cpu.hh revision 12109:f29e9c5418aa
1/*
2 * Copyright (c) 2011, 2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_CHECKER_CPU_HH__
45#define __CPU_CHECKER_CPU_HH__
46
47#include <list>
48#include <map>
49#include <queue>
50
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "cpu/base.hh"
54#include "cpu/base_dyn_inst.hh"
55#include "cpu/exec_context.hh"
56#include "cpu/inst_res.hh"
57#include "cpu/pc_event.hh"
58#include "cpu/simple_thread.hh"
59#include "cpu/static_inst.hh"
60#include "debug/Checker.hh"
61#include "mem/request.hh"
62#include "params/CheckerCPU.hh"
63#include "sim/eventq.hh"
64
65// forward declarations
66namespace TheISA
67{
68    class TLB;
69}
70
71template <class>
72class BaseDynInst;
73class ThreadContext;
74class Request;
75
76/**
77 * CheckerCPU class.  Dynamically verifies instructions as they are
78 * completed by making sure that the instruction and its results match
79 * the independent execution of the benchmark inside the checker.  The
80 * checker verifies instructions in order, regardless of the order in
81 * which instructions complete.  There are certain results that can
82 * not be verified, specifically the result of a store conditional or
83 * the values of uncached accesses.  In these cases, and with
84 * instructions marked as "IsUnverifiable", the checker assumes that
85 * the value from the main CPU's execution is correct and simply
86 * copies that value.  It provides a CheckerThreadContext (see
87 * checker/thread_context.hh) that provides hooks for updating the
88 * Checker's state through any ThreadContext accesses.  This allows the
89 * checker to be able to correctly verify instructions, even with
90 * external accesses to the ThreadContext that change state.
91 */
92class CheckerCPU : public BaseCPU, public ExecContext
93{
94  protected:
95    typedef TheISA::MachInst MachInst;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98    typedef TheISA::MiscReg MiscReg;
99    using VecRegContainer = TheISA::VecRegContainer;
100
101    /** id attached to all issued requests */
102    MasterID masterId;
103  public:
104    void init() override;
105
106    typedef CheckerCPUParams Params;
107    CheckerCPU(Params *p);
108    virtual ~CheckerCPU();
109
110    void setSystem(System *system);
111
112    void setIcachePort(MasterPort *icache_port);
113
114    void setDcachePort(MasterPort *dcache_port);
115
116    MasterPort &getDataPort() override
117    {
118        // the checker does not have ports on its own so return the
119        // data port of the actual CPU core
120        assert(dcachePort);
121        return *dcachePort;
122    }
123
124    MasterPort &getInstPort() override
125    {
126        // the checker does not have ports on its own so return the
127        // data port of the actual CPU core
128        assert(icachePort);
129        return *icachePort;
130    }
131
132  protected:
133
134    std::vector<Process*> workload;
135
136    System *systemPtr;
137
138    MasterPort *icachePort;
139    MasterPort *dcachePort;
140
141    ThreadContext *tc;
142
143    TheISA::TLB *itb;
144    TheISA::TLB *dtb;
145
146    Addr dbg_vtophys(Addr addr);
147
148    // ISAs like ARM can have multiple destination registers to check,
149    // keep them all in a std::queue
150    std::queue<InstResult> result;
151
152    // Pointer to the one memory request.
153    RequestPtr memReq;
154
155    StaticInstPtr curStaticInst;
156    StaticInstPtr curMacroStaticInst;
157
158    // number of simulated instructions
159    Counter numInst;
160    Counter startNumInst;
161
162    std::queue<int> miscRegIdxs;
163
164  public:
165
166    // Primary thread being run.
167    SimpleThread *thread;
168
169    TheISA::TLB* getITBPtr() { return itb; }
170    TheISA::TLB* getDTBPtr() { return dtb; }
171
172    virtual Counter totalInsts() const override
173    {
174        return 0;
175    }
176
177    virtual Counter totalOps() const override
178    {
179        return 0;
180    }
181
182    // number of simulated loads
183    Counter numLoad;
184    Counter startNumLoad;
185
186    void serialize(CheckpointOut &cp) const override;
187    void unserialize(CheckpointIn &cp) override;
188
189    // These functions are only used in CPU models that split
190    // effective address computation from the actual memory access.
191    void setEA(Addr EA) override
192    { panic("CheckerCPU::setEA() not implemented\n"); }
193    Addr getEA() const  override
194    { panic("CheckerCPU::getEA() not implemented\n"); }
195
196    // The register accessor methods provide the index of the
197    // instruction's operand (e.g., 0 or 1), not the architectural
198    // register index, to simplify the implementation of register
199    // renaming.  We find the architectural register index by indexing
200    // into the instruction's own operand index table.  Note that a
201    // raw pointer to the StaticInst is provided instead of a
202    // ref-counted StaticInstPtr to redice overhead.  This is fine as
203    // long as these methods don't copy the pointer into any long-term
204    // storage (which is pretty hard to imagine they would have reason
205    // to do).
