreadID thread_num)
481{
482    // for now, these are equivalent
483    suspendContext(thread_num);
484}
485
486void
487BaseKvmCPU::haltContext(ThreadID thread_num)
488{
489    // for now, these are equivalent
490    suspendContext(thread_num);
491}
492
493ThreadContext *
494BaseKvmCPU::getContext(int tn)
495{
496    assert(tn == 0);
497    syncThreadContext();
498    return tc;
499}
500
501
502Counter
503BaseKvmCPU::totalInsts() const
504{
505    return ctrInsts;
506}
507
508Counter
509BaseKvmCPU::totalOps() const
510{
511    hack_once("Pretending totalOps is equivalent to totalInsts()\n");
512    return ctrInsts;
513}
514
515void
516BaseKvmCPU::dump()
517{
518    inform("State dumping not implemented.");
519}
520
521void
522BaseKvmCPU::tick()
523{
524    Tick delay(0);
525    assert(_status != Idle);
526
527    switch (_status) {
528      case RunningService:
529        // handleKvmExit() will determine the next state of the CPU
530        delay = handleKvmExit();
531
532        if (tryDrain())
533            _status = Idle;
534        break;
535
536      case RunningServiceCompletion:
537      case Running: {
538          EventQueue *q = curEventQueue();
539          Tick ticksToExecute(q->nextTick() - curTick());
540
541          // We might need to update the KVM state.
542          syncKvmState();
543
544          // Setup any pending instruction count breakpoints using
545          // PerfEvent.
546          setupInstStop();
547
548          DPRINTF(KvmRun, "Entering KVM...\n");
549          if (drainManager) {
550              // Force an immediate exit from KVM after completing
551              // pending operations. The architecture-specific code
552              // takes care to run until it is in a state where it can
553              // safely be drained.
554              delay = kvmRunDrain();
555          } else {
556              delay = kvmRun(ticksToExecute);
557          }
558
559          // The CPU might have been suspended before entering into
560          // KVM. Assume that the CPU was suspended /before/ entering
561          // into KVM and skip the exit handling.
562          if (_status == Idle)
563              break;
564
565          // Entering into KVM implies that we'll have to reload the thread
566          // context from KVM if we want to access it. Flag the KVM state as
567          // dirty with respect to the cached thread context.
568          kvmStateDirty = true;
569
570          // Enter into the RunningService state unless the
571          // simulation was stopped by a timer.
572          if (_kvmRun->exit_reason !=  KVM_EXIT_INTR) {
573              _status = RunningService;
574          } else {
575              ++numExitSignal;
576              _status = Running;
577          }
578
579          // Service any pending instruction events. The vCPU should
580          // have exited in time for the event using the instruction
581          // counter configured by setupInstStop().
582          comInstEventQueue[0]->serviceEvents(ctrInsts);
583          system->instEventQueue.serviceEvents(system->totalNumInsts);
584
585          if (tryDrain())
586              _status = Idle;
587      } break;
588
589      default:
590        panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
591              _status);
592    }
593
594    // Schedule a new tick if we are still running
595    if (_status != Idle)
596        schedule(tickEvent, clockEdge(ticksToCycles(delay)));
597}
598
599Tick
600BaseKvmCPU::kvmRunDrain()
601{
602    // By default, the only thing we need to drain is a pending IO
603    // operation which assumes that we are in the
604    // RunningServiceCompletion state.
605    assert(_status == RunningServiceCompletion);
606
607    // Deliver the data from the pending IO operation and immediately
608    // exit.
609    return kvmRun(0);
610}
611
612uint64_t
613BaseKvmCPU::getHostCycles() const
614{
615    return hwCycles.read();
616}
617
618Tick
619BaseKvmCPU::kvmRun(Tick ticks)
620{
621    Tick ticksExecuted;
622    DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
623
624    if (ticks == 0) {
625        // Settings ticks == 0 is a special case which causes an entry
626        // into KVM that finishes pending operations (e.g., IO) and
627        // then immediately exits.
628        DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
629
630        ++numVMHalfEntries;
631
632        // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this
633        // thread). The KVM control signal is masked while executing
634        // in gem5 and gets unmasked temporarily as when entering
635        // KVM. See setSignalMask() and setupSignalHandler().
636        kick();
637
638        // Start the vCPU. KVM will check for signals after completing
639        // pending operations (IO). Since the KVM_KICK_SIGNAL is
640        // pending, this forces an immediate exit to gem5 again. We
641        // don't bother to setup timers since this shouldn't actually
642        // execute any code (other than completing half-executed IO
643        // instructions) in the guest.
