base_dyn_inst.hh revision 9814:7ad2b0186a32
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/utility.hh"
54#include "base/trace.hh"
55#include "config/the_isa.hh"
56#include "cpu/checker/cpu.hh"
57#include "cpu/o3/comm.hh"
58#include "cpu/exetrace.hh"
59#include "cpu/inst_seq.hh"
60#include "cpu/op_class.hh"
61#include "cpu/static_inst.hh"
62#include "cpu/translation.hh"
63#include "mem/packet.hh"
64#include "sim/byteswap.hh"
65#include "sim/fault_fwd.hh"
66#include "sim/system.hh"
67#include "sim/tlb.hh"
68
69/**
70 * @file
71 * Defines a dynamic instruction context.
72 */
73
74template <class Impl>
75class BaseDynInst : public RefCounted
76{
77  public:
78    // Typedef for the CPU.
79    typedef typename Impl::CPUType ImplCPU;
80    typedef typename ImplCPU::ImplState ImplState;
81
82    // Logical register index type.
83    typedef TheISA::RegIndex RegIndex;
84    // Integer register type.
85    typedef TheISA::IntReg IntReg;
86    // Floating point register type.
87    typedef TheISA::FloatReg FloatReg;
88
89    // The DynInstPtr type.
90    typedef typename Impl::DynInstPtr DynInstPtr;
91    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
92
93    // The list of instructions iterator type.
94    typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96    enum {
97        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
98        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
99    };
100
101    union Result {
102        uint64_t integer;
103        double dbl;
104        void set(uint64_t i) { integer = i; }
105        void set(double d) { dbl = d; }
106        void get(uint64_t& i) { i = integer; }
107        void get(double& d) { d = dbl; }
108    };
109
110  protected:
111    enum Status {
112        IqEntry,                 /// Instruction is in the IQ
113        RobEntry,                /// Instruction is in the ROB
114        LsqEntry,                /// Instruction is in the LSQ
115        Completed,               /// Instruction has completed
116        ResultReady,             /// Instruction has its result
117        CanIssue,                /// Instruction can issue and execute
118        Issued,                  /// Instruction has issued
119        Executed,                /// Instruction has executed
120        CanCommit,               /// Instruction can commit
121        AtCommit,                /// Instruction has reached commit
122        Committed,               /// Instruction has committed
123        Squashed,                /// Instruction is squashed
124        SquashedInIQ,            /// Instruction is squashed in the IQ
125        SquashedInLSQ,           /// Instruction is squashed in the LSQ
126        SquashedInROB,           /// Instruction is squashed in the ROB
127        RecoverInst,             /// Is a recover instruction
128        BlockingInst,            /// Is a blocking instruction
129        ThreadsyncWait,          /// Is a thread synchronization instruction
130        SerializeBefore,         /// Needs to serialize on
131                                 /// instructions ahead of it
132        SerializeAfter,          /// Needs to serialize instructions behind it
133        SerializeHandled,        /// Serialization has been handled
134        NumStatus
135    };
136
137    enum Flags {
138        TranslationStarted,
139        TranslationCompleted,
140        PossibleLoadViolation,
141        HitExternalSnoop,
142        EffAddrValid,
143        RecordResult,
144        Predicate,
145        PredTaken,
146        /** Whether or not the effective address calculation is completed.
147         *  @todo: Consider if this is necessary or not.
148         */
149        EACalcDone,
150        IsUncacheable,
151        ReqMade,
152        MemOpDone,
153        MaxFlags
154    };
155
156  public:
157    /** The sequence number of the instruction. */
158    InstSeqNum seqNum;
159
160    /** The StaticInst used by this BaseDynInst. */
161    StaticInstPtr staticInst;
162
163    /** Pointer to the Impl's CPU object. */
164    ImplCPU *cpu;
165
166    /** Pointer to the thread state. */
167    ImplState *thread;
168
169    /** The kind of fault this instruction has generated. */
170    Fault fault;
171
172    /** InstRecord that tracks this instructions. */
173    Trace::InstRecord *traceData;
174
175  protected:
176    /** The result of the instruction; assumes an instruction can have many
177     *  destination registers.
178     */
179    std::queue<Result> instResult;
180
181    /** PC state for this instruction. */
182    TheISA::PCState pc;
183
184    /* An amalgamation of a lot of boolean values into one */
185    std::bitset<MaxFlags> instFlags;
186
187    /** The status of this BaseDynInst.  Several bits can be set. */
188    std::bitset<NumStatus> status;
189
190     /** Whether or not the source register is ready.
