cpu.cc revision 9384
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Geoffrey Blake
42 */
43
44#include <list>
45#include <string>
46
47#include "arch/kernel_stats.hh"
48#include "arch/vtophys.hh"
49#include "cpu/checker/cpu.hh"
50#include "cpu/base.hh"
51#include "cpu/simple_thread.hh"
52#include "cpu/static_inst.hh"
53#include "cpu/thread_context.hh"
54#include "params/CheckerCPU.hh"
55#include "sim/full_system.hh"
56#include "sim/tlb.hh"
57
58using namespace std;
59using namespace TheISA;
60
61void
62CheckerCPU::init()
63{
64    masterId = systemPtr->getMasterId(name());
65}
66
67CheckerCPU::CheckerCPU(Params *p)
68    : BaseCPU(p, true), systemPtr(NULL), icachePort(NULL), dcachePort(NULL),
69      tc(NULL), thread(NULL)
70{
71    memReq = NULL;
72    curStaticInst = NULL;
73    curMacroStaticInst = NULL;
74
75    numInst = 0;
76    startNumInst = 0;
77    numLoad = 0;
78    startNumLoad = 0;
79    youngestSN = 0;
80
81    changedPC = willChangePC = changedNextPC = false;
82
83    exitOnError = p->exitOnError;
84    warnOnlyOnLoadError = p->warnOnlyOnLoadError;
85    itb = p->itb;
86    dtb = p->dtb;
87    workload = p->workload;
88
89    updateOnError = true;
90}
91
92CheckerCPU::~CheckerCPU()
93{
94}
95
96void
97CheckerCPU::setSystem(System *system)
98{
99    const Params *p(dynamic_cast<const Params *>(_params));
100
101    systemPtr = system;
102
103    if (FullSystem) {
104        thread = new SimpleThread(this, 0, systemPtr, itb, dtb,
105                                  p->isa[0], false);
106    } else {
107        thread = new SimpleThread(this, 0, systemPtr,
108                                  workload.size() ? workload[0] : NULL,
109                                  itb, dtb, p->isa[0]);
110    }
111
112    tc = thread->getTC();
113    threadContexts.push_back(tc);
114    thread->kernelStats = NULL;
115    // Thread should never be null after this
116    assert(thread != NULL);
117}
118
119void
120CheckerCPU::setIcachePort(CpuPort *icache_port)
121{
122    icachePort = icache_port;
123}
124
125void
126CheckerCPU::setDcachePort(CpuPort *dcache_port)
127{
128    dcachePort = dcache_port;
129}
130
131void
132CheckerCPU::serialize(ostream &os)
133{
134}
135
136void
137CheckerCPU::unserialize(Checkpoint *cp, const string &section)
138{
139}
140
141Fault
142CheckerCPU::readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags)
143{
144    Fault fault = NoFault;
145    unsigned blockSize = dcachePort->peerBlockSize();
146    int fullSize = size;
147    Addr secondAddr = roundDown(addr + size - 1, blockSize);
148    bool checked_flags = false;
149    bool flags_match = true;
150    Addr pAddr = 0x0;
151
152
153    if (secondAddr > addr)
154       size = secondAddr - addr;
155
156    // Need to account for multiple accesses like the Atomic and TimingSimple
157    while (1) {
158        memReq = new Request();
159        memReq->setVirt(0, addr, size, flags, masterId, thread->pcState().instAddr());
160
161        // translate to physical address
162        fault = dtb->translateFunctional(memReq, tc, BaseTLB::Read);
163
164        if (!checked_flags && fault == NoFault && unverifiedReq) {
165            flags_match = checkFlags(unverifiedReq, memReq->getVaddr(),
166                                     memReq->getPaddr(), memReq->getFlags());
167            pAddr = memReq->getPaddr();
168            checked_flags = true;
169        }
170
171        // Now do the access
172        if (fault == NoFault &&
173            !memReq->getFlags().isSet(Request::NO_ACCESS)) {
174            PacketPtr pkt = new Packet(memReq,
175                                       memReq->isLLSC() ?
176                                       MemCmd::LoadLockedReq :
177                                       MemCmd::ReadReq);
178
179            pkt->dataStatic(data);
180
181            if (!(memReq->isUncacheable() || memReq->isMmappedIpr())) {
182                // Access memory to see if we have the same data
183                dcachePort->sendFunctional(pkt);
184            } else {
185                // Assume the data is correct if it's an uncached access
186                memcpy(data, unverifiedMemData, size);
187            }
188
189            delete memReq;
190            memReq = NULL;
191            delete pkt;
192        }
193
194        if (fault != NoFault) {
195            if (memReq->isPrefetch()) {
196                fault = NoFault;
197            }
198            delete memReq;
199            memReq = NULL;
200            break;
201        }
202
203        if (memReq != NULL) {
204            delete memReq;
205        }
206
207        //If we don't need to access a second cache line, stop now.
