base_dyn_inst.hh revision 7678
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 *          Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/byteswap.hh"
53#include "sim/system.hh"
54#include "sim/tlb.hh"
55
56/**
57 * @file
58 * Defines a dynamic instruction context.
59 */
60
61// Forward declaration.
62class StaticInstPtr;
63
64template <class Impl>
65class BaseDynInst : public FastAlloc, public RefCounted
66{
67  public:
68    // Typedef for the CPU.
69    typedef typename Impl::CPUType ImplCPU;
70    typedef typename ImplCPU::ImplState ImplState;
71
72    // Logical register index type.
73    typedef TheISA::RegIndex RegIndex;
74    // Integer register type.
75    typedef TheISA::IntReg IntReg;
76    // Floating point register type.
77    typedef TheISA::FloatReg FloatReg;
78
79    // The DynInstPtr type.
80    typedef typename Impl::DynInstPtr DynInstPtr;
81
82    // The list of instructions iterator type.
83    typedef typename std::list<DynInstPtr>::iterator ListIt;
84
85    enum {
86        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
87        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
88    };
89
90    /** The StaticInst used by this BaseDynInst. */
91    StaticInstPtr staticInst;
92
93    ////////////////////////////////////////////
94    //
95    // INSTRUCTION EXECUTION
96    //
97    ////////////////////////////////////////////
98    /** InstRecord that tracks this instructions. */
99    Trace::InstRecord *traceData;
100
101    void demapPage(Addr vaddr, uint64_t asn)
102    {
103        cpu->demapPage(vaddr, asn);
104    }
105    void demapInstPage(Addr vaddr, uint64_t asn)
106    {
107        cpu->demapPage(vaddr, asn);
108    }
109    void demapDataPage(Addr vaddr, uint64_t asn)
110    {
111        cpu->demapPage(vaddr, asn);
112    }
113
114    /**
115     * Does a read to a given address.
116     * @param addr The address to read.
117     * @param data The read's data is written into this parameter.
118     * @param flags The request's flags.
119     * @return Returns any fault due to the read.
120     */
121    template <class T>
122    Fault read(Addr addr, T &data, unsigned flags);
123
124    Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
125
126    /**
127     * Does a write to a given address.
128     * @param data The data to be written.
129     * @param addr The address to write to.
130     * @param flags The request's flags.
131     * @param res The result of the write (for load locked/store conditionals).
132     * @return Returns any fault due to the write.
133     */
134    template <class T>
135    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
136
137    Fault writeBytes(uint8_t *data, unsigned size,
138                     Addr addr, unsigned flags, uint64_t *res);
139
140    /** Splits a request in two if it crosses a dcache block. */
141    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
142                      RequestPtr &sreqHigh);
143
144    /** Initiate a DTB address translation. */
145    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
146                             RequestPtr sreqHigh, uint64_t *res,
147                             BaseTLB::Mode mode);
148
149    /** Finish a DTB address translation. */
150    void finishTranslation(WholeTranslationState *state);
151
152    void prefetch(Addr addr, unsigned flags);
153    void writeHint(Addr addr, int size, unsigned flags);
154    Fault copySrcTranslate(Addr src);
155    Fault copy(Addr dest);
156
157    /** @todo: Consider making this private. */
158  public:
159    /** The sequence number of the instruction. */
160    InstSeqNum seqNum;
161
162    enum Status {
163        IqEntry,                 /// Instruction is in the IQ
164        RobEntry,                /// Instruction is in the ROB
165        LsqEntry,                /// Instruction is in the LSQ
166        Completed,               /// Instruction has completed
167        ResultReady,             /// Instruction has its result
168        CanIssue,                /// Instruction can issue and execute
169        Issued,                  /// Instruction has issued
170        Executed,                /// Instruction has executed
171        CanCommit,               /// Instruction can commit
172        AtCommit,                /// Instruction has reached commit
173        Committed,               /// Instruction has committed
174        Squashed,                /// Instruction is squashed
175        SquashedInIQ,            /// Instruction is squashed in the IQ
176        SquashedInLSQ,           /// Instruction is squashed in the LSQ
177        SquashedInROB,           /// Instruction is squashed in the ROB
178        RecoverInst,             /// Is a recover instruction
179        BlockingInst,            /// Is a blocking instruction
180        ThreadsyncWait,          /// Is a thread synchronization instruction
181        SerializeBefore,         /// Needs to serialize on
182                                 /// instructions ahead of it
