base.cc revision 11629
1/* 2 * Copyright (c) 2012, 2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include <linux/kvm.h> 41#include <sys/ioctl.h> 42#include <sys/mman.h> 43#include <unistd.h> 44 45#include <cerrno> 46#include <csignal> 47#include <ostream> 48 49#include "arch/mmapped_ipr.hh" 50#include "arch/utility.hh" 51#include "cpu/kvm/base.hh" 52#include "debug/Checkpoint.hh" 53#include "debug/Drain.hh" 54#include "debug/Kvm.hh" 55#include "debug/KvmIO.hh" 56#include "debug/KvmRun.hh" 57#include "params/BaseKvmCPU.hh" 58#include "sim/process.hh" 59#include "sim/system.hh" 60 61#include <signal.h> 62 63/* Used by some KVM macros */ 64#define PAGE_SIZE pageSize 65 66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 67 : BaseCPU(params), 68 vm(*params->kvmVM), 69 _status(Idle), 70 dataPort(name() + ".dcache_port", this), 71 instPort(name() + ".icache_port", this), 72 alwaysSyncTC(params->alwaysSyncTC), 73 threadContextDirty(true), 74 kvmStateDirty(false), 75 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 76 _kvmRun(NULL), mmioRing(NULL), 77 pageSize(sysconf(_SC_PAGE_SIZE)), 78 tickEvent(*this), 79 activeInstPeriod(0), 80 perfControlledByTimer(params->usePerfOverflow), 81 hostFactor(params->hostFactor), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121} 122 123void 124BaseKvmCPU::startup() 125{ 126 const BaseKvmCPUParams * const p( 127 dynamic_cast<const BaseKvmCPUParams *>(params())); 128 129 Kvm &kvm(*vm.kvm); 130 131 BaseCPU::startup(); 132 133 assert(vcpuFD == -1); 134 135 // Tell the VM that a CPU is about to start. 136 vm.cpuStartup(); 137 138 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 139 // not guaranteed that the parent KVM VM has initialized at that 140 // point. Initialize virtual CPUs here instead. 141 vcpuFD = vm.createVCPU(vcpuID); 142 143 // Map the KVM run structure */ 144 vcpuMMapSize = kvm.getVCPUMMapSize(); 145 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 146 PROT_READ | PROT_WRITE, MAP_SHARED, 147 vcpuFD, 0); 148 if (_kvmRun == MAP_FAILED) 149 panic("KVM: Failed to map run data structure\n"); 150 151 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 152 // available. The offset into the KVM's communication page is 153 // provided by the coalesced MMIO capability. 154 int mmioOffset(kvm.capCoalescedMMIO()); 155 if (!p->useCoalescedMMIO) { 156 inform("KVM: Coalesced MMIO disabled by config.\n"); 157 } else if (mmioOffset) { 158 inform("KVM: Coalesced IO available\n"); 159 mmioRing = (struct kvm_coalesced_mmio_ring *)( 160 (char *)_kvmRun + (mmioOffset * pageSize)); 161 } else { 162 inform("KVM: Coalesced not supported by host OS\n"); 163 } 164 165 thread->startup(); 166 167 Event *startupEvent( 168 new EventWrapper<BaseKvmCPU, 169 &BaseKvmCPU::startupThread>(this, true)); 170 schedule(startupEvent, curTick()); 171} 172 173BaseKvmCPU::Status 174BaseKvmCPU::KVMCpuPort::nextIOState() const 175{ 176 return (activeMMIOReqs || pendingMMIOPkts.size()) 177 ? RunningMMIOPending : RunningServiceCompletion; 178} 179 180Tick 181BaseKvmCPU::KVMCpuPort::submitIO(PacketPtr pkt) 182{ 183 if (cpu->system->isAtomicMode()) { 184 Tick delay = sendAtomic(pkt); 185 delete pkt->req; 186 delete pkt; 187 return delay; 188 } else { 189 if (pendingMMIOPkts.empty() && sendTimingReq(pkt)) { 190 activeMMIOReqs++; 191 } else { 192 pendingMMIOPkts.push(pkt); 193 } 194 // Return value is irrelevant for timing-mode accesses. 195 return 0; 196 } 197} 198 199bool 200BaseKvmCPU::KVMCpuPort::recvTimingResp(PacketPtr pkt) 201{ 202 DPRINTF(KvmIO, "KVM: Finished timing request\n"); 203 204 delete pkt->req; 205 delete pkt; 206 activeMMIOReqs--; 207 208 // We can switch back into KVM when all pending and in-flight MMIO 209 // operations have completed. 210 if (!(activeMMIOReqs || pendingMMIOPkts.size())) { 211 DPRINTF(KvmIO, "KVM: Finished all outstanding timing requests\n"); 212 cpu->finishMMIOPending(); 213 } 214 return true; 215} 216 217void 218BaseKvmCPU::KVMCpuPort::recvReqRetry() 219{ 220 DPRINTF(KvmIO, "KVM: Retry for timing request\n"); 221 222 assert(pendingMMIOPkts.size()); 223 224 // Assuming that we can issue infinite requests this cycle is a bit 225 // unrealistic, but it's not worth modeling something more complex in 226 // KVM. 227 while (pendingMMIOPkts.size() && sendTimingReq(pendingMMIOPkts.front())) { 228 pendingMMIOPkts.pop(); 229 activeMMIOReqs++; 230 } 231} 232 233void 234BaseKvmCPU::finishMMIOPending() 235{ 236 assert(_status = RunningMMIOPending); 237 assert(!tickEvent.scheduled()); 238 239 _status = RunningServiceCompletion; 240 schedule(tickEvent, nextCycle()); 241} 242 243void 244BaseKvmCPU::startupThread() 245{ 246 // Do thread-specific initialization. We need to setup signal 247 // delivery for counters and timers from within the thread that 248 // will execute the event queue to ensure that signals are 249 // delivered to the right threads. 