base_dyn_inst.hh revision 8887
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/utility.hh"
54#include "base/fast_alloc.hh"
55#include "base/trace.hh"
56#include "config/the_isa.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/fault_fwd.hh"
67#include "sim/system.hh"
68#include "sim/tlb.hh"
69
70/**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75template <class Impl>
76class BaseDynInst : public FastAlloc, public RefCounted
77{
78  public:
79    // Typedef for the CPU.
80    typedef typename Impl::CPUType ImplCPU;
81    typedef typename ImplCPU::ImplState ImplState;
82
83    // Logical register index type.
84    typedef TheISA::RegIndex RegIndex;
85    // Integer register type.
86    typedef TheISA::IntReg IntReg;
87    // Floating point register type.
88    typedef TheISA::FloatReg FloatReg;
89
90    // The DynInstPtr type.
91    typedef typename Impl::DynInstPtr DynInstPtr;
92    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94    // The list of instructions iterator type.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    enum {
98        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
99        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
100    };
101
102    /** The StaticInst used by this BaseDynInst. */
103    StaticInstPtr staticInst;
104    StaticInstPtr macroop;
105
106    ////////////////////////////////////////////
107    //
108    // INSTRUCTION EXECUTION
109    //
110    ////////////////////////////////////////////
111    /** InstRecord that tracks this instructions. */
112    Trace::InstRecord *traceData;
113
114    void demapPage(Addr vaddr, uint64_t asn)
115    {
116        cpu->demapPage(vaddr, asn);
117    }
118    void demapInstPage(Addr vaddr, uint64_t asn)
119    {
120        cpu->demapPage(vaddr, asn);
121    }
122    void demapDataPage(Addr vaddr, uint64_t asn)
123    {
124        cpu->demapPage(vaddr, asn);
125    }
126
127    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
128
129    Fault writeMem(uint8_t *data, unsigned size,
130                   Addr addr, unsigned flags, uint64_t *res);
131
132    /** Splits a request in two if it crosses a dcache block. */
133    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
134                      RequestPtr &sreqHigh);
135
136    /** Initiate a DTB address translation. */
137    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
138                             RequestPtr sreqHigh, uint64_t *res,
139                             BaseTLB::Mode mode);
140
141    /** Finish a DTB address translation. */
142    void finishTranslation(WholeTranslationState *state);
143
144    /** True if the DTB address translation has started. */
145    bool translationStarted;
146
147    /** True if the DTB address translation has completed. */
148    bool translationCompleted;
149
150    /** True if this address was found to match a previous load and they issued
151     * out of order. If that happend, then it's only a problem if an incoming
152     * snoop invalidate modifies the line, in which case we need to squash.
153     * If nothing modified the line the order doesn't matter.
154     */
155    bool possibleLoadViolation;
156
157    /** True if the address hit a external snoop while sitting in the LSQ.
158     * If this is true and a older instruction sees it, this instruction must
159     * reexecute
160     */
161    bool hitExternalSnoop;
162
163    /**
164     * Returns true if the DTB address translation is being delayed due to a hw
165     * page table walk.
166     */
167    bool isTranslationDelayed() const
168    {
169        return (translationStarted && !translationCompleted);
170    }
171
172    /**
173     * Saved memory requests (needed when the DTB address translation is
174     * delayed due to a hw page table walk).
175     */
176    RequestPtr savedReq;
177    RequestPtr savedSreqLow;
178    RequestPtr savedSreqHigh;
179
180    // Need a copy of main request pointer to verify on writes.