191     *  @todo: Not sure this should be here vs the derived class.
192     */
193    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
194
195  public:
196    /** The thread this instruction is from. */
197    ThreadID threadNumber;
198
199    /** Iterator pointing to this BaseDynInst in the list of all insts. */
200    ListIt instListIt;
201
202    ////////////////////// Branch Data ///////////////
203    /** Predicted PC state after this instruction. */
204    TheISA::PCState predPC;
205
206    /** The Macroop if one exists */
207    StaticInstPtr macroop;
208
209    /** How many source registers are ready. */
210    uint8_t readyRegs;
211
212  public:
213    /////////////////////// Load Store Data //////////////////////
214    /** The effective virtual address (lds & stores only). */
215    Addr effAddr;
216
217    /** The effective physical address. */
218    Addr physEffAddr;
219
220    /** The memory request flags (from translation). */
221    unsigned memReqFlags;
222
223    /** data address space ID, for loads & stores. */
224    short asid;
225
226    /** The size of the request */
227    uint8_t effSize;
228
229    /** Pointer to the data for the memory access. */
230    uint8_t *memData;
231
232    /** Load queue index. */
233    int16_t lqIdx;
234
235    /** Store queue index. */
236    int16_t sqIdx;
237
238
239    /////////////////////// TLB Miss //////////////////////
240    /**
241     * Saved memory requests (needed when the DTB address translation is
242     * delayed due to a hw page table walk).
243     */
244    RequestPtr savedReq;
245    RequestPtr savedSreqLow;
246    RequestPtr savedSreqHigh;
247
248    /////////////////////// Checker //////////////////////
249    // Need a copy of main request pointer to verify on writes.
250    RequestPtr reqToVerify;
251
252  private:
253    /** Instruction effective address.
254     *  @todo: Consider if this is necessary or not.
255     */
256    Addr instEffAddr;
257
258  protected:
259    /** Flattened register index of the destination registers of this
260     *  instruction.
261     */
262    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
263
264    /** Physical register index of the destination registers of this
265     *  instruction.
266     */
267    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
268
269    /** Physical register index of the source registers of this
270     *  instruction.
271     */
272    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
273
274    /** Physical register index of the previous producers of the
275     *  architected destinations.
276     */
277    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
278
279
280  public:
281    /** Records changes to result? */
282    void recordResult(bool f) { instFlags[RecordResult] = f; }
283
284    /** Is the effective virtual address valid. */
285    bool effAddrValid() const { return instFlags[EffAddrValid]; }
286
287    /** Whether or not the memory operation is done. */
288    bool memOpDone() const { return instFlags[MemOpDone]; }
289    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
290
291
292    ////////////////////////////////////////////
293    //
294    // INSTRUCTION EXECUTION
295    //
296    ////////////////////////////////////////////
297
298    void demapPage(Addr vaddr, uint64_t asn)
299    {
300        cpu->demapPage(vaddr, asn);
301    }
302    void demapInstPage(Addr vaddr, uint64_t asn)
303    {
304        cpu->demapPage(vaddr, asn);
305    }
306    void demapDataPage(Addr vaddr, uint64_t asn)
307    {
308        cpu->demapPage(vaddr, asn);
309    }
310
311    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
312
313    Fault writeMem(uint8_t *data, unsigned size,
314                   Addr addr, unsigned flags, uint64_t *res);
315
316    /** Splits a request in two if it crosses a dcache block. */
317    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
318                      RequestPtr &sreqHigh);
319
320    /** Initiate a DTB address translation. */
321    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
322                             RequestPtr sreqHigh, uint64_t *res,
323                             BaseTLB::Mode mode);
324
325    /** Finish a DTB address translation. */
326    void finishTranslation(WholeTranslationState *state);
327
328    /** True if the DTB address translation has started. */
329    bool translationStarted() const { return instFlags[TranslationStarted]; }
330    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
331
332    /** True if the DTB address translation has completed. */
333    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
334    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
335
336    /** True if this address was found to match a previous load and they issued
337     * out of order. If that happend, then it's only a problem if an incoming
338     * snoop invalidate modifies the line, in which case we need to squash.
339     * If nothing modified the line the order doesn't matter.