250 const BaseKvmCPUParams * const p( 251 dynamic_cast<const BaseKvmCPUParams *>(params())); 252 253 vcpuThread = pthread_self(); 254 255 // Setup signal handlers. This has to be done after the vCPU is 256 // created since it manipulates the vCPU signal mask. 257 setupSignalHandler(); 258 259 setupCounters(); 260 261 if (p->usePerfOverflow) 262 runTimer.reset(new PerfKvmTimer(hwCycles, 263 KVM_KICK_SIGNAL, 264 p->hostFactor, 265 p->hostFreq)); 266 else 267 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 268 p->hostFactor, 269 p->hostFreq)); 270 271} 272 273void 274BaseKvmCPU::regStats() 275{ 276 using namespace Stats; 277 278 BaseCPU::regStats(); 279 280 numInsts 281 .name(name() + ".committedInsts") 282 .desc("Number of instructions committed") 283 ; 284 285 numVMExits 286 .name(name() + ".numVMExits") 287 .desc("total number of KVM exits") 288 ; 289 290 numVMHalfEntries 291 .name(name() + ".numVMHalfEntries") 292 .desc("number of KVM entries to finalize pending operations") 293 ; 294 295 numExitSignal 296 .name(name() + ".numExitSignal") 297 .desc("exits due to signal delivery") 298 ; 299 300 numMMIO 301 .name(name() + ".numMMIO") 302 .desc("number of VM exits due to memory mapped IO") 303 ; 304 305 numCoalescedMMIO 306 .name(name() + ".numCoalescedMMIO") 307 .desc("number of coalesced memory mapped IO requests") 308 ; 309 310 numIO 311 .name(name() + ".numIO") 312 .desc("number of VM exits due to legacy IO") 313 ; 314 315 numHalt 316 .name(name() + ".numHalt") 317 .desc("number of VM exits due to wait for interrupt instructions") 318 ; 319 320 numInterrupts 321 .name(name() + ".numInterrupts") 322 .desc("number of interrupts delivered") 323 ; 324 325 numHypercalls 326 .name(name() + ".numHypercalls") 327 .desc("number of hypercalls") 328 ; 329} 330 331void 332BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const 333{ 334 if (DTRACE(Checkpoint)) { 335 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 336 dump(); 337 } 338 339 assert(tid == 0); 340 assert(_status == Idle); 341 thread->serialize(cp); 342} 343 344void 345BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) 346{ 347 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 348 349 assert(tid == 0); 350 assert(_status == Idle); 351 thread->unserialize(cp); 352 threadContextDirty = true; 353} 354 355DrainState 356BaseKvmCPU::drain() 357{ 358 if (switchedOut()) 359 return DrainState::Drained; 360 361 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 362 switch (_status) { 363 case Running: 364 // The base KVM code is normally ready when it is in the 365 // Running state, but the architecture specific code might be 366 // of a different opinion. This may happen when the CPU been 367 // notified of an event that hasn't been accepted by the vCPU 368 // yet. 369 if (!archIsDrained()) 370 return DrainState::Draining; 371 372 // The state of the CPU is consistent, so we don't need to do 373 // anything special to drain it. We simply de-schedule the 374 // tick event and enter the Idle state to prevent nasty things 375 // like MMIOs from happening. 376 if (tickEvent.scheduled()) 377 deschedule(tickEvent); 378 _status = Idle; 379 380 /** FALLTHROUGH */ 381 case Idle: 382 // Idle, no need to drain 383 assert(!tickEvent.scheduled()); 384 385 // Sync the thread context here since we'll need it when we 386 // switch CPUs or checkpoint the CPU. 387 syncThreadContext(); 388 389 return DrainState::Drained; 390 391 case RunningServiceCompletion: 392 // The CPU has just requested a service that was handled in 393 // the RunningService state, but the results have still not 394 // been reported to the CPU. Now, we /could/ probably just 395 // update the register state ourselves instead of letting KVM 396 // handle it, but that would be tricky. Instead, we enter KVM 397 // and let it do its stuff. 398 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 399 "requesting drain.\n"); 400 return DrainState::Draining; 401 402 case RunningMMIOPending: 403 // We need to drain since there are in-flight timing accesses 404 DPRINTF(Drain, "KVM CPU is waiting for timing accesses to complete, " 405 "requesting drain.