181    RequestPtr reqToVerify;
182
183    /** @todo: Consider making this private. */
184  public:
185    /** The sequence number of the instruction. */
186    InstSeqNum seqNum;
187
188    enum Status {
189        IqEntry,                 /// Instruction is in the IQ
190        RobEntry,                /// Instruction is in the ROB
191        LsqEntry,                /// Instruction is in the LSQ
192        Completed,               /// Instruction has completed
193        ResultReady,             /// Instruction has its result
194        CanIssue,                /// Instruction can issue and execute
195        Issued,                  /// Instruction has issued
196        Executed,                /// Instruction has executed
197        CanCommit,               /// Instruction can commit
198        AtCommit,                /// Instruction has reached commit
199        Committed,               /// Instruction has committed
200        Squashed,                /// Instruction is squashed
201        SquashedInIQ,            /// Instruction is squashed in the IQ
202        SquashedInLSQ,           /// Instruction is squashed in the LSQ
203        SquashedInROB,           /// Instruction is squashed in the ROB
204        RecoverInst,             /// Is a recover instruction
205        BlockingInst,            /// Is a blocking instruction
206        ThreadsyncWait,          /// Is a thread synchronization instruction
207        SerializeBefore,         /// Needs to serialize on
208                                 /// instructions ahead of it
209        SerializeAfter,          /// Needs to serialize instructions behind it
210        SerializeHandled,        /// Serialization has been handled
211        NumStatus
212    };
213
214    /** The status of this BaseDynInst.  Several bits can be set. */
215    std::bitset<NumStatus> status;
216
217    /** The thread this instruction is from. */
218    ThreadID threadNumber;
219
220    /** data address space ID, for loads & stores. */
221    short asid;
222
223    /** How many source registers are ready. */
224    unsigned readyRegs;
225
226    /** Pointer to the Impl's CPU object. */
227    ImplCPU *cpu;
228
229    /** Pointer to the thread state. */
230    ImplState *thread;
231
232    /** The kind of fault this instruction has generated. */
233    Fault fault;
234
235    /** Pointer to the data for the memory access. */
236    uint8_t *memData;
237
238    /** The effective virtual address (lds & stores only). */
239    Addr effAddr;
240
241    /** The size of the request */
242    Addr effSize;
243
244    /** Is the effective virtual address valid. */
245    bool effAddrValid;
246
247    /** The effective physical address. */
248    Addr physEffAddr;
249
250    /** The memory request flags (from translation). */
251    unsigned memReqFlags;
252
253    union Result {
254        uint64_t integer;
255        double dbl;
256        void set(uint64_t i) { integer = i; }
257        void set(double d) { dbl = d; }
258        void get(uint64_t& i) { i = integer; }
259        void get(double& d) { d = dbl; }
260    };
261
262    /** The result of the instruction; assumes an instruction can have many
263     *  destination registers.
264     */
265    std::queue<Result> instResult;
266
267    /** Records changes to result? */
268    bool recordResult;
269
270    /** Did this instruction execute, or is it predicated false */
271    bool predicate;
272
273  protected:
274    /** PC state for this instruction. */
275    TheISA::PCState pc;
276
277    /** Predicted PC state after this instruction. */
278    TheISA::PCState predPC;
279
280    /** If this is a branch that was predicted taken */
281    bool predTaken;
282
283  public:
284
285#ifdef DEBUG
286    void dumpSNList();
287#endif
288
289    /** Whether or not the source register is ready.
290     *  @todo: Not sure this should be here vs the derived class.
291     */
292    bool _readySrcRegIdx[MaxInstSrcRegs];
293
294  protected:
295    /** Flattened register index of the destination registers of this
296     *  instruction.
297     */
298    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
299
300    /** Flattened register index of the source registers of this
301     *  instruction.
302     */
303    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
304
305    /** Physical register index of the destination registers of this
306     *  instruction.
307     */
308    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
309
310    /** Physical register index of the source registers of this
311     *  instruction.
312     */
313    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
314
315    /** Physical register index of the previous producers of the
316     *  architected destinations.
317     */
318    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
319
320  public:
321
322    /** Returns the physical register index of the i'th destination
323     *  register.
324     */
325    PhysRegIndex renamedDestRegIdx(int idx) const
326    {
327        return _destRegIdx[idx];
328    }
329
330    /** Returns the physical register index of the i'th source register. */
331    PhysRegIndex renamedSrcRegIdx(int idx) const
332    {
333        return _srcRegIdx[idx];
334    }
335
336    /** Returns the flattened register index of the i'th destination
337     *  register.
338     */
339    TheISA::RegIndex flattenedDestRegIdx(int idx) const
340    {
341        return _flatDestRegIdx[idx];
342    }
343
344    /** Returns the flattened register index of the i'th source register */
345    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
346    {
347        return _flatSrcRegIdx[idx];
348    }
349
350    /** Returns the physical register index of the previous physical register
351     *  that remapped to the same logical register index.