208        if (secondAddr <= addr)
209        {
210            break;
211        }
212
213        // Setup for accessing next cache line
214        data += size;
215        unverifiedMemData += size;
216        size = addr + fullSize - secondAddr;
217        addr = secondAddr;
218    }
219
220    if (!flags_match) {
221        warn("%lli: Flags do not match CPU:%#x %#x %#x Checker:%#x %#x %#x\n",
222             curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(),
223             unverifiedReq->getFlags(), addr, pAddr, flags);
224        handleError();
225    }
226
227    return fault;
228}
229
230Fault
231CheckerCPU::writeMem(uint8_t *data, unsigned size,
232                     Addr addr, unsigned flags, uint64_t *res)
233{
234    Fault fault = NoFault;
235    bool checked_flags = false;
236    bool flags_match = true;
237    Addr pAddr = 0x0;
238
239    unsigned blockSize = dcachePort->peerBlockSize();
240    int fullSize = size;
241
242    Addr secondAddr = roundDown(addr + size - 1, blockSize);
243
244    if (secondAddr > addr)
245        size = secondAddr - addr;
246
247    // Need to account for a multiple access like Atomic and Timing CPUs
248    while (1) {
249        memReq = new Request();
250        memReq->setVirt(0, addr, size, flags, masterId, thread->pcState().instAddr());
251
252        // translate to physical address
253        fault = dtb->translateFunctional(memReq, tc, BaseTLB::Write);
254
255        if (!checked_flags && fault == NoFault && unverifiedReq) {
256           flags_match = checkFlags(unverifiedReq, memReq->getVaddr(),
257                                    memReq->getPaddr(), memReq->getFlags());
258           pAddr = memReq->getPaddr();
259           checked_flags = true;
260        }
261
262        /*
263         * We don't actually check memory for the store because there
264         * is no guarantee it has left the lsq yet, and therefore we
265         * can't verify the memory on stores without lsq snooping
266         * enabled.  This is left as future work for the Checker: LSQ snooping
267         * and memory validation after stores have committed.
268         */
269        bool was_prefetch = memReq->isPrefetch();
270
271        delete memReq;
272
273        //If we don't need to access a second cache line, stop now.
274        if (fault != NoFault || secondAddr <= addr)
275        {
276            if (fault != NoFault && was_prefetch) {
277              fault = NoFault;
278            }
279            break;
280        }
281
282        //Update size and access address
283        size = addr + fullSize - secondAddr;
284        //And access the right address.
285        addr = secondAddr;
286   }
287
288   if (!flags_match) {
289       warn("%lli: Flags do not match CPU:%#x %#x Checker:%#x %#x %#x\n",
290            curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(),
291            unverifiedReq->getFlags(), addr, pAddr, flags);
292       handleError();
293   }
294
295   // Assume the result was the same as the one passed in.  This checker
296   // doesn't check if the SC should succeed or fail, it just checks the
297   // value.
298   if (unverifiedReq && res && unverifiedReq->extraDataValid())
299       *res = unverifiedReq->getExtraData();
300
301   // Entire purpose here is to make sure we are getting the
302   // same data to send to the mem system as the CPU did.
303   // Cannot check this is actually what went to memory because
304   // there stores can be in ld/st queue or coherent operations
305   // overwriting values.
306   bool extraData;
307   if (unverifiedReq) {
308       extraData = unverifiedReq->extraDataValid() ?
309                        unverifiedReq->getExtraData() : 1;
310   }
311
312   if (unverifiedReq && unverifiedMemData &&
313       memcmp(data, unverifiedMemData, fullSize) && extraData) {
314           warn("%lli: Store value does not match value sent to memory!\
315                  data: %#x inst_data: %#x", curTick(), data,
316                  unverifiedMemData);
317       handleError();
318   }
319
320   return fault;
321}
322
323Addr
324CheckerCPU::dbg_vtophys(Addr addr)
325{
326    return vtophys(tc, addr);
327}
328
329/**
330 * Checks if the flags set by the Checker and Checkee match.
331 */
332bool
333CheckerCPU::checkFlags(Request *unverified_req, Addr vAddr,
334                       Addr pAddr, int flags)
335{
336    Addr unverifiedVAddr = unverified_req->getVaddr();
337    Addr unverifiedPAddr = unverified_req->getPaddr();
338    int unverifiedFlags = unverified_req->getFlags();
339
340    if (unverifiedVAddr != vAddr ||
341        unverifiedPAddr != pAddr ||
342        unverifiedFlags != flags) {
343        return false;
344    }
345
346    return true;
347}
348
349void
350CheckerCPU::dumpAndExit()
351{
352    warn("%lli: Checker PC:%s",
353         curTick(), thread->pcState());
354    panic("Checker found an error!");
355}
356