base_dyn_inst.hh revision 9920:028e4da64b42
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <bitset>
50#include <list>
51#include <string>
52#include <queue>
53
54#include "arch/utility.hh"
55#include "base/trace.hh"
56#include "config/the_isa.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/fault_fwd.hh"
67#include "sim/system.hh"
68#include "sim/tlb.hh"
69
70/**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75template <class Impl>
76class BaseDynInst : public RefCounted
77{
78  public:
79    // Typedef for the CPU.
80    typedef typename Impl::CPUType ImplCPU;
81    typedef typename ImplCPU::ImplState ImplState;
82
83    // Logical register index type.
84    typedef TheISA::RegIndex RegIndex;
85    // Integer register type.
86    typedef TheISA::IntReg IntReg;
87    // Floating point register type.
88    typedef TheISA::FloatReg FloatReg;
89
90    // The DynInstPtr type.
91    typedef typename Impl::DynInstPtr DynInstPtr;
92    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94    // The list of instructions iterator type.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    enum {
98        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
99        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
100    };
101
102    union Result {
103        uint64_t integer;
104        double dbl;
105        void set(uint64_t i) { integer = i; }
106        void set(double d) { dbl = d; }
107        void get(uint64_t& i) { i = integer; }
108        void get(double& d) { d = dbl; }
109    };
110
111  protected:
112    enum Status {
113        IqEntry,                 /// Instruction is in the IQ
114        RobEntry,                /// Instruction is in the ROB
115        LsqEntry,                /// Instruction is in the LSQ
116        Completed,               /// Instruction has completed
117        ResultReady,             /// Instruction has its result
118        CanIssue,                /// Instruction can issue and execute
119        Issued,                  /// Instruction has issued
120        Executed,                /// Instruction has executed
121        CanCommit,               /// Instruction can commit
122        AtCommit,                /// Instruction has reached commit
123        Committed,               /// Instruction has committed
124        Squashed,                /// Instruction is squashed
125        SquashedInIQ,            /// Instruction is squashed in the IQ
126        SquashedInLSQ,           /// Instruction is squashed in the LSQ
127        SquashedInROB,           /// Instruction is squashed in the ROB
128        RecoverInst,             /// Is a recover instruction
129        BlockingInst,            /// Is a blocking instruction
130        ThreadsyncWait,          /// Is a thread synchronization instruction
131        SerializeBefore,         /// Needs to serialize on
132                                 /// instructions ahead of it
133        SerializeAfter,          /// Needs to serialize instructions behind it
134        SerializeHandled,        /// Serialization has been handled
135        NumStatus
136    };
137
138    enum Flags {
139        TranslationStarted,
140        TranslationCompleted,
141        PossibleLoadViolation,
142        HitExternalSnoop,
143        EffAddrValid,
144        RecordResult,
145        Predicate,
146        PredTaken,
147        /** Whether or not the effective address calculation is completed.
148         *  @todo: Consider if this is necessary or not.
149         */
150        EACalcDone,
151        IsUncacheable,
152        ReqMade,
153        MemOpDone,
154        MaxFlags
155    };
156
157  public:
158    /** The sequence number of the instruction. */
159    InstSeqNum seqNum;
160
161    /** The StaticInst used by this BaseDynInst. */
162    StaticInstPtr staticInst;
163
164    /** Pointer to the Impl's CPU object. */
165    ImplCPU *cpu;
166
167    /** Pointer to the thread state. */
168    ImplState *thread;
169
170    /** The kind of fault this instruction has generated. */
171    Fault fault;
172
173    /** InstRecord that tracks this instructions. */
174    Trace::InstRecord *traceData;
175
176  protected:
177    /** The result of the instruction; assumes an instruction can have many
178     *  destination registers.
179     */
180    std::queue<Result> instResult;
181
182    /** PC state for this instruction. */
183    TheISA::PCState pc;
184
185    /* An amalgamation of a lot of boolean values into one */
186    std::bitset<MaxFlags> instFlags;
187
188    /** The status of this BaseDynInst.  Several bits can be set. */
189    std::bitset<NumStatus> status;
190
191     /** Whether or not the source register is ready.
192     *  @todo: Not sure this should be here vs the derived class.