352     */
353    PhysRegIndex prevDestRegIdx(int idx) const
354    {
355        return _prevDestRegIdx[idx];
356    }
357
358    /** Renames a destination register to a physical register.  Also records
359     *  the previous physical register that the logical register mapped to.
360     */
361    void renameDestReg(int idx,
362                       PhysRegIndex renamed_dest,
363                       PhysRegIndex previous_rename)
364    {
365        _destRegIdx[idx] = renamed_dest;
366        _prevDestRegIdx[idx] = previous_rename;
367    }
368
369    /** Renames a source logical register to the physical register which
370     *  has/will produce that logical register's result.
371     *  @todo: add in whether or not the source register is ready.
372     */
373    void renameSrcReg(int idx, PhysRegIndex renamed_src)
374    {
375        _srcRegIdx[idx] = renamed_src;
376    }
377
378    /** Flattens a source architectural register index into a logical index.
379     */
380    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
381    {
382        _flatSrcRegIdx[idx] = flattened_src;
383    }
384
385    /** Flattens a destination architectural register index into a logical
386     * index.
387     */
388    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
389    {
390        _flatDestRegIdx[idx] = flattened_dest;
391    }
392    /** BaseDynInst constructor given a binary instruction.
393     *  @param staticInst A StaticInstPtr to the underlying instruction.
394     *  @param pc The PC state for the instruction.
395     *  @param predPC The predicted next PC state for the instruction.
396     *  @param seq_num The sequence number of the instruction.
397     *  @param cpu Pointer to the instruction's CPU.
398     */
399    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
400                TheISA::PCState pc, TheISA::PCState predPC,
401                InstSeqNum seq_num, ImplCPU *cpu);
402
403    /** BaseDynInst constructor given a StaticInst pointer.
404     *  @param _staticInst The StaticInst for this BaseDynInst.
405     */
406    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
407
408    /** BaseDynInst destructor. */
409    ~BaseDynInst();
410
411  private:
412    /** Function to initialize variables in the constructors. */
413    void initVars();
414
415  public:
416    /** Dumps out contents of this BaseDynInst. */
417    void dump();
418
419    /** Dumps out contents of this BaseDynInst into given string. */
420    void dump(std::string &outstring);
421
422    /** Read this CPU's ID. */
423    int cpuId() { return cpu->cpuId(); }
424
425    /** Read this CPU's data requestor ID */
426    MasterID masterId() { return cpu->dataMasterId(); }
427
428    /** Read this context's system-wide ID **/
429    int contextId() { return thread->contextId(); }
430
431    /** Returns the fault type. */
432    Fault getFault() { return fault; }
433
434    /** Checks whether or not this instruction has had its branch target
435     *  calculated yet.  For now it is not utilized and is hacked to be
436     *  always false.
437     *  @todo: Actually use this instruction.
438     */
439    bool doneTargCalc() { return false; }
440
441    /** Set the predicted target of this current instruction. */
442    void setPredTarg(const TheISA::PCState &_predPC)
443    {
444        predPC = _predPC;
445    }
446
447    const TheISA::PCState &readPredTarg() { return predPC; }
448
449    /** Returns the predicted PC immediately after the branch. */
450    Addr predInstAddr() { return predPC.instAddr(); }
451
452    /** Returns the predicted PC two instructions after the branch */
453    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
454
455    /** Returns the predicted micro PC after the branch */
456    Addr predMicroPC() { return predPC.microPC(); }
457
458    /** Returns whether the instruction was predicted taken or not. */
459    bool readPredTaken()
460    {
461        return predTaken;
462    }
463
464    void setPredTaken(bool predicted_taken)
465    {
466        predTaken = predicted_taken;
467    }
468
469    /** Returns whether the instruction mispredicted. */
470    bool mispredicted()
471    {
472        TheISA::PCState tempPC = pc;
473        TheISA::advancePC(tempPC, staticInst);
474        return !(tempPC == predPC);
475    }
476
477    //
478    //  Instruction types.  Forward checks to StaticInst object.