644        ioctlRun();
645
646        // We always execute at least one cycle to prevent the
647        // BaseKvmCPU::tick() to be rescheduled on the same tick
648        // twice.
649        ticksExecuted = clockPeriod();
650    } else {
651        // This method is executed as a result of a tick event. That
652        // means that the event queue will be locked when entering the
653        // method. We temporarily unlock the event queue to allow
654        // other threads to steal control of this thread to inject
655        // interrupts. They will typically lock the queue and then
656        // force an exit from KVM by kicking the vCPU.
657        EventQueue::ScopedRelease release(curEventQueue());
658
659        if (ticks < runTimer->resolution()) {
660            DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
661                    ticks, runTimer->resolution());
662            ticks = runTimer->resolution();
663        }
664
665        // Get hardware statistics after synchronizing contexts. The KVM
666        // state update might affect guest cycle counters.
667        uint64_t baseCycles(getHostCycles());
668        uint64_t baseInstrs(hwInstructions.read());
669
670        // Arm the run timer and start the cycle timer if it isn't
671        // controlled by the overflow timer. Starting/stopping the cycle
672        // timer automatically starts the other perf timers as they are in
673        // the same counter group.
674        runTimer->arm(ticks);
675        if (!perfControlledByTimer)
676            hwCycles.start();
677
678        ioctlRun();
679
680        runTimer->disarm();
681        if (!perfControlledByTimer)
682            hwCycles.stop();
683
684        // The control signal may have been delivered after we exited
685        // from KVM. It will be pending in that case since it is
686        // masked when we aren't executing in KVM. Discard it to make
687        // sure we don't deliver it immediately next time we try to
688        // enter into KVM.
689        discardPendingSignal(KVM_KICK_SIGNAL);
690
691        const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
692        const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
693        const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
694        ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
695
696        /* Update statistics */
697        numCycles += simCyclesExecuted;;
698        numInsts += instsExecuted;
699        ctrInsts += instsExecuted;
700        system->totalNumInsts += instsExecuted;
701
702        DPRINTF(KvmRun,
703                "KVM: Executed %i instructions in %i cycles "
704                "(%i ticks, sim cycles: %i).\n",
705                instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
706    }
707
708    ++numVMExits;
709
710    return ticksExecuted + flushCoalescedMMIO();
711}
712
713void
714BaseKvmCPU::kvmNonMaskableInterrupt()
715{
716    ++numInterrupts;
717    if (ioctl(KVM_NMI) == -1)
718        panic("KVM: Failed to deliver NMI to virtual CPU\n");
719}
720
721void
722BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
723{
724    ++numInterrupts;
725    if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
726        panic("KVM: Failed to deliver interrupt to virtual CPU\n");
727}
728
729void
730BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
731{
732    if (ioctl(KVM_GET_REGS, &regs) == -1)
733        panic("KVM: Failed to get guest registers\n");
734}
735
736void
737BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
738{
739    if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
740        panic("KVM: Failed to set guest registers\n");
741}
742
743void
744BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
745{
746    if (ioctl(KVM_GET_SREGS, &regs) == -1)
747        panic("KVM: Failed to get guest special registers\n");
748}
749
750void
751BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
752{
753    if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
754        panic("KVM: Failed to set guest special registers\n");
755}
756
757void
758BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
759{
760    if (ioctl(KVM_GET_FPU, &state) == -1)
761        panic("KVM: Failed to get guest FPU state\n");
762}
763
764void
765BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
766{
767    if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
768        panic("KVM: Failed to set guest FPU state\n");
769}
770
771
772void
773BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
774{
775#ifdef KVM_SET_ONE_REG
776    struct kvm_one_reg reg;
777    reg.id = id;
778    reg.addr = (uint64_t)addr;
779
780    if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
781        panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
782              id, errno);
783    }
784#else
785    panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
786#endif
787}
788
789void
790BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
791{
792#ifdef KVM_GET_ONE_REG
793    struct kvm_one_reg reg;
794    reg.id = id;
795    reg.addr = (uint64_t)addr;
796
797    if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
798        panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
799              id, errno);
800    }
801#else
802    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
803#endif
804}
805
806std::string
807BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
808{
809#ifdef KVM_GET_ONE_REG