340     */
341    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
342    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
343
344    /** True if the address hit a external snoop while sitting in the LSQ.
345     * If this is true and a older instruction sees it, this instruction must
346     * reexecute
347     */
348    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
349    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
350
351    /**
352     * Returns true if the DTB address translation is being delayed due to a hw
353     * page table walk.
354     */
355    bool isTranslationDelayed() const
356    {
357        return (translationStarted() && !translationCompleted());
358    }
359
360  public:
361#ifdef DEBUG
362    void dumpSNList();
363#endif
364
365    /** Returns the physical register index of the i'th destination
366     *  register.
367     */
368    PhysRegIndex renamedDestRegIdx(int idx) const
369    {
370        return _destRegIdx[idx];
371    }
372
373    /** Returns the physical register index of the i'th source register. */
374    PhysRegIndex renamedSrcRegIdx(int idx) const
375    {
376        assert(TheISA::MaxInstSrcRegs > idx);
377        return _srcRegIdx[idx];
378    }
379
380    /** Returns the flattened register index of the i'th destination
381     *  register.
382     */
383    TheISA::RegIndex flattenedDestRegIdx(int idx) const
384    {
385        return _flatDestRegIdx[idx];
386    }
387
388    /** Returns the physical register index of the previous physical register
389     *  that remapped to the same logical register index.
390     */
391    PhysRegIndex prevDestRegIdx(int idx) const
392    {
393        return _prevDestRegIdx[idx];
394    }
395
396    /** Renames a destination register to a physical register.  Also records
397     *  the previous physical register that the logical register mapped to.
398     */
399    void renameDestReg(int idx,
400                       PhysRegIndex renamed_dest,
401                       PhysRegIndex previous_rename)
402    {
403        _destRegIdx[idx] = renamed_dest;
404        _prevDestRegIdx[idx] = previous_rename;
405    }
406
407    /** Renames a source logical register to the physical register which
408     *  has/will produce that logical register's result.
409     *  @todo: add in whether or not the source register is ready.
410     */
411    void renameSrcReg(int idx, PhysRegIndex renamed_src)
412    {
413        _srcRegIdx[idx] = renamed_src;
414    }
415
416    /** Flattens a destination architectural register index into a logical
417     * index.
418     */
419    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
420    {
421        _flatDestRegIdx[idx] = flattened_dest;
422    }
423    /** BaseDynInst constructor given a binary instruction.
424     *  @param staticInst A StaticInstPtr to the underlying instruction.
425     *  @param pc The PC state for the instruction.
426     *  @param predPC The predicted next PC state for the instruction.
427     *  @param seq_num The sequence number of the instruction.
428     *  @param cpu Pointer to the instruction's CPU.
429     */
430    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
431                TheISA::PCState pc, TheISA::PCState predPC,
432                InstSeqNum seq_num, ImplCPU *cpu);
433
434    /** BaseDynInst constructor given a StaticInst pointer.
435     *  @param _staticInst The StaticInst for this BaseDynInst.
436     */
437    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
438
439    /** BaseDynInst destructor. */
440    ~BaseDynInst();
441
442  private:
443    /** Function to initialize variables in the constructors. */
444    void initVars();
445
446  public:
447    /** Dumps out contents of this BaseDynInst. */
448    void dump();
449
450    /** Dumps out contents of this BaseDynInst into given string. */
451    void dump(std::string &outstring);
452
453    /** Read this CPU's ID. */
454    int cpuId() { return cpu->cpuId(); }
455
456    /** Read this CPU's data requestor ID */
457    MasterID masterId() { return cpu->dataMasterId(); }
458
459    /** Read this context's system-wide ID **/
460    int contextId() { return thread->contextId(); }
461
462    /** Returns the fault type. */
463    Fault getFault() { return fault; }
464
465    /** Checks whether or not this instruction has had its branch target
466     *  calculated yet.  For now it is not utilized and is hacked to be
467     *  always false.
468     *  @todo: Actually use this instruction.