183        SerializeAfter,          /// Needs to serialize instructions behind it
184        SerializeHandled,        /// Serialization has been handled
185        NumStatus
186    };
187
188    /** The status of this BaseDynInst.  Several bits can be set. */
189    std::bitset<NumStatus> status;
190
191    /** The thread this instruction is from. */
192    ThreadID threadNumber;
193
194    /** data address space ID, for loads & stores. */
195    short asid;
196
197    /** How many source registers are ready. */
198    unsigned readyRegs;
199
200    /** Pointer to the Impl's CPU object. */
201    ImplCPU *cpu;
202
203    /** Pointer to the thread state. */
204    ImplState *thread;
205
206    /** The kind of fault this instruction has generated. */
207    Fault fault;
208
209    /** Pointer to the data for the memory access. */
210    uint8_t *memData;
211
212    /** The effective virtual address (lds & stores only). */
213    Addr effAddr;
214
215    /** Is the effective virtual address valid. */
216    bool effAddrValid;
217
218    /** The effective physical address. */
219    Addr physEffAddr;
220
221    /** Effective virtual address for a copy source. */
222    Addr copySrcEffAddr;
223
224    /** Effective physical address for a copy source. */
225    Addr copySrcPhysEffAddr;
226
227    /** The memory request flags (from translation). */
228    unsigned memReqFlags;
229
230    union Result {
231        uint64_t integer;
232//        float fp;
233        double dbl;
234    };
235
236    /** The result of the instruction; assumes for now that there's only one
237     *  destination register.
238     */
239    Result instResult;
240
241    /** Records changes to result? */
242    bool recordResult;
243
244    /** PC of this instruction. */
245    Addr PC;
246
247    /** Micro PC of this instruction. */
248    Addr microPC;
249
250    /** Did this instruction execute, or is it predicated false */
251    bool predicate;
252
253  protected:
254    /** Next non-speculative PC.  It is not filled in at fetch, but rather
255     *  once the target of the branch is truly known (either decode or
256     *  execute).
257     */
258    Addr nextPC;
259
260    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
261    Addr nextNPC;
262
263    /** Next non-speculative micro PC. */
264    Addr nextMicroPC;
265
266    /** Predicted next PC. */
267    Addr predPC;
268
269    /** Predicted next NPC. */
270    Addr predNPC;
271
272    /** Predicted next microPC */
273    Addr predMicroPC;
274
275    /** If this is a branch that was predicted taken */
276    bool predTaken;
277
278  public:
279
280#ifdef DEBUG
281    void dumpSNList();
282#endif
283
284    /** Whether or not the source register is ready.
285     *  @todo: Not sure this should be here vs the derived class.
286     */
287    bool _readySrcRegIdx[MaxInstSrcRegs];
288
289  protected:
290    /** Flattened register index of the destination registers of this
291     *  instruction.
292     */
293    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
294
295    /** Flattened register index of the source registers of this
296     *  instruction.
297     */
298    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
299
300    /** Physical register index of the destination registers of this
301     *  instruction.
302     */
303    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
304
305    /** Physical register index of the source registers of this
306     *  instruction.
307     */
308    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
309
310    /** Physical register index of the previous producers of the
311     *  architected destinations.
312     */
313    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
314
315  public:
316
317    /** Returns the physical register index of the i'th destination
318     *  register.
319     */
320    PhysRegIndex renamedDestRegIdx(int idx) const
321    {
322        return _destRegIdx[idx];
323    }
324
325    /** Returns the physical register index of the i'th source register. */
326    PhysRegIndex renamedSrcRegIdx(int idx) const
327    {
328        return _srcRegIdx[idx];
329    }
330
331    /** Returns the flattened register index of the i'th destination
332     *  register.
333     */
334    TheISA::RegIndex flattenedDestRegIdx(int idx) const
335    {
336        return _flatDestRegIdx[idx];
337    }
338
339    /** Returns the flattened register index of the i'th source register */
340    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
341    {
342        return _flatSrcRegIdx[idx];
343    }
344
345    /** Returns the physical register index of the previous physical register
346     *  that remapped to the same logical register index.
347     */
348    PhysRegIndex prevDestRegIdx(int idx) const
349    {
350        return _prevDestRegIdx[idx];
351    }
352
353    /** Renames a destination register to a physical register.  Also records
354     *  the previous physical register that the logical register mapped to.