810    std::ostringstream ss;
811
812    ss.setf(std::ios::hex, std::ios::basefield);
813    ss.setf(std::ios::showbase);
814#define HANDLE_INTTYPE(len)                      \
815    case KVM_REG_SIZE_U ## len: {                \
816        uint ## len ## _t value;                 \
817        getOneReg(id, &value);                   \
818        ss << value;                             \
819    }  break
820
821#define HANDLE_ARRAY(len)                       \
822    case KVM_REG_SIZE_U ## len: {               \
823        uint8_t value[len / 8];                 \
824        getOneReg(id, value);                   \
825        ss << "[" << value[0];                  \
826        for (int i = 1; i < len  / 8; ++i)      \
827            ss << ", " << value[i];             \
828        ss << "]";                              \
829      } break
830
831    switch (id & KVM_REG_SIZE_MASK) {
832        HANDLE_INTTYPE(8);
833        HANDLE_INTTYPE(16);
834        HANDLE_INTTYPE(32);
835        HANDLE_INTTYPE(64);
836        HANDLE_ARRAY(128);
837        HANDLE_ARRAY(256);
838        HANDLE_ARRAY(512);
839        HANDLE_ARRAY(1024);
840      default:
841        ss << "??";
842    }
843
844#undef HANDLE_INTTYPE
845#undef HANDLE_ARRAY
846
847    return ss.str();
848#else
849    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
850#endif
851}
852
853void
854BaseKvmCPU::syncThreadContext()
855{
856    if (!kvmStateDirty)
857        return;
858
859    assert(!threadContextDirty);
860
861    updateThreadContext();
862    kvmStateDirty = false;
863}
864
865void
866BaseKvmCPU::syncKvmState()
867{
868    if (!threadContextDirty)
869        return;
870
871    assert(!kvmStateDirty);
872
873    updateKvmState();
874    threadContextDirty = false;
875}
876
877Tick
878BaseKvmCPU::handleKvmExit()
879{
880    DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
881    assert(_status == RunningService);
882
883    // Switch into the running state by default. Individual handlers
884    // can override this.
885    _status = Running;
886    switch (_kvmRun->exit_reason) {
887      case KVM_EXIT_UNKNOWN:
888        return handleKvmExitUnknown();
889
890      case KVM_EXIT_EXCEPTION:
891        return handleKvmExitException();
892
893      case KVM_EXIT_IO:
894        _status = RunningServiceCompletion;
895        ++numIO;
896        return handleKvmExitIO();
897
898      case KVM_EXIT_HYPERCALL:
899        ++numHypercalls;
900        return handleKvmExitHypercall();
901
902      case KVM_EXIT_HLT:
903        /* The guest has halted and is waiting for interrupts */
904        DPRINTF(Kvm, "handleKvmExitHalt\n");
905        ++numHalt;
906
907        // Suspend the thread until the next interrupt arrives
908        thread->suspend();
909
910        // This is actually ignored since the thread is suspended.
911        return 0;
912
913      case KVM_EXIT_MMIO:
914        _status = RunningServiceCompletion;
915        /* Service memory mapped IO requests */
916        DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
917                _kvmRun->mmio.is_write,
918                _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
919
920        ++numMMIO;
921        return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
922                            _kvmRun->mmio.len, _kvmRun->mmio.is_write);
923
924      case KVM_EXIT_IRQ_WINDOW_OPEN:
925        return handleKvmExitIRQWindowOpen();
926
927      case KVM_EXIT_FAIL_ENTRY:
928        return handleKvmExitFailEntry();
929
930      case KVM_EXIT_INTR:
931        /* KVM was interrupted by a signal, restart it in the next
932         * tick. */
933        return 0;
934
935      case KVM_EXIT_INTERNAL_ERROR:
936        panic("KVM: Internal error (suberror: %u)\n",
937              _kvmRun->internal.suberror);
938
939      default:
940        dump();
941        panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
942    }
943}
944
945Tick
946BaseKvmCPU::handleKvmExitIO()
947{
948    panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
949          _kvmRun->io.direction, _kvmRun->io.size,
950          _kvmRun->io.port, _kvmRun->io.count);
951}
952
953Tick
954BaseKvmCPU::handleKvmExitHypercall()
955{
956    panic("KVM: Unhandled hypercall\n");
957}
958
959Tick
960BaseKvmCPU::handleKvmExitIRQWindowOpen()
961{
962    warn("KVM: Unhandled IRQ window.\n");
963    return 0;
964}
965
966
967Tick
968BaseKvmCPU::handleKvmExitUnknown()
969{
970    dump();
971    panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
972          _kvmRun->hw.hardware_exit_reason);
973}
974
975Tick
976BaseKvmCPU::handleKvmExitException()
977{
978    dump();
979    panic("KVM: Got exception when starting vCPU "
980          "(exception: %u, error_code: %u)\n",
981          _kvmRun->ex.exception, _kvmRun->ex.error_code);
982}
983
984Tick
985BaseKvmCPU::handleKvmExitFailEntry()
986{
987    dump();
988    panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
989          _kvmRun->fail_entry.hardware_entry_failure_reason);
990}
991
992Tick
993BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
994{
995    ThreadContext *tc(thread->getTC());
996    syncThreadContext();
997
998    mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
999    // Some architectures do need to massage physical addresses a bit
1000    // before they are inserted into the memory system. This enables
1001    // APIC accesses on x86 and m5ops where supported through a MMIO
1002    // interface.