469     */
470    bool doneTargCalc() { return false; }
471
472    /** Set the predicted target of this current instruction. */
473    void setPredTarg(const TheISA::PCState &_predPC)
474    {
475        predPC = _predPC;
476    }
477
478    const TheISA::PCState &readPredTarg() { return predPC; }
479
480    /** Returns the predicted PC immediately after the branch. */
481    Addr predInstAddr() { return predPC.instAddr(); }
482
483    /** Returns the predicted PC two instructions after the branch */
484    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
485
486    /** Returns the predicted micro PC after the branch */
487    Addr predMicroPC() { return predPC.microPC(); }
488
489    /** Returns whether the instruction was predicted taken or not. */
490    bool readPredTaken()
491    {
492        return instFlags[PredTaken];
493    }
494
495    void setPredTaken(bool predicted_taken)
496    {
497        instFlags[PredTaken] = predicted_taken;
498    }
499
500    /** Returns whether the instruction mispredicted. */
501    bool mispredicted()
502    {
503        TheISA::PCState tempPC = pc;
504        TheISA::advancePC(tempPC, staticInst);
505        return !(tempPC == predPC);
506    }
507
508    //
509    //  Instruction types.  Forward checks to StaticInst object.
510    //
511    bool isNop()          const { return staticInst->isNop(); }
512    bool isMemRef()       const { return staticInst->isMemRef(); }
513    bool isLoad()         const { return staticInst->isLoad(); }
514    bool isStore()        const { return staticInst->isStore(); }
515    bool isStoreConditional() const
516    { return staticInst->isStoreConditional(); }
517    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
518    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
519    bool isInteger()      const { return staticInst->isInteger(); }
520    bool isFloating()     const { return staticInst->isFloating(); }
521    bool isControl()      const { return staticInst->isControl(); }
522    bool isCall()         const { return staticInst->isCall(); }
523    bool isReturn()       const { return staticInst->isReturn(); }
524    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
525    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
526    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
527    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
528    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
529    bool isThreadSync()   const { return staticInst->isThreadSync(); }
530    bool isSerializing()  const { return staticInst->isSerializing(); }
531    bool isSerializeBefore() const
532    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
533    bool isSerializeAfter() const
534    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
535    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
536    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
537    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
538    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
539    bool isQuiesce() const { return staticInst->isQuiesce(); }
540    bool isIprAccess() const { return staticInst->isIprAccess(); }
541    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
542    bool isSyscall() const { return staticInst->isSyscall(); }
543    bool isMacroop() const { return staticInst->isMacroop(); }
544    bool isMicroop() const { return staticInst->isMicroop(); }
545    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
546    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
547    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
548    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
549
550    /** Temporarily sets this instruction as a serialize before instruction. */
551    void setSerializeBefore() { status.set(SerializeBefore); }
552
553    /** Clears the serializeBefore part of this instruction. */
554    void clearSerializeBefore() { status.reset(SerializeBefore); }
555
556    /** Checks if this serializeBefore is only temporarily set. */
557    bool isTempSerializeBefore() { return status[SerializeBefore]; }
558
559    /** Temporarily sets this instruction as a serialize after instruction. */
560    void setSerializeAfter() { status.set(SerializeAfter); }
561
562    /** Clears the serializeAfter part of this instruction.*/
563    void clearSerializeAfter() { status.reset(SerializeAfter); }
564
565    /** Checks if this serializeAfter is only temporarily set. */
566    bool isTempSerializeAfter() { return status[SerializeAfter]; }
567
568    /** Sets the serialization part of this instruction as handled. */
569    void setSerializeHandled() { status.set(SerializeHandled); }
570
571    /** Checks if the serialization part of this instruction has been
572     *  handled.  This does not apply to the temporary serializing
573     *  state; it only applies to this instruction's own permanent
574     *  serializing state.