355     */
356    void renameDestReg(int idx,
357                       PhysRegIndex renamed_dest,
358                       PhysRegIndex previous_rename)
359    {
360        _destRegIdx[idx] = renamed_dest;
361        _prevDestRegIdx[idx] = previous_rename;
362    }
363
364    /** Renames a source logical register to the physical register which
365     *  has/will produce that logical register's result.
366     *  @todo: add in whether or not the source register is ready.
367     */
368    void renameSrcReg(int idx, PhysRegIndex renamed_src)
369    {
370        _srcRegIdx[idx] = renamed_src;
371    }
372
373    /** Flattens a source architectural register index into a logical index.
374     */
375    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
376    {
377        _flatSrcRegIdx[idx] = flattened_src;
378    }
379
380    /** Flattens a destination architectural register index into a logical
381     * index.
382     */
383    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
384    {
385        _flatDestRegIdx[idx] = flattened_dest;
386    }
387    /** BaseDynInst constructor given a binary instruction.
388     *  @param staticInst A StaticInstPtr to the underlying instruction.
389     *  @param PC The PC of the instruction.
390     *  @param pred_PC The predicted next PC.
391     *  @param pred_NPC The predicted next NPC.
392     *  @param seq_num The sequence number of the instruction.
393     *  @param cpu Pointer to the instruction's CPU.
394     */
395    BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
396            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
397            InstSeqNum seq_num, ImplCPU *cpu);
398
399    /** BaseDynInst constructor given a binary instruction.
400     *  @param inst The binary instruction.
401     *  @param PC The PC of the instruction.
402     *  @param pred_PC The predicted next PC.
403     *  @param pred_NPC The predicted next NPC.
404     *  @param seq_num The sequence number of the instruction.
405     *  @param cpu Pointer to the instruction's CPU.
406     */
407    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
408            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
409            InstSeqNum seq_num, ImplCPU *cpu);
410
411    /** BaseDynInst constructor given a StaticInst pointer.
412     *  @param _staticInst The StaticInst for this BaseDynInst.
413     */
414    BaseDynInst(StaticInstPtr &_staticInst);
415
416    /** BaseDynInst destructor. */
417    ~BaseDynInst();
418
419  private:
420    /** Function to initialize variables in the constructors. */
421    void initVars();
422
423  public:
424    /** Dumps out contents of this BaseDynInst. */
425    void dump();
426
427    /** Dumps out contents of this BaseDynInst into given string. */
428    void dump(std::string &outstring);
429
430    /** Read this CPU's ID. */
431    int cpuId() { return cpu->cpuId(); }
432
433    /** Read this context's system-wide ID **/
434    int contextId() { return thread->contextId(); }
435
436    /** Returns the fault type. */
437    Fault getFault() { return fault; }
438
439    /** Checks whether or not this instruction has had its branch target
440     *  calculated yet.  For now it is not utilized and is hacked to be
441     *  always false.
442     *  @todo: Actually use this instruction.
443     */
444    bool doneTargCalc() { return false; }
445
446    /** Returns the next PC.  This could be the speculative next PC if it is
447     *  called prior to the actual branch target being calculated.
448     */
449    Addr readNextPC() { return nextPC; }
450
451    /** Returns the next NPC.  This could be the speculative next NPC if it is
452     *  called prior to the actual branch target being calculated.
453     */
454    Addr readNextNPC()
455    {
456#if ISA_HAS_DELAY_SLOT
457        return nextNPC;
458#else
459        return nextPC + sizeof(TheISA::MachInst);
460#endif
461    }
462
463    Addr readNextMicroPC()
464    {
465        return nextMicroPC;
466    }
467
468    /** Set the predicted target of this current instruction. */
469    void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
470            Addr predicted_MicroPC)
471    {
472        predPC = predicted_PC;
473        predNPC = predicted_NPC;
474        predMicroPC = predicted_MicroPC;
475    }
476
477    /** Returns the predicted PC immediately after the branch. */
478    Addr readPredPC() { return predPC; }
479
480    /** Returns the predicted PC two instructions after the branch */
481    Addr readPredNPC() { return predNPC; }
482
483    /** Returns the predicted micro PC after the branch */
484    Addr readPredMicroPC() { return predMicroPC; }
485
486    /** Returns whether the instruction was predicted taken or not. */
487    bool readPredTaken()
488    {
489        return predTaken;
490    }
491
492    void setPredTaken(bool predicted_taken)
493    {
494        predTaken = predicted_taken;
495    }
496
497    /** Returns whether the instruction mispredicted. */
498    bool mispredicted()
499    {
500        return readPredPC() != readNextPC() ||
501            readPredNPC() != readNextNPC() ||
502            readPredMicroPC() != readNextMicroPC();
503    }
504
505    //
506    //  Instruction types.  Forward checks to StaticInst object.