\n"); 406 return DrainState::Draining; 407 408 case RunningService: 409 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 410 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 411 return DrainState::Draining; 412 413 default: 414 panic("KVM: Unhandled CPU state in drain()\n"); 415 return DrainState::Drained; 416 } 417} 418 419void 420BaseKvmCPU::drainResume() 421{ 422 assert(!tickEvent.scheduled()); 423 424 // We might have been switched out. In that case, we don't need to 425 // do anything. 426 if (switchedOut()) 427 return; 428 429 DPRINTF(Kvm, "drainResume\n"); 430 verifyMemoryMode(); 431 432 // The tick event is de-scheduled as a part of the draining 433 // process. Re-schedule it if the thread context is active. 434 if (tc->status() == ThreadContext::Active) { 435 schedule(tickEvent, nextCycle()); 436 _status = Running; 437 } else { 438 _status = Idle; 439 } 440} 441 442void 443BaseKvmCPU::notifyFork() 444{ 445 // We should have drained prior to forking, which means that the 446 // tick event shouldn't be scheduled and the CPU is idle. 447 assert(!tickEvent.scheduled()); 448 assert(_status == Idle); 449 450 if (vcpuFD != -1) { 451 if (close(vcpuFD) == -1) 452 warn("kvm CPU: notifyFork failed to close vcpuFD\n"); 453 454 if (_kvmRun) 455 munmap(_kvmRun, vcpuMMapSize); 456 457 vcpuFD = -1; 458 _kvmRun = NULL; 459 460 hwInstructions.detach(); 461 hwCycles.detach(); 462 } 463} 464 465void 466BaseKvmCPU::switchOut() 467{ 468 DPRINTF(Kvm, "switchOut\n"); 469 470 BaseCPU::switchOut(); 471 472 // We should have drained prior to executing a switchOut, which 473 // means that the tick event shouldn't be scheduled and the CPU is 474 // idle. 475 assert(!tickEvent.scheduled()); 476 assert(_status == Idle); 477} 478 479void 480BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 481{ 482 DPRINTF(Kvm, "takeOverFrom\n"); 483 484 BaseCPU::takeOverFrom(cpu); 485 486 // We should have drained prior to executing a switchOut, which 487 // means that the tick event shouldn't be scheduled and the CPU is 488 // idle. 489 assert(!tickEvent.scheduled()); 490 assert(_status == Idle); 491 assert(threadContexts.size() == 1); 492 493 // Force an update of the KVM state here instead of flagging the 494 // TC as dirty. This is not ideal from a performance point of 495 // view, but it makes debugging easier as it allows meaningful KVM 496 // state to be dumped before and after a takeover. 497 updateKvmState(); 498 threadContextDirty = false; 499} 500 501void 502BaseKvmCPU::verifyMemoryMode() const 503{ 504 if (!(system->bypassCaches())) { 505 fatal("The KVM-based CPUs requires the memory system to be in the " 506 "'noncaching' mode.\n"); 507 } 508} 509 510void 511BaseKvmCPU::wakeup(ThreadID tid) 512{ 513 DPRINTF(Kvm, "wakeup()\n"); 514 // This method might have been called from another 515 // context. Migrate to this SimObject's event queue when 516 // delivering the wakeup signal. 517 EventQueue::ScopedMigration migrate(eventQueue()); 518 519 // Kick the vCPU to get it to come out of KVM. 520 kick(); 521 522 if (thread->status() != ThreadContext::Suspended) 523 return; 524 525 thread->activate(); 526} 527 528void 529BaseKvmCPU::activateContext(ThreadID thread_num) 530{ 531 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 532 533 assert(thread_num == 0); 534 assert(thread); 535 536 assert(_status == Idle); 537 assert(!tickEvent.scheduled()); 538 539 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 540 541 schedule(tickEvent, clockEdge(Cycles(0))); 542 _status = Running; 543} 544 545 546void 547BaseKvmCPU::suspendContext(ThreadID thread_num) 548{ 549 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 550 551 assert(thread_num == 0); 552 assert(thread); 553 554 if (_status == Idle) 555 return; 556 557 assert(_status == Running || _status == RunningServiceCompletion); 558 559 // The tick event may no be scheduled if the quest has requested 560 // the monitor to wait for interrupts. The normal CPU models can 561 // get their tick events descheduled by quiesce instructions, but 562 // that can't happen here. 563 if (tickEvent.scheduled()) 564 deschedule(tickEvent); 565 566 _status = Idle; 567} 568 569void 570BaseKvmCPU::deallocateContext(ThreadID thread_num) 571{ 572 // for now, these are equivalent 573 suspendContext(thread_num); 574} 575 576void 577BaseKvmCPU::haltContext(ThreadID thread_num) 578{ 579 // for now, these are equivalent 580 suspendContext(thread_num); 581} 582 583ThreadContext * 584BaseKvmCPU::getContext(int tn) 585{ 586 assert(tn == 0); 587 syncThreadContext(); 588 return tc; 589} 590 591 592Counter 593BaseKvmCPU::totalInsts() const 594{ 595 return ctrInsts; 