193     */
194    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
195
196  public:
197    /** The thread this instruction is from. */
198    ThreadID threadNumber;
199
200    /** Iterator pointing to this BaseDynInst in the list of all insts. */
201    ListIt instListIt;
202
203    ////////////////////// Branch Data ///////////////
204    /** Predicted PC state after this instruction. */
205    TheISA::PCState predPC;
206
207    /** The Macroop if one exists */
208    StaticInstPtr macroop;
209
210    /** How many source registers are ready. */
211    uint8_t readyRegs;
212
213  public:
214    /////////////////////// Load Store Data //////////////////////
215    /** The effective virtual address (lds & stores only). */
216    Addr effAddr;
217
218    /** The effective physical address. */
219    Addr physEffAddr;
220
221    /** The memory request flags (from translation). */
222    unsigned memReqFlags;
223
224    /** data address space ID, for loads & stores. */
225    short asid;
226
227    /** The size of the request */
228    uint8_t effSize;
229
230    /** Pointer to the data for the memory access. */
231    uint8_t *memData;
232
233    /** Load queue index. */
234    int16_t lqIdx;
235
236    /** Store queue index. */
237    int16_t sqIdx;
238
239
240    /////////////////////// TLB Miss //////////////////////
241    /**
242     * Saved memory requests (needed when the DTB address translation is
243     * delayed due to a hw page table walk).
244     */
245    RequestPtr savedReq;
246    RequestPtr savedSreqLow;
247    RequestPtr savedSreqHigh;
248
249    /////////////////////// Checker //////////////////////
250    // Need a copy of main request pointer to verify on writes.
251    RequestPtr reqToVerify;
252
253  private:
254    /** Instruction effective address.
255     *  @todo: Consider if this is necessary or not.
256     */
257    Addr instEffAddr;
258
259  protected:
260    /** Flattened register index of the destination registers of this
261     *  instruction.
262     */
263    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
264
265    /** Physical register index of the destination registers of this
266     *  instruction.
267     */
268    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
269
270    /** Physical register index of the source registers of this
271     *  instruction.
272     */
273    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
274
275    /** Physical register index of the previous producers of the
276     *  architected destinations.
277     */
278    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
279
280
281  public:
282    /** Records changes to result? */
283    void recordResult(bool f) { instFlags[RecordResult] = f; }
284
285    /** Is the effective virtual address valid. */
286    bool effAddrValid() const { return instFlags[EffAddrValid]; }
287
288    /** Whether or not the memory operation is done. */
289    bool memOpDone() const { return instFlags[MemOpDone]; }
290    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
291
292
293    ////////////////////////////////////////////
294    //
295    // INSTRUCTION EXECUTION
296    //
297    ////////////////////////////////////////////
298
299    void demapPage(Addr vaddr, uint64_t asn)
300    {
301        cpu->demapPage(vaddr, asn);
302    }
303    void demapInstPage(Addr vaddr, uint64_t asn)
304    {
305        cpu->demapPage(vaddr, asn);
306    }
307    void demapDataPage(Addr vaddr, uint64_t asn)
308    {
309        cpu->demapPage(vaddr, asn);
310    }
311
312    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
313
314    Fault writeMem(uint8_t *data, unsigned size,
315                   Addr addr, unsigned flags, uint64_t *res);
316
317    /** Splits a request in two if it crosses a dcache block. */
318    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
319                      RequestPtr &sreqHigh);
320
321    /** Initiate a DTB address translation. */
322    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
323                             RequestPtr sreqHigh, uint64_t *res,
324                             BaseTLB::Mode mode);
325
326    /** Finish a DTB address translation. */
327    void finishTranslation(WholeTranslationState *state);
328
329    /** True if the DTB address translation has started. */
330    bool translationStarted() const { return instFlags[TranslationStarted]; }
331    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
332
333    /** True if the DTB address translation has completed. */
334    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
335    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
336
337    /** True if this address was found to match a previous load and they issued
338     * out of order. If that happend, then it's only a problem if an incoming
339     * snoop invalidate modifies the line, in which case we need to squash.
340     * If nothing modified the line the order doesn't matter.
341     */
342    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
343    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
344
345    /** True if the address hit a external snoop while sitting in the LSQ.
346     * If this is true and a older instruction sees it, this instruction must
347     * reexecute
348     */
349    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
350    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
351
352    /**
353     * Returns true if the DTB address translation is being delayed due to a hw
354     * page table walk.