507    //
508    bool isNop()          const { return staticInst->isNop(); }
509    bool isMemRef()       const { return staticInst->isMemRef(); }
510    bool isLoad()         const { return staticInst->isLoad(); }
511    bool isStore()        const { return staticInst->isStore(); }
512    bool isStoreConditional() const
513    { return staticInst->isStoreConditional(); }
514    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
515    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
516    bool isCopy()         const { return staticInst->isCopy(); }
517    bool isInteger()      const { return staticInst->isInteger(); }
518    bool isFloating()     const { return staticInst->isFloating(); }
519    bool isControl()      const { return staticInst->isControl(); }
520    bool isCall()         const { return staticInst->isCall(); }
521    bool isReturn()       const { return staticInst->isReturn(); }
522    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
523    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
524    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
525    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
526    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
527    bool isThreadSync()   const { return staticInst->isThreadSync(); }
528    bool isSerializing()  const { return staticInst->isSerializing(); }
529    bool isSerializeBefore() const
530    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
531    bool isSerializeAfter() const
532    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
533    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
534    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
535    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
536    bool isQuiesce() const { return staticInst->isQuiesce(); }
537    bool isIprAccess() const { return staticInst->isIprAccess(); }
538    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
539    bool isSyscall() const { return staticInst->isSyscall(); }
540    bool isMacroop() const { return staticInst->isMacroop(); }
541    bool isMicroop() const { return staticInst->isMicroop(); }
542    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
543    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
544    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
545    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
546
547    /** Temporarily sets this instruction as a serialize before instruction. */
548    void setSerializeBefore() { status.set(SerializeBefore); }
549
550    /** Clears the serializeBefore part of this instruction. */
551    void clearSerializeBefore() { status.reset(SerializeBefore); }
552
553    /** Checks if this serializeBefore is only temporarily set. */
554    bool isTempSerializeBefore() { return status[SerializeBefore]; }
555
556    /** Temporarily sets this instruction as a serialize after instruction. */
557    void setSerializeAfter() { status.set(SerializeAfter); }
558
559    /** Clears the serializeAfter part of this instruction.*/
560    void clearSerializeAfter() { status.reset(SerializeAfter); }
561
562    /** Checks if this serializeAfter is only temporarily set. */
563    bool isTempSerializeAfter() { return status[SerializeAfter]; }
564
565    /** Sets the serialization part of this instruction as handled. */
566    void setSerializeHandled() { status.set(SerializeHandled); }
567
568    /** Checks if the serialization part of this instruction has been
569     *  handled.  This does not apply to the temporary serializing
570     *  state; it only applies to this instruction's own permanent
571     *  serializing state.