596} 597 598Counter 599BaseKvmCPU::totalOps() const 600{ 601 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 602 return ctrInsts; 603} 604 605void 606BaseKvmCPU::dump() const 607{ 608 inform("State dumping not implemented."); 609} 610 611void 612BaseKvmCPU::tick() 613{ 614 Tick delay(0); 615 assert(_status != Idle && _status != RunningMMIOPending); 616 617 switch (_status) { 618 case RunningService: 619 // handleKvmExit() will determine the next state of the CPU 620 delay = handleKvmExit(); 621 622 if (tryDrain()) 623 _status = Idle; 624 break; 625 626 case RunningServiceCompletion: 627 case Running: { 628 const uint64_t nextInstEvent( 629 !comInstEventQueue[0]->empty() ? 630 comInstEventQueue[0]->nextTick() : UINT64_MAX); 631 // Enter into KVM and complete pending IO instructions if we 632 // have an instruction event pending. 633 const Tick ticksToExecute( 634 nextInstEvent > ctrInsts ? 635 curEventQueue()->nextTick() - curTick() : 0); 636 637 if (alwaysSyncTC) 638 threadContextDirty = true; 639 640 // We might need to update the KVM state. 641 syncKvmState(); 642 643 // Setup any pending instruction count breakpoints using 644 // PerfEvent if we are going to execute more than just an IO 645 // completion. 646 if (ticksToExecute > 0) 647 setupInstStop(); 648 649 DPRINTF(KvmRun, "Entering KVM...\n"); 650 if (drainState() == DrainState::Draining) { 651 // Force an immediate exit from KVM after completing 652 // pending operations. The architecture-specific code 653 // takes care to run until it is in a state where it can 654 // safely be drained. 655 delay = kvmRunDrain(); 656 } else { 657 delay = kvmRun(ticksToExecute); 658 } 659 660 // The CPU might have been suspended before entering into 661 // KVM. Assume that the CPU was suspended /before/ entering 662 // into KVM and skip the exit handling. 663 if (_status == Idle) 664 break; 665 666 // Entering into KVM implies that we'll have to reload the thread 667 // context from KVM if we want to access it. Flag the KVM state as 668 // dirty with respect to the cached thread context. 669 kvmStateDirty = true; 670 671 if (alwaysSyncTC) 672 syncThreadContext(); 673 674 // Enter into the RunningService state unless the 675 // simulation was stopped by a timer. 676 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 677 _status = RunningService; 678 } else { 679 ++numExitSignal; 680 _status = Running; 681 } 682 683 // Service any pending instruction events. The vCPU should 684 // have exited in time for the event using the instruction 685 // counter configured by setupInstStop(). 686 comInstEventQueue[0]->serviceEvents(ctrInsts); 687 system->instEventQueue.serviceEvents(system->totalNumInsts); 688 689 if (tryDrain()) 690 _status = Idle; 691 } break; 692 693 default: 694 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 695 _status); 696 } 697 698 // Schedule a new tick if we are still running 699 if (_status != Idle && _status != RunningMMIOPending) 700 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 701} 702 703Tick 704BaseKvmCPU::kvmRunDrain() 705{ 706 // By default, the only thing we need to drain is a pending IO 707 // operation which assumes that we are in the 708 // RunningServiceCompletion or RunningMMIOPending state. 709 assert(_status == RunningServiceCompletion || 710 _status == RunningMMIOPending); 711 712 // Deliver the data from the pending IO operation and immediately 713 // exit. 714 return kvmRun(0); 715} 716 717uint64_t 718BaseKvmCPU::getHostCycles() const 719{ 720 return hwCycles.read(); 721} 722 723Tick 724BaseKvmCPU::kvmRun(Tick ticks) 725{ 726 Tick ticksExecuted; 727 fatal_if(vcpuFD == -1, 728 "Trying to run a KVM CPU in a forked child process. " 729 "This is not supported.\n"); 730 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 731 732 if (ticks == 0) { 733 // Settings ticks == 0 is a special case which causes an entry 734 // into KVM that finishes pending operations (e.g., IO) and 735 // then immediately exits. 736 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 737 738 ++numVMHalfEntries; 739 740 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 741 // thread). The KVM control signal is masked while executing 742 // in gem5 and gets unmasked temporarily as when entering 743 // KVM. See setSignalMask() and setupSignalHandler(). 744 kick(); 745 746 // Start the vCPU. KVM will check for signals after completing 747 // pending operations (IO). Since the KVM_KICK_SIGNAL is 748 // pending, this forces an immediate exit to gem5 again. We 749 // don't bother to setup timers since this shouldn't actually 750 // execute any code (other than completing half-executed IO 751 // instructions) in the guest. 