479    //
480    bool isNop()          const { return staticInst->isNop(); }
481    bool isMemRef()       const { return staticInst->isMemRef(); }
482    bool isLoad()         const { return staticInst->isLoad(); }
483    bool isStore()        const { return staticInst->isStore(); }
484    bool isStoreConditional() const
485    { return staticInst->isStoreConditional(); }
486    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
487    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
488    bool isInteger()      const { return staticInst->isInteger(); }
489    bool isFloating()     const { return staticInst->isFloating(); }
490    bool isControl()      const { return staticInst->isControl(); }
491    bool isCall()         const { return staticInst->isCall(); }
492    bool isReturn()       const { return staticInst->isReturn(); }
493    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
494    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
495    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
496    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
497    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
498    bool isThreadSync()   const { return staticInst->isThreadSync(); }
499    bool isSerializing()  const { return staticInst->isSerializing(); }
500    bool isSerializeBefore() const
501    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
502    bool isSerializeAfter() const
503    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
504    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
505    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
506    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
507    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
508    bool isQuiesce() const { return staticInst->isQuiesce(); }
509    bool isIprAccess() const { return staticInst->isIprAccess(); }
510    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
511    bool isSyscall() const { return staticInst->isSyscall(); }
512    bool isMacroop() const { return staticInst->isMacroop(); }
513    bool isMicroop() const { return staticInst->isMicroop(); }
514    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
515    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
516    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
517    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
518
519    /** Temporarily sets this instruction as a serialize before instruction. */
520    void setSerializeBefore() { status.set(SerializeBefore); }
521
522    /** Clears the serializeBefore part of this instruction. */
523    void clearSerializeBefore() { status.reset(SerializeBefore); }
524
525    /** Checks if this serializeBefore is only temporarily set. */
526    bool isTempSerializeBefore() { return status[SerializeBefore]; }
527
528    /** Temporarily sets this instruction as a serialize after instruction. */
529    void setSerializeAfter() { status.set(SerializeAfter); }
530
531    /** Clears the serializeAfter part of this instruction.*/
532    void clearSerializeAfter() { status.reset(SerializeAfter); }
533
534    /** Checks if this serializeAfter is only temporarily set. */
535    bool isTempSerializeAfter() { return status[SerializeAfter]; }
536
537    /** Sets the serialization part of this instruction as handled. */
538    void setSerializeHandled() { status.set(SerializeHandled); }
539
540    /** Checks if the serialization part of this instruction has been
541     *  handled.  This does not apply to the temporary serializing
542     *  state; it only applies to this instruction's own permanent
543     *  serializing state.
544     */
545    bool isSerializeHandled() { return status[SerializeHandled]; }
546
547    /** Returns the opclass of this instruction. */
548    OpClass opClass() const { return staticInst->opClass(); }
549
550    /** Returns the branch target address. */
551    TheISA::PCState branchTarget() const
552    { return staticInst->branchTarget(pc); }
553
554    /** Returns the number of source registers. */
555    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
556
557    /** Returns the number of destination registers. */
558    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
559
560    // the following are used to track physical register usage
561    // for machines with separate int & FP reg files
562    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
563    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
564
565    /** Returns the logical register index of the i'th destination register. */
566    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
567
568    /** Returns the logical register index of the i'th source register. */
569    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
570
571    /** Pops a result off the instResult queue */
572    template <class T>
573    void popResult(T& t)
574    {
575        if (!instResult.empty()) {
576            instResult.front().get(t);
577            instResult.pop();
578        }
579    }
580
581    /** Read the most recent result stored by this instruction */
582    template <class T>
583    void readResult(T& t)
584    {