355     */
356    bool isTranslationDelayed() const
357    {
358        return (translationStarted() && !translationCompleted());
359    }
360
361  public:
362#ifdef DEBUG
363    void dumpSNList();
364#endif
365
366    /** Returns the physical register index of the i'th destination
367     *  register.
368     */
369    PhysRegIndex renamedDestRegIdx(int idx) const
370    {
371        return _destRegIdx[idx];
372    }
373
374    /** Returns the physical register index of the i'th source register. */
375    PhysRegIndex renamedSrcRegIdx(int idx) const
376    {
377        assert(TheISA::MaxInstSrcRegs > idx);
378        return _srcRegIdx[idx];
379    }
380
381    /** Returns the flattened register index of the i'th destination
382     *  register.
383     */
384    TheISA::RegIndex flattenedDestRegIdx(int idx) const
385    {
386        return _flatDestRegIdx[idx];
387    }
388
389    /** Returns the physical register index of the previous physical register
390     *  that remapped to the same logical register index.
391     */
392    PhysRegIndex prevDestRegIdx(int idx) const
393    {
394        return _prevDestRegIdx[idx];
395    }
396
397    /** Renames a destination register to a physical register.  Also records
398     *  the previous physical register that the logical register mapped to.
399     */
400    void renameDestReg(int idx,
401                       PhysRegIndex renamed_dest,
402                       PhysRegIndex previous_rename)
403    {
404        _destRegIdx[idx] = renamed_dest;
405        _prevDestRegIdx[idx] = previous_rename;
406    }
407
408    /** Renames a source logical register to the physical register which
409     *  has/will produce that logical register's result.
410     *  @todo: add in whether or not the source register is ready.
411     */
412    void renameSrcReg(int idx, PhysRegIndex renamed_src)
413    {
414        _srcRegIdx[idx] = renamed_src;
415    }
416
417    /** Flattens a destination architectural register index into a logical
418     * index.
419     */
420    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
421    {
422        _flatDestRegIdx[idx] = flattened_dest;
423    }
424    /** BaseDynInst constructor given a binary instruction.
425     *  @param staticInst A StaticInstPtr to the underlying instruction.
426     *  @param pc The PC state for the instruction.
427     *  @param predPC The predicted next PC state for the instruction.
428     *  @param seq_num The sequence number of the instruction.
429     *  @param cpu Pointer to the instruction's CPU.
430     */
431    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
432                TheISA::PCState pc, TheISA::PCState predPC,
433                InstSeqNum seq_num, ImplCPU *cpu);
434
435    /** BaseDynInst constructor given a StaticInst pointer.
436     *  @param _staticInst The StaticInst for this BaseDynInst.
437     */
438    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
439
440    /** BaseDynInst destructor. */
441    ~BaseDynInst();
442
443  private:
444    /** Function to initialize variables in the constructors. */
445    void initVars();
446
447  public:
448    /** Dumps out contents of this BaseDynInst. */
449    void dump();
450
451    /** Dumps out contents of this BaseDynInst into given string. */
452    void dump(std::string &outstring);
453
454    /** Read this CPU's ID. */
455    int cpuId() { return cpu->cpuId(); }
456
457    /** Read this CPU's data requestor ID */
458    MasterID masterId() { return cpu->dataMasterId(); }
459
460    /** Read this context's system-wide ID **/
461    int contextId() { return thread->contextId(); }
462
463    /** Returns the fault type. */
464    Fault getFault() { return fault; }
465
466    /** Checks whether or not this instruction has had its branch target
467     *  calculated yet.  For now it is not utilized and is hacked to be
468     *  always false.
469     *  @todo: Actually use this instruction.
470     */
471    bool doneTargCalc() { return false; }
472
473    /** Set the predicted target of this current instruction. */
474    void setPredTarg(const TheISA::PCState &_predPC)
475    {
476        predPC = _predPC;
477    }
478
479    const TheISA::PCState &readPredTarg() { return predPC; }
480
481    /** Returns the predicted PC immediately after the branch. */
482    Addr predInstAddr() { return predPC.instAddr(); }
483
484    /** Returns the predicted PC two instructions after the branch */
485    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
486
487    /** Returns the predicted micro PC after the branch */
488    Addr predMicroPC() { return predPC.microPC(); }
489
490    /** Returns whether the instruction was predicted taken or not. */
491    bool readPredTaken()
492    {
493        return instFlags[PredTaken];
494    }
495
496    void setPredTaken(bool predicted_taken)
497    {
498        instFlags[PredTaken] = predicted_taken;
499    }
500
501    /** Returns whether the instruction mispredicted. */
502    bool mispredicted()
503    {
504        TheISA::PCState tempPC = pc;
505        TheISA::advancePC(tempPC, staticInst);
506        return !(tempPC == predPC);
507    }
508
509    //
510    //  Instruction types.  Forward checks to StaticInst object.