752 ioctlRun(); 753 754 // We always execute at least one cycle to prevent the 755 // BaseKvmCPU::tick() to be rescheduled on the same tick 756 // twice. 757 ticksExecuted = clockPeriod(); 758 } else { 759 // This method is executed as a result of a tick event. That 760 // means that the event queue will be locked when entering the 761 // method. We temporarily unlock the event queue to allow 762 // other threads to steal control of this thread to inject 763 // interrupts. They will typically lock the queue and then 764 // force an exit from KVM by kicking the vCPU. 765 EventQueue::ScopedRelease release(curEventQueue()); 766 767 if (ticks < runTimer->resolution()) { 768 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 769 ticks, runTimer->resolution()); 770 ticks = runTimer->resolution(); 771 } 772 773 // Get hardware statistics after synchronizing contexts. The KVM 774 // state update might affect guest cycle counters. 775 uint64_t baseCycles(getHostCycles()); 776 uint64_t baseInstrs(hwInstructions.read()); 777 778 // Arm the run timer and start the cycle timer if it isn't 779 // controlled by the overflow timer. Starting/stopping the cycle 780 // timer automatically starts the other perf timers as they are in 781 // the same counter group. 782 runTimer->arm(ticks); 783 if (!perfControlledByTimer) 784 hwCycles.start(); 785 786 ioctlRun(); 787 788 runTimer->disarm(); 789 if (!perfControlledByTimer) 790 hwCycles.stop(); 791 792 // The control signal may have been delivered after we exited 793 // from KVM. It will be pending in that case since it is 794 // masked when we aren't executing in KVM. Discard it to make 795 // sure we don't deliver it immediately next time we try to 796 // enter into KVM. 797 discardPendingSignal(KVM_KICK_SIGNAL); 798 799 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 800 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 801 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 802 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 803 804 /* Update statistics */ 805 numCycles += simCyclesExecuted;; 806 numInsts += instsExecuted; 807 ctrInsts += instsExecuted; 808 system->totalNumInsts += instsExecuted; 809 810 DPRINTF(KvmRun, 811 "KVM: Executed %i instructions in %i cycles " 812 "(%i ticks, sim cycles: %i).\n", 813 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 814 } 815 816 ++numVMExits; 817 818 return ticksExecuted + flushCoalescedMMIO(); 819} 820 821void 822BaseKvmCPU::kvmNonMaskableInterrupt() 823{ 824 ++numInterrupts; 825 if (ioctl(KVM_NMI) == -1) 826 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 827} 828 829void 830BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 831{ 832 ++numInterrupts; 833 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 834 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 835} 836 837void 838BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 839{ 840 if (ioctl(KVM_GET_REGS, ®s) == -1) 841 panic("KVM: Failed to get guest registers\n"); 842} 843 844void 845BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 846{ 847 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 848 panic("KVM: Failed to set guest registers\n"); 849} 850 851void 852BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 853{ 854 if (ioctl(KVM_GET_SREGS, ®s) == -1) 855 panic("KVM: Failed to get guest special registers\n"); 856} 857 858void 859BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 860{ 861 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 862 panic("KVM: Failed to set guest special registers\n"); 863} 864 865void 866BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 867{ 868 if (ioctl(KVM_GET_FPU, &state) == -1) 869 panic("KVM: Failed to get guest FPU state\n"); 870} 871 872void 873BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 874{ 875 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 876 panic("KVM: Failed to set guest FPU state\n"); 877} 878 879 880void 881BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 882{ 883#ifdef KVM_SET_ONE_REG 884 struct kvm_one_reg reg; 885 reg.id = id; 886 reg.addr = (uint64_t)addr; 887 888 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 889 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 890 id, errno); 891 } 892#else 893 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 894#endif 895} 896 897void 898BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 899{ 900#ifdef KVM_GET_ONE_REG 