1003    BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
1004    Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
1005    if (fault != NoFault)
1006        warn("Finalization of MMIO address failed: %s\n", fault->name());
1007
1008
1009    const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
1010    Packet pkt(&mmio_req, cmd);
1011    pkt.dataStatic(data);
1012
1013    if (mmio_req.isMmappedIpr()) {
1014        // We currently assume that there is no need to migrate to a
1015        // different event queue when doing IPRs. Currently, IPRs are
1016        // only used for m5ops, so it should be a valid assumption.
1017        const Cycles ipr_delay(write ?
1018                             TheISA::handleIprWrite(tc, &pkt) :
1019                             TheISA::handleIprRead(tc, &pkt));
1020        threadContextDirty = true;
1021        return clockPeriod() * ipr_delay;
1022    } else {
1023        // Temporarily lock and migrate to the event queue of the
1024        // VM. This queue is assumed to "own" all devices we need to
1025        // access if running in multi-core mode.
1026        EventQueue::ScopedMigration migrate(vm.eventQueue());
1027
1028        return dataPort.sendAtomic(&pkt);
1029    }
1030}
1031
1032void
1033BaseKvmCPU::setSignalMask(const sigset_t *mask)
1034{
1035    std::unique_ptr<struct kvm_signal_mask> kvm_mask;
1036
1037    if (mask) {
1038        kvm_mask.reset((struct kvm_signal_mask *)operator new(
1039                           sizeof(struct kvm_signal_mask) + sizeof(*mask)));
1040        // The kernel and the user-space headers have different ideas
1041        // about the size of sigset_t. This seems like a massive hack,
1042        // but is actually what qemu does.
1043        assert(sizeof(*mask) >= 8);
1044        kvm_mask->len = 8;
1045        memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1046    }
1047
1048    if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1049        panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1050              errno);
1051}
1052
1053int
1054BaseKvmCPU::ioctl(int request, long p1) const
1055{
1056    if (vcpuFD == -1)
1057        panic("KVM: CPU ioctl called before initialization\n");
1058
1059    return ::ioctl(vcpuFD, request, p1);
1060}
1061
1062Tick
1063BaseKvmCPU::flushCoalescedMMIO()
1064{
1065    if (!mmioRing)
1066        return 0;
1067
1068    DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1069
1070    // TODO: We might need to do synchronization when we start to
1071    // support multiple CPUs
1072    Tick ticks(0);
1073    while (mmioRing->first != mmioRing->last) {
1074        struct kvm_coalesced_mmio &ent(
1075            mmioRing->coalesced_mmio[mmioRing->first]);
1076
1077        DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1078                ent.phys_addr, ent.len);
1079
1080        ++numCoalescedMMIO;
1081        ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1082
1083        mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1084    }
1085
1086    return ticks;
1087}
1088
1089/**
1090 * Dummy handler for KVM kick signals.
1091 *
1092 * @note This function is usually not called since the kernel doesn't
1093 * seem to deliver signals when the signal is only unmasked when
1094 * running in KVM. This doesn't matter though since we are only
1095 * interested in getting KVM to exit, which happens as expected. See
1096 * setupSignalHandler() and kvmRun() for details about KVM signal
1097 * handling.
1098 */
1099static void
1100onKickSignal(int signo, siginfo_t *si, void *data)
1101{
1102}
1103
1104void
1105BaseKvmCPU::setupSignalHandler()
1106{
1107    struct sigaction sa;
1108
1109    memset(&sa, 0, sizeof(sa));
1110    sa.sa_sigaction = onKickSignal;
1111    sa.sa_flags = SA_SIGINFO | SA_RESTART;
1112    if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1)
1113        panic("KVM: Failed to setup vCPU timer signal handler\n");
1114
1115    sigset_t sigset;
1116    if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1)
1117        panic("KVM: Failed get signal mask\n");
1118
1119    // Request KVM to setup the same signal mask as we're currently
1120    // running with except for the KVM control signal. We'll sometimes
1121    // need to raise the KVM_KICK_SIGNAL to cause immediate exits from
1122    // KVM after servicing IO requests. See kvmRun().
1123    sigdelset(&sigset, KVM_KICK_SIGNAL);
1124    setSignalMask(&sigset);
1125
1126    // Mask our control signals so they aren't delivered unless we're
1127    // actually executing inside KVM.