511    //
512    bool isNop()          const { return staticInst->isNop(); }
513    bool isMemRef()       const { return staticInst->isMemRef(); }
514    bool isLoad()         const { return staticInst->isLoad(); }
515    bool isStore()        const { return staticInst->isStore(); }
516    bool isStoreConditional() const
517    { return staticInst->isStoreConditional(); }
518    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
519    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
520    bool isInteger()      const { return staticInst->isInteger(); }
521    bool isFloating()     const { return staticInst->isFloating(); }
522    bool isControl()      const { return staticInst->isControl(); }
523    bool isCall()         const { return staticInst->isCall(); }
524    bool isReturn()       const { return staticInst->isReturn(); }
525    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
526    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
527    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
528    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
529    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
530    bool isThreadSync()   const { return staticInst->isThreadSync(); }
531    bool isSerializing()  const { return staticInst->isSerializing(); }
532    bool isSerializeBefore() const
533    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
534    bool isSerializeAfter() const
535    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
536    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
537    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
538    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
539    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
540    bool isQuiesce() const { return staticInst->isQuiesce(); }
541    bool isIprAccess() const { return staticInst->isIprAccess(); }
542    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
543    bool isSyscall() const { return staticInst->isSyscall(); }
544    bool isMacroop() const { return staticInst->isMacroop(); }
545    bool isMicroop() const { return staticInst->isMicroop(); }
546    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
547    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
548    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
549    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
550
551    /** Temporarily sets this instruction as a serialize before instruction. */
552    void setSerializeBefore() { status.set(SerializeBefore); }
553
554    /** Clears the serializeBefore part of this instruction. */
555    void clearSerializeBefore() { status.reset(SerializeBefore); }
556
557    /** Checks if this serializeBefore is only temporarily set. */
558    bool isTempSerializeBefore() { return status[SerializeBefore]; }
559
560    /** Temporarily sets this instruction as a serialize after instruction. */
561    void setSerializeAfter() { status.set(SerializeAfter); }
562
563    /** Clears the serializeAfter part of this instruction.*/
564    void clearSerializeAfter() { status.reset(SerializeAfter); }
565
566    /** Checks if this serializeAfter is only temporarily set. */
567    bool isTempSerializeAfter() { return status[SerializeAfter]; }
568
569    /** Sets the serialization part of this instruction as handled. */
570    void setSerializeHandled() { status.set(SerializeHandled); }
571
572    /** Checks if the serialization part of this instruction has been
573     *  handled.  This does not apply to the temporary serializing
574     *  state; it only applies to this instruction's own permanent
575     *  serializing state.
576     */
577    bool isSerializeHandled() { return status[SerializeHandled]; }
578
579    /** Returns the opclass of this instruction. */
580    OpClass opClass() const { return staticInst->opClass(); }
581
582    /** Returns the branch target address. */
583    TheISA::PCState branchTarget() const
584    { return staticInst->branchTarget(pc); }
585
586    /** Returns the number of source registers. */
587    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
588
589    /** Returns the number of destination registers. */
590    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
591
592    // the following are used to track physical register usage
593    // for machines with separate int & FP reg files
594    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
595    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
596
597    /** Returns the logical register index of the i'th destination register. */
598    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
599
600    /** Returns the logical register index of the i'th source register. */
601    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
602
603    /** Pops a result off the instResult queue */
604    template <class T>
605    void popResult(T& t)
606    {
607        if (!instResult.empty()) {
608            instResult.front().get(t);
609            instResult.pop();