575     */
576    bool isSerializeHandled() { return status[SerializeHandled]; }
577
578    /** Returns the opclass of this instruction. */
579    OpClass opClass() const { return staticInst->opClass(); }
580
581    /** Returns the branch target address. */
582    TheISA::PCState branchTarget() const
583    { return staticInst->branchTarget(pc); }
584
585    /** Returns the number of source registers. */
586    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
587
588    /** Returns the number of destination registers. */
589    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
590
591    // the following are used to track physical register usage
592    // for machines with separate int & FP reg files
593    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
594    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
595
596    /** Returns the logical register index of the i'th destination register. */
597    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
598
599    /** Returns the logical register index of the i'th source register. */
600    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
601
602    /** Pops a result off the instResult queue */
603    template <class T>
604    void popResult(T& t)
605    {
606        if (!instResult.empty()) {
607            instResult.front().get(t);
608            instResult.pop();
609        }
610    }
611
612    /** Read the most recent result stored by this instruction */
613    template <class T>
614    void readResult(T& t)
615    {
616        instResult.back().get(t);
617    }
618
619    /** Pushes a result onto the instResult queue */
620    template <class T>
621    void setResult(T t)
622    {
623        if (instFlags[RecordResult]) {
624            Result instRes;
625            instRes.set(t);
626            instResult.push(instRes);
627        }
628    }
629
630    /** Records an integer register being set to a value. */
631    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
632    {
633        setResult<uint64_t>(val);
634    }
635
636    /** Records an fp register being set to a value. */
637    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
638                            int width)
639    {
640        if (width == 32 || width == 64) {
641            setResult<double>(val);
642        } else {
643            panic("Unsupported width!");
644        }
645    }
646
647    /** Records an fp register being set to a value. */
648    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
649    {
650        setResult<double>(val);
651    }
652
653    /** Records an fp register being set to an integer value. */
654    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
655                                int width)
656    {
657        setResult<uint64_t>(val);
658    }
659
660    /** Records an fp register being set to an integer value. */
661    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
662    {
663        setResult<uint64_t>(val);
664    }
665
666    /** Records that one of the source registers is ready. */
667    void markSrcRegReady();
668
669    /** Marks a specific register as ready. */
670    void markSrcRegReady(RegIndex src_idx);
671
672    /** Returns if a source register is ready. */
673    bool isReadySrcRegIdx(int idx) const
674    {
675        return this->_readySrcRegIdx[idx];
676    }
677
678    /** Sets this instruction as completed. */
679    void setCompleted() { status.set(Completed); }
680
681    /** Returns whether or not this instruction is completed. */
682    bool isCompleted() const { return status[Completed]; }
683
684    /** Marks the result as ready. */
685    void setResultReady() { status.set(ResultReady); }
686
687    /** Returns whether or not the result is ready. */
688    bool isResultReady() const { return status[ResultReady]; }
689
690    /** Sets this instruction as ready to issue. */
691    void setCanIssue() { status.set(CanIssue); }
692
693    /** Returns whether or not this instruction is ready to issue. */
694    bool readyToIssue() const { return status[CanIssue]; }
695
696    /** Clears this instruction being able to issue. */
697    void clearCanIssue() { status.reset(CanIssue); }
698
699    /** Sets this instruction as issued from the IQ. */
700    void setIssued() { status.set(Issued); }
701
702    /** Returns whether or not this instruction has issued. */
703    bool isIssued() const { return status[Issued]; }
704
705    /** Clears this instruction as being issued. */
706    void clearIssued() { status.reset(Issued); }
707
708    /** Sets this instruction as executed. */
709    void setExecuted() { status.set(Executed); }
710
711    /** Returns whether or not this instruction has executed. */
712    bool isExecuted() const { return status[Executed]; }
713
714    /** Sets this instruction as ready to commit. */
715    void setCanCommit() { status.set(CanCommit); }
716
717    /** Clears this instruction as being ready to commit. */
718    void clearCanCommit() { status.reset(CanCommit); }
719
720    /** Returns whether or not this instruction is ready to commit. */
721    bool readyToCommit() const { return status[CanCommit]; }
722
723    void setAtCommit() { status.set(AtCommit); }
724
725    bool isAtCommit() { return status[AtCommit]; }
726
727    /** Sets this instruction as committed. */
728    void setCommitted() { status.set(Committed); }
729
730    /** Returns whether or not this instruction is committed. */
731    bool isCommitted() const { return status[Committed]; }
732
733    /** Sets this instruction as squashed. */