206
207    IntReg readIntRegOperand(const StaticInst *si, int idx) override
208    {
209        const RegId& reg = si->srcRegIdx(idx);
210        assert(reg.isIntReg());
211        return thread->readIntReg(reg.index());
212    }
213
214    FloatReg readFloatRegOperand(const StaticInst *si, int idx) override
215    {
216        const RegId& reg = si->srcRegIdx(idx);
217        assert(reg.isFloatReg());
218        return thread->readFloatReg(reg.index());
219    }
220
221    FloatRegBits readFloatRegOperandBits(const StaticInst *si,
222                                         int idx) override
223    {
224        const RegId& reg = si->srcRegIdx(idx);
225        assert(reg.isFloatReg());
226        return thread->readFloatRegBits(reg.index());
227    }
228
229    /**
230     * Read source vector register operand.
231     */
232    const VecRegContainer& readVecRegOperand(const StaticInst *si,
233                                             int idx) const override
234    {
235        const RegId& reg = si->srcRegIdx(idx);
236        assert(reg.isVecReg());
237        return thread->readVecReg(reg);
238    }
239
240    /**
241     * Read destination vector register operand for modification.
242     */
243    VecRegContainer& getWritableVecRegOperand(const StaticInst *si,
244                                             int idx) override
245    {
246        const RegId& reg = si->destRegIdx(idx);
247        assert(reg.isVecReg());
248        return thread->getWritableVecReg(reg);
249    }
250
251    /** Vector Register Lane Interfaces. */
252    /** @{ */
253    /** Reads source vector 8bit operand. */
254    virtual ConstVecLane8
255    readVec8BitLaneOperand(const StaticInst *si, int idx) const
256                            override
257    {
258        const RegId& reg = si->destRegIdx(idx);
259        assert(reg.isVecReg());
260        return thread->readVec8BitLaneReg(reg);
261    }
262
263    /** Reads source vector 16bit operand. */
264    virtual ConstVecLane16
265    readVec16BitLaneOperand(const StaticInst *si, int idx) const
266                            override
267    {
268        const RegId& reg = si->destRegIdx(idx);
269        assert(reg.isVecReg());
270        return thread->readVec16BitLaneReg(reg);
271    }
272
273    /** Reads source vector 32bit operand. */
274    virtual ConstVecLane32
275    readVec32BitLaneOperand(const StaticInst *si, int idx) const
276                            override
277    {
278        const RegId& reg = si->destRegIdx(idx);
279        assert(reg.isVecReg());
280        return thread->readVec32BitLaneReg(reg);
281    }
282
283    /** Reads source vector 64bit operand. */
284    virtual ConstVecLane64
285    readVec64BitLaneOperand(const StaticInst *si, int idx) const
286                            override
287    {
288        const RegId& reg = si->destRegIdx(idx);
289        assert(reg.isVecReg());
290        return thread->readVec64BitLaneReg(reg);
291    }
292
293    /** Write a lane of the destination vector operand. */
294    template <typename LD>
295    void
296    setVecLaneOperandT(const StaticInst *si, int idx, const LD& val)
297    {
298        const RegId& reg = si->destRegIdx(idx);
299        assert(reg.isVecReg());
300        return thread->setVecLane(reg, val);
301    }
302    virtual void
303    setVecLaneOperand(const StaticInst *si, int idx,
304            const LaneData<LaneSize::Byte>& val) override
305    {
306        setVecLaneOperandT(si, idx, val);
307    }
308    virtual void
309    setVecLaneOperand(const StaticInst *si, int idx,
310            const LaneData<LaneSize::TwoByte>& val) override
311    {
312        setVecLaneOperandT(si, idx, val);
313    }
314    virtual void
315    setVecLaneOperand(const StaticInst *si, int idx,
316            const LaneData<LaneSize::FourByte>& val) override
317    {
318        setVecLaneOperandT(si, idx, val);
319    }
320    virtual void
321    setVecLaneOperand(const StaticInst *si, int idx,
322            const LaneData<LaneSize::EightByte>& val) override
323    {
324        setVecLaneOperandT(si, idx, val);
325    }
326    /** @} */
327
328    VecElem readVecElemOperand(const StaticInst *si, int idx) const override
329    {
330        const RegId& reg = si->srcRegIdx(idx);
331        return thread->readVecElem(reg);
332    }
333
334    CCReg readCCRegOperand(const StaticInst *si, int idx) override
335    {
336        const RegId& reg = si->srcRegIdx(idx);
337        assert(reg.isCCReg());