610        }
611    }
612
613    /** Read the most recent result stored by this instruction */
614    template <class T>
615    void readResult(T& t)
616    {
617        instResult.back().get(t);
618    }
619
620    /** Pushes a result onto the instResult queue */
621    template <class T>
622    void setResult(T t)
623    {
624        if (instFlags[RecordResult]) {
625            Result instRes;
626            instRes.set(t);
627            instResult.push(instRes);
628        }
629    }
630
631    /** Records an integer register being set to a value. */
632    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
633    {
634        setResult<uint64_t>(val);
635    }
636
637    /** Records a CC register being set to a value. */
638    void setCCRegOperand(const StaticInst *si, int idx, uint64_t val)
639    {
640        setResult<uint64_t>(val);
641    }
642
643    /** Records an fp register being set to a value. */
644    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
645                            int width)
646    {
647        if (width == 32 || width == 64) {
648            setResult<double>(val);
649        } else {
650            panic("Unsupported width!");
651        }
652    }
653
654    /** Records an fp register being set to a value. */
655    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
656    {
657        setResult<double>(val);
658    }
659
660    /** Records an fp register being set to an integer value. */
661    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
662                                int width)
663    {
664        setResult<uint64_t>(val);
665    }
666
667    /** Records an fp register being set to an integer value. */
668    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
669    {
670        setResult<uint64_t>(val);
671    }
672
673    /** Records that one of the source registers is ready. */
674    void markSrcRegReady();
675
676    /** Marks a specific register as ready. */
677    void markSrcRegReady(RegIndex src_idx);
678
679    /** Returns if a source register is ready. */
680    bool isReadySrcRegIdx(int idx) const
681    {
682        return this->_readySrcRegIdx[idx];
683    }
684
685    /** Sets this instruction as completed. */
686    void setCompleted() { status.set(Completed); }
687
688    /** Returns whether or not this instruction is completed. */
689    bool isCompleted() const { return status[Completed]; }
690
691    /** Marks the result as ready. */
692    void setResultReady() { status.set(ResultReady); }
693
694    /** Returns whether or not the result is ready. */
695    bool isResultReady() const { return status[ResultReady]; }
696
697    /** Sets this instruction as ready to issue. */
698    void setCanIssue() { status.set(CanIssue); }
699
700    /** Returns whether or not this instruction is ready to issue. */
701    bool readyToIssue() const { return status[CanIssue]; }
702
703    /** Clears this instruction being able to issue. */
704    void clearCanIssue() { status.reset(CanIssue); }
705
706    /** Sets this instruction as issued from the IQ. */
707    void setIssued() { status.set(Issued); }
708
709    /** Returns whether or not this instruction has issued. */
710    bool isIssued() const { return status[Issued]; }
711
712    /** Clears this instruction as being issued. */
713    void clearIssued() { status.reset(Issued); }
714
715    /** Sets this instruction as executed. */
716    void setExecuted() { status.set(Executed); }
717
718    /** Returns whether or not this instruction has executed. */
719    bool isExecuted() const { return status[Executed]; }
720
721    /** Sets this instruction as ready to commit. */
722    void setCanCommit() { status.set(CanCommit); }
723
724    /** Clears this instruction as being ready to commit. */
725    void clearCanCommit() { status.reset(CanCommit); }
726
727    /** Returns whether or not this instruction is ready to commit. */
728    bool readyToCommit() const { return status[CanCommit]; }
729
730    void setAtCommit() { status.set(AtCommit); }
731
732    bool isAtCommit() { return status[AtCommit]; }
733
734    /** Sets this instruction as committed. */
735    void setCommitted() { status.set(Committed); }
736
737    /** Returns whether or not this instruction is committed. */
738    bool isCommitted() const { return status[Committed]; }
739
740    /** Sets this instruction as squashed. */
741    void setSquashed() { status.set(Squashed); }
742
743    /** Returns whether or not this instruction is squashed. */
744    bool isSquashed() const { return status[Squashed]; }
745
746    //Instruction Queue Entry
747    //-----------------------
748    /** Sets this instruction as a entry the IQ. */
749    void setInIQ() { status.set(IqEntry); }
750
751    /** Sets this instruction as a entry the IQ. */
752    void clearInIQ() { status.reset(IqEntry); }
753
754    /** Returns whether or not this instruction has issued. */
755    bool isInIQ() const { return status[IqEntry]; }
756