734    void setSquashed() { status.set(Squashed); }
735
736    /** Returns whether or not this instruction is squashed. */
737    bool isSquashed() const { return status[Squashed]; }
738
739    //Instruction Queue Entry
740    //-----------------------
741    /** Sets this instruction as a entry the IQ. */
742    void setInIQ() { status.set(IqEntry); }
743
744    /** Sets this instruction as a entry the IQ. */
745    void clearInIQ() { status.reset(IqEntry); }
746
747    /** Returns whether or not this instruction has issued. */
748    bool isInIQ() const { return status[IqEntry]; }
749
750    /** Sets this instruction as squashed in the IQ. */
751    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
752
753    /** Returns whether or not this instruction is squashed in the IQ. */
754    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
755
756
757    //Load / Store Queue Functions
758    //-----------------------
759    /** Sets this instruction as a entry the LSQ. */
760    void setInLSQ() { status.set(LsqEntry); }
761
762    /** Sets this instruction as a entry the LSQ. */
763    void removeInLSQ() { status.reset(LsqEntry); }
764
765    /** Returns whether or not this instruction is in the LSQ. */
766    bool isInLSQ() const { return status[LsqEntry]; }
767
768    /** Sets this instruction as squashed in the LSQ. */
769    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
770
771    /** Returns whether or not this instruction is squashed in the LSQ. */
772    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
773
774
775    //Reorder Buffer Functions
776    //-----------------------
777    /** Sets this instruction as a entry the ROB. */
778    void setInROB() { status.set(RobEntry); }
779
780    /** Sets this instruction as a entry the ROB. */
781    void clearInROB() { status.reset(RobEntry); }
782
783    /** Returns whether or not this instruction is in the ROB. */
784    bool isInROB() const { return status[RobEntry]; }
785
786    /** Sets this instruction as squashed in the ROB. */
787    void setSquashedInROB() { status.set(SquashedInROB); }
788
789    /** Returns whether or not this instruction is squashed in the ROB. */
790    bool isSquashedInROB() const { return status[SquashedInROB]; }
791
792    /** Read the PC state of this instruction. */
793    const TheISA::PCState pcState() const { return pc; }
794
795    /** Set the PC state of this instruction. */
796    const void pcState(const TheISA::PCState &val) { pc = val; }
797
798    /** Read the PC of this instruction. */
799    const Addr instAddr() const { return pc.instAddr(); }
800
801    /** Read the PC of the next instruction. */
802    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
803
804    /**Read the micro PC of this instruction. */
805    const Addr microPC() const { return pc.microPC(); }
806
807    bool readPredicate()
808    {
809        return instFlags[Predicate];
810    }
811
812    void setPredicate(bool val)
813    {
814        instFlags[Predicate] = val;
815
816        if (traceData) {
817            traceData->setPredicate(val);
818        }
819    }
820
821    /** Sets the ASID. */
822    void setASID(short addr_space_id) { asid = addr_space_id; }
823
824    /** Sets the thread id. */
825    void setTid(ThreadID tid) { threadNumber = tid; }
826
827    /** Sets the pointer to the thread state. */
828    void setThreadState(ImplState *state) { thread = state; }
829
830    /** Returns the thread context. */
831    ThreadContext *tcBase() { return thread->getTC(); }
832
833  public:
834    /** Sets the effective address. */
835    void setEA(Addr &ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
836
837    /** Returns the effective address. */
838    const Addr &getEA() const { return instEffAddr; }
839
840    /** Returns whether or not the eff. addr. calculation has been completed. */
841    bool doneEACalc() { return instFlags[EACalcDone]; }
842
843    /** Returns whether or not the eff. addr. source registers are ready. */
844    bool eaSrcsReady();
845
846    /** Is this instruction's memory access uncacheable. */
847    bool uncacheable() { return instFlags[IsUncacheable]; }
848
849    /** Has this instruction generated a memory request. */
850    bool hasRequest() { return instFlags[ReqMade]; }
851
852    /** Returns iterator to this instruction in the list of all insts. */
853    ListIt &getInstListIt() { return instListIt; }
854
855    /** Sets iterator for this instruction in the list of all insts. */
856    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
857
858  public:
859    /** Returns the number of consecutive store conditional failures. */
860    unsigned readStCondFailures()
861    { return thread->storeCondFailures; }
862
863    /** Sets the number of consecutive store conditional failures. */
864    void setStCondFailures(unsigned sc_failures)
865    { thread->storeCondFailures = sc_failures; }
866};
867
868template<class Impl>
869Fault
870BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
871                           unsigned size, unsigned flags)
872{
873    instFlags[ReqMade] = true;
874    Request *req = NULL;
875    Request *sreqLow = NULL;
876    Request *sreqHigh = NULL;
877
878    if (instFlags[ReqMade] && translationStarted()) {
879        req = savedReq;
880        sreqLow = savedSreqLow;
881        sreqHigh = savedSreqHigh;
882    } else {
883        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
884                          thread->contextId(), threadNumber);
885
886        // Only split the request if the ISA supports unaligned accesses.