338        return thread->readCCReg(reg.index());
339    }
340
341    template<typename T>
342    void setScalarResult(T&& t)
343    {
344        result.push(InstResult(std::forward<T>(t),
345                        InstResult::ResultType::Scalar));
346    }
347
348    template<typename T>
349    void setVecResult(T&& t)
350    {
351        result.push(InstResult(std::forward<T>(t),
352                        InstResult::ResultType::VecReg));
353    }
354
355    template<typename T>
356    void setVecElemResult(T&& t)
357    {
358        result.push(InstResult(std::forward<T>(t),
359                        InstResult::ResultType::VecElem));
360    }
361
362    void setIntRegOperand(const StaticInst *si, int idx,
363                          IntReg val) override
364    {
365        const RegId& reg = si->destRegIdx(idx);
366        assert(reg.isIntReg());
367        thread->setIntReg(reg.index(), val);
368        setScalarResult(val);
369    }
370
371    void setFloatRegOperand(const StaticInst *si, int idx,
372                            FloatReg val) override
373    {
374        const RegId& reg = si->destRegIdx(idx);
375        assert(reg.isFloatReg());
376        thread->setFloatReg(reg.index(), val);
377        setScalarResult(val);
378    }
379
380    void setFloatRegOperandBits(const StaticInst *si, int idx,
381                                FloatRegBits val) override
382    {
383        const RegId& reg = si->destRegIdx(idx);
384        assert(reg.isFloatReg());
385        thread->setFloatRegBits(reg.index(), val);
386        setScalarResult(val);
387    }
388
389    void setCCRegOperand(const StaticInst *si, int idx, CCReg val) override
390    {
391        const RegId& reg = si->destRegIdx(idx);
392        assert(reg.isCCReg());
393        thread->setCCReg(reg.index(), val);
394        setScalarResult((uint64_t)val);
395    }
396
397    void setVecRegOperand(const StaticInst *si, int idx,
398                                const VecRegContainer& val) override
399    {
400        const RegId& reg = si->destRegIdx(idx);
401        assert(reg.isVecReg());
402        thread->setVecReg(reg, val);
403        setVecResult(val);
404    }
405
406    void setVecElemOperand(const StaticInst *si, int idx,
407                           const VecElem val) override
408    {
409        const RegId& reg = si->destRegIdx(idx);
410        assert(reg.isVecElem());
411        thread->setVecElem(reg, val);
412        setVecElemResult(val);
413    }
414
415    bool readPredicate() override { return thread->readPredicate(); }
416    void setPredicate(bool val) override
417    {
418        thread->setPredicate(val);
419    }
420
421    TheISA::PCState pcState() const override { return thread->pcState(); }
422    void pcState(const TheISA::PCState &val) override
423    {
424        DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
425                         val, thread->pcState());
426        thread->pcState(val);
427    }
428    Addr instAddr() { return thread->instAddr(); }
429    Addr nextInstAddr() { return thread->nextInstAddr(); }
430    MicroPC microPC() { return thread->microPC(); }
431    //////////////////////////////////////////
432
433    MiscReg readMiscRegNoEffect(int misc_reg) const
434    {
435        return thread->readMiscRegNoEffect(misc_reg);
436    }
437
438    MiscReg readMiscReg(int misc_reg) override
439    {
440        return thread->readMiscReg(misc_reg);
441    }
442
443    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
444    {
445        DPRINTF(Checker, "Setting misc reg %d with no effect to check later\n", misc_reg);
446        miscRegIdxs.push(misc_reg);
447        return thread->setMiscRegNoEffect(misc_reg, val);
448    }
449
450    void setMiscReg(int misc_reg, const MiscReg &val) override
451    {
452        DPRINTF(Checker, "Setting misc reg %d with effect to check later\n", misc_reg);
453        miscRegIdxs.push(misc_reg);
454        return thread->setMiscReg(misc_reg, val);
455    }
456
457    MiscReg readMiscRegOperand(const StaticInst *si, int idx) override
458    {
459        const RegId& reg = si->srcRegIdx(idx);
460        assert(reg.isMiscReg());
461        return thread->readMiscReg(reg.index());
462    }
463
464    void setMiscRegOperand(const StaticInst *si, int idx,
465                           const MiscReg &val) override
466    {
467        const RegId& reg = si->destRegIdx(idx);
468        assert(reg.isMiscReg());
469        return this->setMiscReg(reg.index(), val);
470    }
471