757    /** Sets this instruction as squashed in the IQ. */
758    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
759
760    /** Returns whether or not this instruction is squashed in the IQ. */
761    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
762
763
764    //Load / Store Queue Functions
765    //-----------------------
766    /** Sets this instruction as a entry the LSQ. */
767    void setInLSQ() { status.set(LsqEntry); }
768
769    /** Sets this instruction as a entry the LSQ. */
770    void removeInLSQ() { status.reset(LsqEntry); }
771
772    /** Returns whether or not this instruction is in the LSQ. */
773    bool isInLSQ() const { return status[LsqEntry]; }
774
775    /** Sets this instruction as squashed in the LSQ. */
776    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
777
778    /** Returns whether or not this instruction is squashed in the LSQ. */
779    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
780
781
782    //Reorder Buffer Functions
783    //-----------------------
784    /** Sets this instruction as a entry the ROB. */
785    void setInROB() { status.set(RobEntry); }
786
787    /** Sets this instruction as a entry the ROB. */
788    void clearInROB() { status.reset(RobEntry); }
789
790    /** Returns whether or not this instruction is in the ROB. */
791    bool isInROB() const { return status[RobEntry]; }
792
793    /** Sets this instruction as squashed in the ROB. */
794    void setSquashedInROB() { status.set(SquashedInROB); }
795
796    /** Returns whether or not this instruction is squashed in the ROB. */
797    bool isSquashedInROB() const { return status[SquashedInROB]; }
798
799    /** Read the PC state of this instruction. */
800    const TheISA::PCState pcState() const { return pc; }
801
802    /** Set the PC state of this instruction. */
803    const void pcState(const TheISA::PCState &val) { pc = val; }
804
805    /** Read the PC of this instruction. */
806    const Addr instAddr() const { return pc.instAddr(); }
807
808    /** Read the PC of the next instruction. */
809    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
810
811    /**Read the micro PC of this instruction. */
812    const Addr microPC() const { return pc.microPC(); }
813
814    bool readPredicate()
815    {
816        return instFlags[Predicate];
817    }
818
819    void setPredicate(bool val)
820    {
821        instFlags[Predicate] = val;
822
823        if (traceData) {
824            traceData->setPredicate(val);
825        }
826    }
827
828    /** Sets the ASID. */
829    void setASID(short addr_space_id) { asid = addr_space_id; }
830
831    /** Sets the thread id. */
832    void setTid(ThreadID tid) { threadNumber = tid; }
833
834    /** Sets the pointer to the thread state. */
835    void setThreadState(ImplState *state) { thread = state; }
836
837    /** Returns the thread context. */
838    ThreadContext *tcBase() { return thread->getTC(); }
839
840  public:
841    /** Sets the effective address. */
842    void setEA(Addr &ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
843
844    /** Returns the effective address. */
845    const Addr &getEA() const { return instEffAddr; }
846
847    /** Returns whether or not the eff. addr. calculation has been completed. */
848    bool doneEACalc() { return instFlags[EACalcDone]; }
849
850    /** Returns whether or not the eff. addr. source registers are ready. */
851    bool eaSrcsReady();
852
853    /** Is this instruction's memory access uncacheable. */
854    bool uncacheable() { return instFlags[IsUncacheable]; }
855
856    /** Has this instruction generated a memory request. */
857    bool hasRequest() { return instFlags[ReqMade]; }
858
859    /** Returns iterator to this instruction in the list of all insts. */
860    ListIt &getInstListIt() { return instListIt; }
861
862    /** Sets iterator for this instruction in the list of all insts. */
863    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
864
865  public:
866    /** Returns the number of consecutive store conditional failures. */
867    unsigned readStCondFailures()
868    { return thread->storeCondFailures; }
869
870    /** Sets the number of consecutive store conditional failures. */
871    void setStCondFailures(unsigned sc_failures)
872    { thread->storeCondFailures = sc_failures; }
873};
874
875template<class Impl>
876Fault
877BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
878                           unsigned size, unsigned flags)
879{
880    instFlags[ReqMade] = true;
881    Request *req = NULL;
882    Request *sreqLow = NULL;
883    Request *sreqHigh = NULL;
884
885    if (instFlags[ReqMade] && translationStarted()) {
886        req = savedReq;
887        sreqLow = savedSreqLow;
888        sreqHigh = savedSreqHigh;
889    } else {
890        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
891                          thread->contextId(), threadNumber);
892
893        // Only split the request if the ISA supports unaligned accesses.