585        instResult.back().get(t);
586    }
587
588    /** Pushes a result onto the instResult queue */
589    template <class T>
590    void setResult(T t)
591    {
592        if (recordResult) {
593            Result instRes;
594            instRes.set(t);
595            instResult.push(instRes);
596        }
597    }
598
599    /** Records an integer register being set to a value. */
600    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
601    {
602        setResult<uint64_t>(val);
603    }
604
605    /** Records an fp register being set to a value. */
606    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
607                            int width)
608    {
609        if (width == 32 || width == 64) {
610            setResult<double>(val);
611        } else {
612            panic("Unsupported width!");
613        }
614    }
615
616    /** Records an fp register being set to a value. */
617    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
618    {
619        setResult<double>(val);
620    }
621
622    /** Records an fp register being set to an integer value. */
623    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
624                                int width)
625    {
626        setResult<uint64_t>(val);
627    }
628
629    /** Records an fp register being set to an integer value. */
630    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
631    {
632        setResult<uint64_t>(val);
633    }
634
635    /** Records that one of the source registers is ready. */
636    void markSrcRegReady();
637
638    /** Marks a specific register as ready. */
639    void markSrcRegReady(RegIndex src_idx);
640
641    /** Returns if a source register is ready. */
642    bool isReadySrcRegIdx(int idx) const
643    {
644        return this->_readySrcRegIdx[idx];
645    }
646
647    /** Sets this instruction as completed. */
648    void setCompleted() { status.set(Completed); }
649
650    /** Returns whether or not this instruction is completed. */
651    bool isCompleted() const { return status[Completed]; }
652
653    /** Marks the result as ready. */
654    void setResultReady() { status.set(ResultReady); }
655
656    /** Returns whether or not the result is ready. */
657    bool isResultReady() const { return status[ResultReady]; }
658
659    /** Sets this instruction as ready to issue. */
660    void setCanIssue() { status.set(CanIssue); }
661
662    /** Returns whether or not this instruction is ready to issue. */
663    bool readyToIssue() const { return status[CanIssue]; }
664
665    /** Clears this instruction being able to issue. */
666    void clearCanIssue() { status.reset(CanIssue); }
667
668    /** Sets this instruction as issued from the IQ. */
669    void setIssued() { status.set(Issued); }
670
671    /** Returns whether or not this instruction has issued. */
672    bool isIssued() const { return status[Issued]; }
673
674    /** Clears this instruction as being issued. */
675    void clearIssued() { status.reset(Issued); }
676
677    /** Sets this instruction as executed. */
678    void setExecuted() { status.set(Executed); }
679
680    /** Returns whether or not this instruction has executed. */
681    bool isExecuted() const { return status[Executed]; }
682
683    /** Sets this instruction as ready to commit. */
684    void setCanCommit() { status.set(CanCommit); }
685
686    /** Clears this instruction as being ready to commit. */
687    void clearCanCommit() { status.reset(CanCommit); }
688
689    /** Returns whether or not this instruction is ready to commit. */
690    bool readyToCommit() const { return status[CanCommit]; }
691
692    void setAtCommit() { status.set(AtCommit); }
693
694    bool isAtCommit() { return status[AtCommit]; }
695
696    /** Sets this instruction as committed. */
697    void setCommitted() { status.set(Committed); }
698
699    /** Returns whether or not this instruction is committed. */
700    bool isCommitted() const { return status[Committed]; }
701
702    /** Sets this instruction as squashed. */
703    void setSquashed() { status.set(Squashed); }
704
705    /** Returns whether or not this instruction is squashed. */
706    bool isSquashed() const { return status[Squashed]; }
707
708    //Instruction Queue Entry
709    //-----------------------
710    /** Sets this instruction as a entry the IQ. */
711    void setInIQ() { status.set(IqEntry); }
712
713    /** Sets this instruction as a entry the IQ. */
714    void clearInIQ() { status.reset(IqEntry); }
715
716    /** Returns whether or not this instruction has issued. */
717    bool isInIQ() const { return status[IqEntry]; }
718
719    /** Sets this instruction as squashed in the IQ. */
720    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
721
722    /** Returns whether or not this instruction is squashed in the IQ. */
723    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
724
725
726    //Load / Store Queue Functions
727    //-----------------------
728    /** Sets this instruction as a entry the LSQ. */
729    void setInLSQ() { status.set(LsqEntry); }
730
731    /** Sets this instruction as a entry the LSQ. */
732    void removeInLSQ() { status.reset(LsqEntry); }