887        if (TheISA::HasUnalignedMemAcc) {
888            splitRequest(req, sreqLow, sreqHigh);
889        }
890        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
891    }
892
893    if (translationCompleted()) {
894        if (fault == NoFault) {
895            effAddr = req->getVaddr();
896            effSize = size;
897            instFlags[EffAddrValid] = true;
898
899            if (cpu->checker) {
900                if (reqToVerify != NULL) {
901                    delete reqToVerify;
902                }
903                reqToVerify = new Request(*req);
904            }
905            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
906        } else {
907            // Commit will have to clean up whatever happened.  Set this
908            // instruction as executed.
909            this->setExecuted();
910        }
911
912        if (fault != NoFault) {
913            // Return a fixed value to keep simulation deterministic even
914            // along misspeculated paths.
915            if (data)
916                bzero(data, size);
917        }
918    }
919
920    if (traceData) {
921        traceData->setAddr(addr);
922    }
923
924    return fault;
925}
926
927template<class Impl>
928Fault
929BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
930                            Addr addr, unsigned flags, uint64_t *res)
931{
932    if (traceData) {
933        traceData->setAddr(addr);
934    }
935
936    instFlags[ReqMade] = true;
937    Request *req = NULL;
938    Request *sreqLow = NULL;
939    Request *sreqHigh = NULL;
940
941    if (instFlags[ReqMade] && translationStarted()) {
942        req = savedReq;
943        sreqLow = savedSreqLow;
944        sreqHigh = savedSreqHigh;
945    } else {
946        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
947                          thread->contextId(), threadNumber);
948
949        // Only split the request if the ISA supports unaligned accesses.
950        if (TheISA::HasUnalignedMemAcc) {
951            splitRequest(req, sreqLow, sreqHigh);
952        }
953        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
954    }
955
956    if (fault == NoFault && translationCompleted()) {
957        effAddr = req->getVaddr();
958        effSize = size;
959        instFlags[EffAddrValid] = true;
960
961        if (cpu->checker) {
962            if (reqToVerify != NULL) {
963                delete reqToVerify;
964            }
965            reqToVerify = new Request(*req);
966        }
967        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
968    }
969
970    return fault;
971}
972
973template<class Impl>
974inline void
975BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
976                                RequestPtr &sreqHigh)
977{
978    // Check to see if the request crosses the next level block boundary.
979    unsigned block_size = cpu->cacheLineSize();
980    Addr addr = req->getVaddr();
981    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
982    assert(split_addr <= addr || split_addr - addr < block_size);
983
984    // Spans two blocks.
985    if (split_addr > addr) {
986        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
987    }
988}
989
990template<class Impl>
991inline void
992BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
993                                       RequestPtr sreqHigh, uint64_t *res,
994                                       BaseTLB::Mode mode)
995{
996    translationStarted(true);
997
998    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
999        WholeTranslationState *state =
1000            new WholeTranslationState(req, NULL, res, mode);
1001
1002        // One translation if the request isn't split.
1003        DataTranslation<BaseDynInstPtr> *trans =
1004            new DataTranslation<BaseDynInstPtr>(this, state);
1005        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1006        if (!translationCompleted()) {
1007            // Save memory requests.
1008            savedReq = state->mainReq;
1009            savedSreqLow = state->sreqLow;
1010            savedSreqHigh = state->sreqHigh;
1011        }
1012    } else {
1013        WholeTranslationState *state =
1014            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1015
1016        // Two translations when the request is split.
1017        DataTranslation<BaseDynInstPtr> *stransLow =
1018            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1019        DataTranslation<BaseDynInstPtr> *stransHigh =
1020            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1021
1022        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1023        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1024        if (!translationCompleted()) {
1025            // Save memory requests.
1026            savedReq = state->mainReq;
1027            savedSreqLow = state->sreqLow;
1028            savedSreqHigh = state->sreqHigh;
1029        }
1030    }
1031}
1032
1033template<class Impl>
1034inline void
1035BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1036{
1037    fault = state->getFault();
1038
1039    instFlags[IsUncacheable] = state->isUncacheable();
1040
1041    if (fault == NoFault) {
1042        physEffAddr = state->getPaddr();
1043        memReqFlags = state->getFlags();
1044
1045        if (state->mainReq->isCondSwap()) {
1046            assert(state->res);
1047            state->mainReq->setExtraData(*state->res);
1048        }
1049
1050    } else {
1051        state->deleteReqs();
1052    }
1053    delete state;
1054
1055    translationCompleted(true);
1056}
1057
1058#endif // __CPU_BASE_DYN_INST_HH__
1059