901 struct kvm_one_reg reg; 902 reg.id = id; 903 reg.addr = (uint64_t)addr; 904 905 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 906 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 907 id, errno); 908 } 909#else 910 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 911#endif 912} 913 914std::string 915BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 916{ 917#ifdef KVM_GET_ONE_REG 918 std::ostringstream ss; 919 920 ss.setf(std::ios::hex, std::ios::basefield); 921 ss.setf(std::ios::showbase); 922#define HANDLE_INTTYPE(len) \ 923 case KVM_REG_SIZE_U ## len: { \ 924 uint ## len ## _t value; \ 925 getOneReg(id, &value); \ 926 ss << value; \ 927 } break 928 929#define HANDLE_ARRAY(len) \ 930 case KVM_REG_SIZE_U ## len: { \ 931 uint8_t value[len / 8]; \ 932 getOneReg(id, value); \ 933 ccprintf(ss, "[0x%x", value[0]); \ 934 for (int i = 1; i < len / 8; ++i) \ 935 ccprintf(ss, ", 0x%x", value[i]); \ 936 ccprintf(ss, "]"); \ 937 } break 938 939 switch (id & KVM_REG_SIZE_MASK) { 940 HANDLE_INTTYPE(8); 941 HANDLE_INTTYPE(16); 942 HANDLE_INTTYPE(32); 943 HANDLE_INTTYPE(64); 944 HANDLE_ARRAY(128); 945 HANDLE_ARRAY(256); 946 HANDLE_ARRAY(512); 947 HANDLE_ARRAY(1024); 948 default: 949 ss << "??"; 950 } 951 952#undef HANDLE_INTTYPE 953#undef HANDLE_ARRAY 954 955 return ss.str(); 956#else 957 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 958#endif 959} 960 961void 962BaseKvmCPU::syncThreadContext() 963{ 964 if (!kvmStateDirty) 965 return; 966 967 assert(!threadContextDirty); 968 969 updateThreadContext(); 970 kvmStateDirty = false; 971} 972 973void 974BaseKvmCPU::syncKvmState() 975{ 976 if (!threadContextDirty) 977 return; 978 979 assert(!kvmStateDirty); 980 981 updateKvmState(); 982 threadContextDirty = false; 983} 984 985Tick 986BaseKvmCPU::handleKvmExit() 987{ 988 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 989 assert(_status == RunningService); 990 991 // Switch into the running state by default. Individual handlers 992 // can override this. 993 _status = Running; 994 switch (_kvmRun->exit_reason) { 995 case KVM_EXIT_UNKNOWN: 996 return handleKvmExitUnknown(); 997 998 case KVM_EXIT_EXCEPTION: 999 return handleKvmExitException(); 1000 1001 case KVM_EXIT_IO: 1002 { 1003 ++numIO; 1004 Tick ticks = handleKvmExitIO(); 1005 _status = dataPort.nextIOState(); 1006 return ticks; 1007 } 1008 1009 case KVM_EXIT_HYPERCALL: 1010 ++numHypercalls; 1011 return handleKvmExitHypercall(); 1012 1013 case KVM_EXIT_HLT: 1014 /* The guest has halted and is waiting for interrupts */ 1015 DPRINTF(Kvm, "handleKvmExitHalt\n"); 1016 ++numHalt; 1017 1018 // Suspend the thread until the next interrupt arrives 1019 thread->suspend(); 1020 1021 // This is actually ignored since the thread is suspended. 1022 return 0; 1023 1024 case KVM_EXIT_MMIO: 1025 { 1026 /* Service memory mapped IO requests */ 1027 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 1028 _kvmRun->mmio.is_write, 1029 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 1030 1031 ++numMMIO; 1032 Tick ticks = doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 1033 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 1034 // doMMIOAccess could have triggered a suspend, in which case we don't 1035 // want to overwrite the _status. 1036 if (_status != Idle) 1037 _status = dataPort.nextIOState(); 1038 return ticks; 1039 } 1040 1041 case KVM_EXIT_IRQ_WINDOW_OPEN: 1042 return handleKvmExitIRQWindowOpen(); 1043 1044 case KVM_EXIT_FAIL_ENTRY: 1045 return handleKvmExitFailEntry(); 1046 1047 case KVM_EXIT_INTR: 1048 /* KVM was interrupted by a signal, restart it in the next 1049 * tick. */ 1050 return 0; 1051 1052 case KVM_EXIT_INTERNAL_ERROR: 1053 panic("KVM: Internal error (suberror: %u)\n", 1054 _kvmRun->internal.suberror); 1055 1056 default: 1057 dump(); 1058 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 1059 } 1060} 1061 1062Tick 1063BaseKvmCPU::handleKvmExitIO() 1064{ 1065 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 1066 _kvmRun->io.direction, _kvmRun->io.size, 1067 _kvmRun->io.port, _kvmRun->io.count); 1068} 1069 1070Tick 1071BaseKvmCPU::handleKvmExitHypercall() 1072{ 1073 panic("KVM: Unhandled hypercall\n"); 1074} 1075 1076Tick 1077BaseKvmCPU::handleKvmExitIRQWindowOpen() 1078{ 1079 warn("KVM: Unhandled IRQ window.