1128    sigaddset(&sigset, KVM_KICK_SIGNAL);
1129    if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1)
1130        panic("KVM: Failed mask the KVM control signals\n");
1131}
1132
1133bool
1134BaseKvmCPU::discardPendingSignal(int signum) const
1135{
1136    int discardedSignal;
1137
1138    // Setting the timeout to zero causes sigtimedwait to return
1139    // immediately.
1140    struct timespec timeout;
1141    timeout.tv_sec = 0;
1142    timeout.tv_nsec = 0;
1143
1144    sigset_t sigset;
1145    sigemptyset(&sigset);
1146    sigaddset(&sigset, signum);
1147
1148    do {
1149        discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1150    } while (discardedSignal == -1 && errno == EINTR);
1151
1152    if (discardedSignal == signum)
1153        return true;
1154    else if (discardedSignal == -1 && errno == EAGAIN)
1155        return false;
1156    else
1157        panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1158              discardedSignal, errno);
1159}
1160
1161void
1162BaseKvmCPU::setupCounters()
1163{
1164    DPRINTF(Kvm, "Attaching cycle counter...\n");
1165    PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1166                                PERF_COUNT_HW_CPU_CYCLES);
1167    cfgCycles.disabled(true)
1168        .pinned(true);
1169
1170    // Try to exclude the host. We set both exclude_hv and
1171    // exclude_host since different architectures use slightly
1172    // different APIs in the kernel.
1173    cfgCycles.exclude_hv(true)
1174        .exclude_host(true);
1175
1176    if (perfControlledByTimer) {
1177        // We need to configure the cycles counter to send overflows
1178        // since we are going to use it to trigger timer signals that
1179        // trap back into m5 from KVM. In practice, this means that we
1180        // need to set some non-zero sample period that gets
1181        // overridden when the timer is armed.
1182        cfgCycles.wakeupEvents(1)
1183            .samplePeriod(42);
1184    }
1185
1186    hwCycles.attach(cfgCycles,
1187                    0); // TID (0 => currentThread)
1188
1189    setupInstCounter();
1190}
1191
1192bool
1193BaseKvmCPU::tryDrain()
1194{
1195    if (!drainManager)
1196        return false;
1197
1198    if (!archIsDrained()) {
1199        DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1200        return false;
1201    }
1202
1203    if (_status == Idle || _status == Running) {
1204        DPRINTF(Drain,
1205                "tryDrain: CPU transitioned into the Idle state, drain done\n");
1206        drainManager->signalDrainDone();
1207        drainManager = NULL;
1208        return true;
1209    } else {
1210        DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1211        return false;
1212    }
1213}
1214
1215void
1216BaseKvmCPU::ioctlRun()
1217{
1218    if (ioctl(KVM_RUN) == -1) {
1219        if (errno != EINTR)
1220            panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1221                  errno);
1222    }
1223}
1224
1225void
1226BaseKvmCPU::setupInstStop()
1227{
1228    if (comInstEventQueue[0]->empty()) {
1229        setupInstCounter(0);
1230    } else {
1231        const uint64_t next(comInstEventQueue[0]->nextTick());
1232
1233        assert(next > ctrInsts);
1234        setupInstCounter(next - ctrInsts);
1235    }
1236}
1237
1238void
1239BaseKvmCPU::setupInstCounter(uint64_t period)
1240{
1241    // No need to do anything if we aren't attaching for the first
1242    // time or the period isn't changing.
1243    if (period == activeInstPeriod && hwInstructions.attached())
1244        return;
1245
1246    PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1247                                         PERF_COUNT_HW_INSTRUCTIONS);
1248
1249    // Try to exclude the host. We set both exclude_hv and
1250    // exclude_host since different architectures use slightly
1251    // different APIs in the kernel.
1252    cfgInstructions.exclude_hv(true)
1253        .exclude_host(true);
1254
1255    if (period) {
1256        // Setup a sampling counter if that has been requested.
1257        cfgInstructions.wakeupEvents(1)
1258            .samplePeriod(period);
1259    }
1260
1261    // We need to detach and re-attach the counter to reliably change
1262    // sampling settings. See PerfKvmCounter::period() for details.
1263    if (hwInstructions.attached())
1264        hwInstructions.detach();
1265    assert(hwCycles.attached());
1266    hwInstructions.attach(cfgInstructions,
1267                          0, // TID (0 => currentThread)
1268                          hwCycles);
1269
1270    if (period)
1271        hwInstructions.enableSignals(KVM_KICK_SIGNAL);
1272
1273    activeInstPeriod = period;
1274}
1275