733
734    /** Returns whether or not this instruction is in the LSQ. */
735    bool isInLSQ() const { return status[LsqEntry]; }
736
737    /** Sets this instruction as squashed in the LSQ. */
738    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
739
740    /** Returns whether or not this instruction is squashed in the LSQ. */
741    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
742
743
744    //Reorder Buffer Functions
745    //-----------------------
746    /** Sets this instruction as a entry the ROB. */
747    void setInROB() { status.set(RobEntry); }
748
749    /** Sets this instruction as a entry the ROB. */
750    void clearInROB() { status.reset(RobEntry); }
751
752    /** Returns whether or not this instruction is in the ROB. */
753    bool isInROB() const { return status[RobEntry]; }
754
755    /** Sets this instruction as squashed in the ROB. */
756    void setSquashedInROB() { status.set(SquashedInROB); }
757
758    /** Returns whether or not this instruction is squashed in the ROB. */
759    bool isSquashedInROB() const { return status[SquashedInROB]; }
760
761    /** Read the PC state of this instruction. */
762    const TheISA::PCState pcState() const { return pc; }
763
764    /** Set the PC state of this instruction. */
765    const void pcState(const TheISA::PCState &val) { pc = val; }
766
767    /** Read the PC of this instruction. */
768    const Addr instAddr() const { return pc.instAddr(); }
769
770    /** Read the PC of the next instruction. */
771    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
772
773    /**Read the micro PC of this instruction. */
774    const Addr microPC() const { return pc.microPC(); }
775
776    bool readPredicate()
777    {
778        return predicate;
779    }
780
781    void setPredicate(bool val)
782    {
783        predicate = val;
784
785        if (traceData) {
786            traceData->setPredicate(val);
787        }
788    }
789
790    /** Sets the ASID. */
791    void setASID(short addr_space_id) { asid = addr_space_id; }
792
793    /** Sets the thread id. */
794    void setTid(ThreadID tid) { threadNumber = tid; }
795
796    /** Sets the pointer to the thread state. */
797    void setThreadState(ImplState *state) { thread = state; }
798
799    /** Returns the thread context. */
800    ThreadContext *tcBase() { return thread->getTC(); }
801
802  private:
803    /** Instruction effective address.
804     *  @todo: Consider if this is necessary or not.
805     */
806    Addr instEffAddr;
807
808    /** Whether or not the effective address calculation is completed.
809     *  @todo: Consider if this is necessary or not.
810     */
811    bool eaCalcDone;
812
813    /** Is this instruction's memory access uncacheable. */
814    bool isUncacheable;
815
816    /** Has this instruction generated a memory request. */
817    bool reqMade;
818
819  public:
820    /** Sets the effective address. */
821    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
822
823    /** Returns the effective address. */
824    const Addr &getEA() const { return instEffAddr; }
825
826    /** Returns whether or not the eff. addr. calculation has been completed. */
827    bool doneEACalc() { return eaCalcDone; }
828
829    /** Returns whether or not the eff. addr. source registers are ready. */
830    bool eaSrcsReady();
831
832    /** Whether or not the memory operation is done. */
833    bool memOpDone;
834
835    /** Is this instruction's memory access uncacheable. */
836    bool uncacheable() { return isUncacheable; }
837
838    /** Has this instruction generated a memory request. */
839    bool hasRequest() { return reqMade; }
840
841  public:
842    /** Load queue index. */
843    int16_t lqIdx;
844
845    /** Store queue index. */
846    int16_t sqIdx;
847
848    /** Iterator pointing to this BaseDynInst in the list of all insts. */
849    ListIt instListIt;
850
851    /** Returns iterator to this instruction in the list of all insts. */
852    ListIt &getInstListIt() { return instListIt; }
853
854    /** Sets iterator for this instruction in the list of all insts. */
855    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
856
857  public:
858    /** Returns the number of consecutive store conditional failures. */
859    unsigned readStCondFailures()
860    { return thread->storeCondFailures; }
861
862    /** Sets the number of consecutive store conditional failures. */
863    void setStCondFailures(unsigned sc_failures)
864    { thread->storeCondFailures = sc_failures; }
865};
866
867template<class Impl>
868Fault
869BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
870                           unsigned size, unsigned flags)
871{
872    reqMade = true;
873    Request *req = NULL;
874    Request *sreqLow = NULL;
875    Request *sreqHigh = NULL;
876
877    if (reqMade && translationStarted) {
878        req = savedReq;
879        sreqLow = savedSreqLow;
880        sreqHigh = savedSreqHigh;
881    } else {
882        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
883                          thread->contextId(), threadNumber);
884
885        // Only split the request if the ISA supports unaligned accesses.