\n"); 1080 return 0; 1081} 1082 1083 1084Tick 1085BaseKvmCPU::handleKvmExitUnknown() 1086{ 1087 dump(); 1088 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 1089 _kvmRun->hw.hardware_exit_reason); 1090} 1091 1092Tick 1093BaseKvmCPU::handleKvmExitException() 1094{ 1095 dump(); 1096 panic("KVM: Got exception when starting vCPU " 1097 "(exception: %u, error_code: %u)\n", 1098 _kvmRun->ex.exception, _kvmRun->ex.error_code); 1099} 1100 1101Tick 1102BaseKvmCPU::handleKvmExitFailEntry() 1103{ 1104 dump(); 1105 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 1106 _kvmRun->fail_entry.hardware_entry_failure_reason); 1107} 1108 1109Tick 1110BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 1111{ 1112 ThreadContext *tc(thread->getTC()); 1113 syncThreadContext(); 1114 1115 RequestPtr mmio_req = new Request(paddr, size, Request::UNCACHEABLE, 1116 dataMasterId()); 1117 mmio_req->setContext(tc->contextId()); 1118 // Some architectures do need to massage physical addresses a bit 1119 // before they are inserted into the memory system. This enables 1120 // APIC accesses on x86 and m5ops where supported through a MMIO 1121 // interface. 1122 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1123 Fault fault(tc->getDTBPtr()->finalizePhysical(mmio_req, tc, tlb_mode)); 1124 if (fault != NoFault) 1125 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1126 1127 1128 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1129 PacketPtr pkt = new Packet(mmio_req, cmd); 1130 pkt->dataStatic(data); 1131 1132 if (mmio_req->isMmappedIpr()) { 1133 // We currently assume that there is no need to migrate to a 1134 // different event queue when doing IPRs. Currently, IPRs are 1135 // only used for m5ops, so it should be a valid assumption. 1136 const Cycles ipr_delay(write ? 1137 TheISA::handleIprWrite(tc, pkt) : 1138 TheISA::handleIprRead(tc, pkt)); 1139 threadContextDirty = true; 1140 delete pkt->req; 1141 delete pkt; 1142 return clockPeriod() * ipr_delay; 1143 } else { 1144 // Temporarily lock and migrate to the event queue of the 1145 // VM. This queue is assumed to "own" all devices we need to 1146 // access if running in multi-core mode. 1147 EventQueue::ScopedMigration migrate(vm.eventQueue()); 1148 1149 return dataPort.submitIO(pkt); 1150 } 1151} 1152 1153void 1154BaseKvmCPU::setSignalMask(const sigset_t *mask) 1155{ 1156 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1157 1158 if (mask) { 1159 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1160 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1161 // The kernel and the user-space headers have different ideas 1162 // about the size of sigset_t. This seems like a massive hack, 1163 // but is actually what qemu does. 1164 assert(sizeof(*mask) >= 8); 1165 kvm_mask->len = 8; 1166 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1167 } 1168 1169 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1170 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1171 errno); 1172} 1173 1174int 1175BaseKvmCPU::ioctl(int request, long p1) const 1176{ 1177 if (vcpuFD == -1) 1178 panic("KVM: CPU ioctl called before initialization\n"); 1179 1180 return ::ioctl(vcpuFD, request, p1); 1181} 1182 1183Tick 1184BaseKvmCPU::flushCoalescedMMIO() 1185{ 1186 if (!mmioRing) 1187 return 0; 1188 1189 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1190 1191 // TODO: We might need to do synchronization when we start to 1192 // support multiple CPUs 1193 Tick ticks(0); 1194 while (mmioRing->first != mmioRing->last) { 1195 struct kvm_coalesced_mmio &ent( 1196 mmioRing->coalesced_mmio[mmioRing->first]); 1197 1198 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1199 ent.phys_addr, ent.len); 1200 1201 ++numCoalescedMMIO; 1202 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1203 1204 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1205 } 1206 1207 return ticks; 1208} 1209 1210/** 1211 * Dummy handler for KVM kick signals. 1212 * 1213 * @note This function is usually not called since the kernel doesn't 1214 * seem to deliver signals when the signal is only unmasked when 1215 * running in KVM. This doesn't matter though since we are only 1216 * interested in getting KVM to exit, which happens as expected. See 1217 * setupSignalHandler() and kvmRun() for details about KVM signal 1218 * handling. 1219 */ 1220static void 1221onKickSignal(int signo, siginfo_t *si, void *data) 1222{ 1223} 1224 1225void 1226BaseKvmCPU::setupSignalHandler() 1227{ 1228 struct sigaction sa; 1229 1230 memset(&sa, 0, sizeof(sa)); 1231 sa.sa_sigaction = onKickSignal; 1232 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1233 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1234 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1235 1236 sigset_t sigset; 1237 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1238 panic("KVM: Failed get signal mask\n"); 1239 1240 // Request KVM to setup the same signal mask as we're currently 1241 // running with except for the KVM control signal. We'll sometimes 1242 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1243 // KVM after servicing IO requests. See kvmRun(). 