894        if (TheISA::HasUnalignedMemAcc) {
895            splitRequest(req, sreqLow, sreqHigh);
896        }
897        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
898    }
899
900    if (translationCompleted()) {
901        if (fault == NoFault) {
902            effAddr = req->getVaddr();
903            effSize = size;
904            instFlags[EffAddrValid] = true;
905
906            if (cpu->checker) {
907                if (reqToVerify != NULL) {
908                    delete reqToVerify;
909                }
910                reqToVerify = new Request(*req);
911            }
912            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
913        } else {
914            // Commit will have to clean up whatever happened.  Set this
915            // instruction as executed.
916            this->setExecuted();
917        }
918
919        if (fault != NoFault) {
920            // Return a fixed value to keep simulation deterministic even
921            // along misspeculated paths.
922            if (data)
923                bzero(data, size);
924        }
925    }
926
927    if (traceData) {
928        traceData->setAddr(addr);
929    }
930
931    return fault;
932}
933
934template<class Impl>
935Fault
936BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
937                            Addr addr, unsigned flags, uint64_t *res)
938{
939    if (traceData) {
940        traceData->setAddr(addr);
941    }
942
943    instFlags[ReqMade] = true;
944    Request *req = NULL;
945    Request *sreqLow = NULL;
946    Request *sreqHigh = NULL;
947
948    if (instFlags[ReqMade] && translationStarted()) {
949        req = savedReq;
950        sreqLow = savedSreqLow;
951        sreqHigh = savedSreqHigh;
952    } else {
953        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
954                          thread->contextId(), threadNumber);
955
956        // Only split the request if the ISA supports unaligned accesses.
957        if (TheISA::HasUnalignedMemAcc) {
958            splitRequest(req, sreqLow, sreqHigh);
959        }
960        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
961    }
962
963    if (fault == NoFault && translationCompleted()) {
964        effAddr = req->getVaddr();
965        effSize = size;
966        instFlags[EffAddrValid] = true;
967
968        if (cpu->checker) {
969            if (reqToVerify != NULL) {
970                delete reqToVerify;
971            }
972            reqToVerify = new Request(*req);
973        }
974        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
975    }
976
977    return fault;
978}
979
980template<class Impl>
981inline void
982BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
983                                RequestPtr &sreqHigh)
984{
985    // Check to see if the request crosses the next level block boundary.
986    unsigned block_size = cpu->cacheLineSize();
987    Addr addr = req->getVaddr();
988    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
989    assert(split_addr <= addr || split_addr - addr < block_size);
990
991    // Spans two blocks.
992    if (split_addr > addr) {
993        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
994    }
995}
996
997template<class Impl>
998inline void
999BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1000                                       RequestPtr sreqHigh, uint64_t *res,
1001                                       BaseTLB::Mode mode)
1002{
1003    translationStarted(true);
1004
1005    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1006        WholeTranslationState *state =
1007            new WholeTranslationState(req, NULL, res, mode);
1008
1009        // One translation if the request isn't split.
1010        DataTranslation<BaseDynInstPtr> *trans =
1011            new DataTranslation<BaseDynInstPtr>(this, state);
1012        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1013        if (!translationCompleted()) {
1014            // Save memory requests.
1015            savedReq = state->mainReq;
1016            savedSreqLow = state->sreqLow;
1017            savedSreqHigh = state->sreqHigh;
1018        }
1019    } else {
1020        WholeTranslationState *state =
1021            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1022
1023        // Two translations when the request is split.
1024        DataTranslation<BaseDynInstPtr> *stransLow =
1025            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1026        DataTranslation<BaseDynInstPtr> *stransHigh =
1027            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1028
1029        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1030        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1031        if (!translationCompleted()) {
1032            // Save memory requests.
1033            savedReq = state->mainReq;
1034            savedSreqLow = state->sreqLow;
1035            savedSreqHigh = state->sreqHigh;
1036        }
1037    }
1038}
1039
1040template<class Impl>
1041inline void
1042BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1043{
1044    fault = state->getFault();
1045
1046    instFlags[IsUncacheable] = state->isUncacheable();
1047
1048    if (fault == NoFault) {
1049        physEffAddr = state->getPaddr();
1050        memReqFlags = state->getFlags();
1051
1052        if (state->mainReq->isCondSwap()) {
1053            assert(state->res);
1054            state->mainReq->setExtraData(*state->res);
1055        }
1056
1057    } else {
1058        state->deleteReqs();
1059    }
1060    delete state;
1061
1062    translationCompleted(true);
1063}
1064
1065#endif // __CPU_BASE_DYN_INST_HH__
1066