472#if THE_ISA == MIPS_ISA
473    MiscReg readRegOtherThread(const RegId& misc_reg, ThreadID tid) override
474    {
475        panic("MIPS MT not defined for CheckerCPU.\n");
476        return 0;
477    }
478
479    void setRegOtherThread(const RegId& misc_reg, MiscReg val,
480                               ThreadID tid) override
481    {
482        panic("MIPS MT not defined for CheckerCPU.\n");
483    }
484#endif
485
486    /////////////////////////////////////////
487
488    void recordPCChange(const TheISA::PCState &val)
489    {
490       changedPC = true;
491       newPCState = val;
492    }
493
494    void demapPage(Addr vaddr, uint64_t asn) override
495    {
496        this->itb->demapPage(vaddr, asn);
497        this->dtb->demapPage(vaddr, asn);
498    }
499
500    // monitor/mwait funtions
501    void armMonitor(Addr address) override
502    { BaseCPU::armMonitor(0, address); }
503    bool mwait(PacketPtr pkt) override { return BaseCPU::mwait(0, pkt); }
504    void mwaitAtomic(ThreadContext *tc) override
505    { return BaseCPU::mwaitAtomic(0, tc, thread->dtb); }
506    AddressMonitor *getAddrMonitor() override
507    { return BaseCPU::getCpuAddrMonitor(0); }
508
509    void demapInstPage(Addr vaddr, uint64_t asn)
510    {
511        this->itb->demapPage(vaddr, asn);
512    }
513
514    void demapDataPage(Addr vaddr, uint64_t asn)
515    {
516        this->dtb->demapPage(vaddr, asn);
517    }
518
519    Fault readMem(Addr addr, uint8_t *data, unsigned size,
520                  Request::Flags flags) override;
521    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
522                   Request::Flags flags, uint64_t *res) override;
523
524    unsigned int readStCondFailures() const override {
525        return thread->readStCondFailures();
526    }
527
528    void setStCondFailures(unsigned int sc_failures) override
529    {}
530    /////////////////////////////////////////////////////
531
532    Fault hwrei() override { return thread->hwrei(); }
533    bool simPalCheck(int palFunc) override
534    { return thread->simPalCheck(palFunc); }
535    void wakeup(ThreadID tid) override { }
536    // Assume that the normal CPU's call to syscall was successful.
537    // The checker's state would have already been updated by the syscall.
538    void syscall(int64_t callnum, Fault *fault) override { }
539
540    void handleError()
541    {
542        if (exitOnError)
543            dumpAndExit();
544    }
545
546    bool checkFlags(Request *unverified_req, Addr vAddr,
547                    Addr pAddr, int flags);
548
549    void dumpAndExit();
550
551    ThreadContext *tcBase() override { return tc; }
552    SimpleThread *threadBase() { return thread; }
553
554    InstResult unverifiedResult;
555    Request *unverifiedReq;
556    uint8_t *unverifiedMemData;
557
558    bool changedPC;
559    bool willChangePC;
560    TheISA::PCState newPCState;
561    bool exitOnError;
562    bool updateOnError;
563    bool warnOnlyOnLoadError;
564
565    InstSeqNum youngestSN;
566};
567
568/**
569 * Templated Checker class.  This Checker class is templated on the
570 * DynInstPtr of the instruction type that will be verified.  Proper
571 * template instantiations of the Checker must be placed at the bottom
572 * of checker/cpu.cc.
573 */
574template <class Impl>
575class Checker : public CheckerCPU
576{
577  private:
578    typedef typename Impl::DynInstPtr DynInstPtr;
579
580  public:
581    Checker(Params *p)
582        : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
583    { }
584
585    void switchOut();
586    void takeOverFrom(BaseCPU *oldCPU);
587
588    void advancePC(const Fault &fault);
589
590    void verify(DynInstPtr &inst);
591
592    void validateInst(DynInstPtr &inst);
593    void validateExecution(DynInstPtr &inst);
594    void validateState();
595
596    void copyResult(DynInstPtr &inst, const InstResult& mismatch_val,
597                    int start_idx);
598    void handlePendingInt();
599
600  private:
601    void handleError(DynInstPtr &inst)
602    {
603        if (exitOnError) {
604            dumpAndExit(inst);
605        } else if (updateOnError) {
606            updateThisCycle = true;
607        }
608    }
609
610    void dumpAndExit(DynInstPtr &inst);
611
612    bool updateThisCycle;
613
614    DynInstPtr unverifiedInst;
615
616    std::list<DynInstPtr> instList;
617    typedef typename std::list<DynInstPtr>::iterator InstListIt;
618    void dumpInsts();
619};
620
621#endif // __CPU_CHECKER_CPU_HH__
622