1244 sigdelset(&sigset, KVM_KICK_SIGNAL); 1245 setSignalMask(&sigset); 1246 1247 // Mask our control signals so they aren't delivered unless we're 1248 // actually executing inside KVM. 1249 sigaddset(&sigset, KVM_KICK_SIGNAL); 1250 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1251 panic("KVM: Failed mask the KVM control signals\n"); 1252} 1253 1254bool 1255BaseKvmCPU::discardPendingSignal(int signum) const 1256{ 1257 int discardedSignal; 1258 1259 // Setting the timeout to zero causes sigtimedwait to return 1260 // immediately. 1261 struct timespec timeout; 1262 timeout.tv_sec = 0; 1263 timeout.tv_nsec = 0; 1264 1265 sigset_t sigset; 1266 sigemptyset(&sigset); 1267 sigaddset(&sigset, signum); 1268 1269 do { 1270 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1271 } while (discardedSignal == -1 && errno == EINTR); 1272 1273 if (discardedSignal == signum) 1274 return true; 1275 else if (discardedSignal == -1 && errno == EAGAIN) 1276 return false; 1277 else 1278 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1279 discardedSignal, errno); 1280} 1281 1282void 1283BaseKvmCPU::setupCounters() 1284{ 1285 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1286 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1287 PERF_COUNT_HW_CPU_CYCLES); 1288 cfgCycles.disabled(true) 1289 .pinned(true); 1290 1291 // Try to exclude the host. We set both exclude_hv and 1292 // exclude_host since different architectures use slightly 1293 // different APIs in the kernel. 1294 cfgCycles.exclude_hv(true) 1295 .exclude_host(true); 1296 1297 if (perfControlledByTimer) { 1298 // We need to configure the cycles counter to send overflows 1299 // since we are going to use it to trigger timer signals that 1300 // trap back into m5 from KVM. In practice, this means that we 1301 // need to set some non-zero sample period that gets 1302 // overridden when the timer is armed. 1303 cfgCycles.wakeupEvents(1) 1304 .samplePeriod(42); 1305 } 1306 1307 hwCycles.attach(cfgCycles, 1308 0); // TID (0 => currentThread) 1309 1310 setupInstCounter(); 1311} 1312 1313bool 1314BaseKvmCPU::tryDrain() 1315{ 1316 if (drainState() != DrainState::Draining) 1317 return false; 1318 1319 if (!archIsDrained()) { 1320 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1321 return false; 1322 } 1323 1324 if (_status == Idle || _status == Running) { 1325 DPRINTF(Drain, 1326 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1327 signalDrainDone(); 1328 return true; 1329 } else { 1330 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1331 return false; 1332 } 1333} 1334 1335void 1336BaseKvmCPU::ioctlRun() 1337{ 1338 if (ioctl(KVM_RUN) == -1) { 1339 if (errno != EINTR) 1340 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1341 errno); 1342 } 1343} 1344 1345void 1346BaseKvmCPU::setupInstStop() 1347{ 1348 if (comInstEventQueue[0]->empty()) { 1349 setupInstCounter(0); 1350 } else { 1351 const uint64_t next(comInstEventQueue[0]->nextTick()); 1352 1353 assert(next > ctrInsts); 1354 setupInstCounter(next - ctrInsts); 1355 } 1356} 1357 1358void 1359BaseKvmCPU::setupInstCounter(uint64_t period) 1360{ 1361 // No need to do anything if we aren't attaching for the first 1362 // time or the period isn't changing. 1363 if (period == activeInstPeriod && hwInstructions.attached()) 1364 return; 1365 1366 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1367 PERF_COUNT_HW_INSTRUCTIONS); 1368 1369 // Try to exclude the host. We set both exclude_hv and 1370 // exclude_host since different architectures use slightly 1371 // different APIs in the kernel. 1372 cfgInstructions.exclude_hv(true) 1373 .exclude_host(true); 1374 1375 if (period) { 1376 // Setup a sampling counter if that has been requested. 1377 cfgInstructions.wakeupEvents(1) 1378 .samplePeriod(period); 1379 } 1380 1381 // We need to detach and re-attach the counter to reliably change 1382 // sampling settings. See PerfKvmCounter::period() for details. 1383 if (hwInstructions.attached()) 1384 hwInstructions.detach(); 1385 assert(hwCycles.attached()); 1386 hwInstructions.attach(cfgInstructions, 1387 0, // TID (0 => currentThread) 1388 hwCycles); 1389 1390 if (period) 1391 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1392 1393 activeInstPeriod = period; 1394} 1395