886        if (TheISA::HasUnalignedMemAcc) {
887            splitRequest(req, sreqLow, sreqHigh);
888        }
889        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
890    }
891
892    if (translationCompleted) {
893        if (fault == NoFault) {
894            effAddr = req->getVaddr();
895            effSize = size;
896            effAddrValid = true;
897
898            if (cpu->checker) {
899                if (reqToVerify != NULL) {
900                    delete reqToVerify;
901                }
902                reqToVerify = new Request(*req);
903            }
904            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
905        } else {
906            // Commit will have to clean up whatever happened.  Set this
907            // instruction as executed.
908            this->setExecuted();
909        }
910
911        if (fault != NoFault) {
912            // Return a fixed value to keep simulation deterministic even
913            // along misspeculated paths.
914            if (data)
915                bzero(data, size);
916        }
917    }
918
919    if (traceData) {
920        traceData->setAddr(addr);
921    }
922
923    return fault;
924}
925
926template<class Impl>
927Fault
928BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
929                            Addr addr, unsigned flags, uint64_t *res)
930{
931    if (traceData) {
932        traceData->setAddr(addr);
933    }
934
935    reqMade = true;
936    Request *req = NULL;
937    Request *sreqLow = NULL;
938    Request *sreqHigh = NULL;
939
940    if (reqMade && translationStarted) {
941        req = savedReq;
942        sreqLow = savedSreqLow;
943        sreqHigh = savedSreqHigh;
944    } else {
945        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
946                          thread->contextId(), threadNumber);
947
948        // Only split the request if the ISA supports unaligned accesses.
949        if (TheISA::HasUnalignedMemAcc) {
950            splitRequest(req, sreqLow, sreqHigh);
951        }
952        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
953    }
954
955    if (fault == NoFault && translationCompleted) {
956        effAddr = req->getVaddr();
957        effSize = size;
958        effAddrValid = true;
959
960        if (cpu->checker) {
961            if (reqToVerify != NULL) {
962                delete reqToVerify;
963            }
964            reqToVerify = new Request(*req);
965        }
966        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
967    }
968
969    return fault;
970}
971
972template<class Impl>
973inline void
974BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
975                                RequestPtr &sreqHigh)
976{
977    // Check to see if the request crosses the next level block boundary.
978    unsigned block_size = cpu->getDataPort().peerBlockSize();
979    Addr addr = req->getVaddr();
980    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
981    assert(split_addr <= addr || split_addr - addr < block_size);
982
983    // Spans two blocks.
984    if (split_addr > addr) {
985        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
986    }
987}
988
989template<class Impl>
990inline void
991BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
992                                       RequestPtr sreqHigh, uint64_t *res,
993                                       BaseTLB::Mode mode)
994{
995    translationStarted = true;
996
997    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998        WholeTranslationState *state =
999            new WholeTranslationState(req, NULL, res, mode);
1000
1001        // One translation if the request isn't split.
1002        DataTranslation<BaseDynInstPtr> *trans =
1003            new DataTranslation<BaseDynInstPtr>(this, state);
1004        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1005        if (!translationCompleted) {
1006            // Save memory requests.
1007            savedReq = state->mainReq;
1008            savedSreqLow = state->sreqLow;
1009            savedSreqHigh = state->sreqHigh;
1010        }
1011    } else {
1012        WholeTranslationState *state =
1013            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1014
1015        // Two translations when the request is split.
1016        DataTranslation<BaseDynInstPtr> *stransLow =
1017            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1018        DataTranslation<BaseDynInstPtr> *stransHigh =
1019            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1020
1021        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1022        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1023        if (!translationCompleted) {
1024            // Save memory requests.
1025            savedReq = state->mainReq;
1026            savedSreqLow = state->sreqLow;
1027            savedSreqHigh = state->sreqHigh;
1028        }
1029    }
1030}
1031
1032template<class Impl>
1033inline void
1034BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1035{
1036    fault = state->getFault();
1037
1038    if (state->isUncacheable())
1039        isUncacheable = true;
1040
1041    if (fault == NoFault) {
1042        physEffAddr = state->getPaddr();
1043        memReqFlags = state->getFlags();
1044
1045        if (state->mainReq->isCondSwap()) {
1046            assert(state->res);
1047            state->mainReq->setExtraData(*state->res);
1048        }
1049
1050    } else {
1051        state->deleteReqs();
1052    }
1053    delete state;
1054
1055    translationCompleted = true;
1056}
1057
1058#endif // __CPU_BASE_DYN_INST_HH__
1059