572     */
573    bool isSerializeHandled() { return status[SerializeHandled]; }
574
575    /** Returns the opclass of this instruction. */
576    OpClass opClass() const { return staticInst->opClass(); }
577
578    /** Returns the branch target address. */
579    Addr branchTarget() const { return staticInst->branchTarget(PC); }
580
581    /** Returns the number of source registers. */
582    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
583
584    /** Returns the number of destination registers. */
585    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
586
587    // the following are used to track physical register usage
588    // for machines with separate int & FP reg files
589    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
590    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
591
592    /** Returns the logical register index of the i'th destination register. */
593    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
594
595    /** Returns the logical register index of the i'th source register. */
596    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
597
598    /** Returns the result of an integer instruction. */
599    uint64_t readIntResult() { return instResult.integer; }
600
601    /** Returns the result of a floating point instruction. */
602    float readFloatResult() { return (float)instResult.dbl; }
603
604    /** Returns the result of a floating point (double) instruction. */
605    double readDoubleResult() { return instResult.dbl; }
606
607    /** Records an integer register being set to a value. */
608    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
609    {
610        if (recordResult)
611            instResult.integer = val;
612    }
613
614    /** Records an fp register being set to a value. */
615    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
616                            int width)
617    {
618        if (recordResult) {
619            if (width == 32)
620                instResult.dbl = (double)val;
621            else if (width == 64)
622                instResult.dbl = val;
623            else
624                panic("Unsupported width!");
625        }
626    }
627
628    /** Records an fp register being set to a value. */
629    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
630    {
631        if (recordResult)
632            instResult.dbl = (double)val;
633    }
634
635    /** Records an fp register being set to an integer value. */
636    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
637                                int width)
638    {
639        if (recordResult)
640            instResult.integer = val;
641    }
642
643    /** Records an fp register being set to an integer value. */
644    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
645    {
646        if (recordResult)
647            instResult.integer = val;
648    }
649
650    /** Records that one of the source registers is ready. */
651    void markSrcRegReady();
652
653    /** Marks a specific register as ready. */
654    void markSrcRegReady(RegIndex src_idx);
655
656    /** Returns if a source register is ready. */
657    bool isReadySrcRegIdx(int idx) const
658    {
659        return this->_readySrcRegIdx[idx];
660    }
661
662    /** Sets this instruction as completed. */
663    void setCompleted() { status.set(Completed); }
664
665    /** Returns whether or not this instruction is completed. */
666    bool isCompleted() const { return status[Completed]; }
667
668    /** Marks the result as ready. */
669    void setResultReady() { status.set(ResultReady); }
670
671    /** Returns whether or not the result is ready. */
672    bool isResultReady() const { return status[ResultReady]; }
673
674    /** Sets this instruction as ready to issue. */
675    void setCanIssue() { status.set(CanIssue); }
676
677    /** Returns whether or not this instruction is ready to issue. */
678    bool readyToIssue() const { return status[CanIssue]; }
679
680    /** Clears this instruction being able to issue. */
681    void clearCanIssue() { status.reset(CanIssue); }
682
683    /** Sets this instruction as issued from the IQ. */
684    void setIssued() { status.set(Issued); }
685
686    /** Returns whether or not this instruction has issued. */
687    bool isIssued() const { return status[Issued]; }
688
689    /** Clears this instruction as being issued. */
690    void clearIssued() { status.reset(Issued); }
691
692    /** Sets this instruction as executed. */
693    void setExecuted() { status.set(Executed); }
694
695    /** Returns whether or not this instruction has executed. */
696    bool isExecuted() const { return status[Executed]; }
697
698    /** Sets this instruction as ready to commit. */
699    void setCanCommit() { status.set(CanCommit); }
700
701    /** Clears this instruction as being ready to commit. */
702    void clearCanCommit() { status.reset(CanCommit); }
703
704    /** Returns whether or not this instruction is ready to commit. */
705    bool readyToCommit() const { return status[CanCommit]; }
706
707    void setAtCommit() { status.set(AtCommit); }
708
709    bool isAtCommit() { return status[AtCommit]; }
710
711    /** Sets this instruction as committed. */
712    void setCommitted() { status.set(Committed); }
713
714    /** Returns whether or not this instruction is committed. */
715    bool isCommitted() const { return status[Committed]; }
716
717    /** Sets this instruction as squashed. */
718    void setSquashed() { status.set(Squashed); }
719
720    /** Returns whether or not this instruction is squashed. */
721    bool isSquashed() const { return status[Squashed]; }
722
723    //Instruction Queue Entry
724    //-----------------------
725    /** Sets this instruction as a entry the IQ. */
726    void setInIQ() { status.set(IqEntry); }
727
728    /** Sets this instruction as a entry the IQ. */
729    void clearInIQ() { status.reset(IqEntry); }
730
731    /** Returns whether or not this instruction has issued. */
732    bool isInIQ() const { return status[IqEntry]; }
733
734    /** Sets this instruction as squashed in the IQ. */
735    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
736
737    /** Returns whether or not this instruction is squashed in the IQ. */
738    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
739
740
741    //Load / Store Queue Functions
742    //-----------------------
743    /** Sets this instruction as a entry the LSQ. */
744    void setInLSQ() { status.set(LsqEntry); }
745
746    /** Sets this instruction as a entry the LSQ. */
747    void removeInLSQ() { status.reset(LsqEntry); }
748
749    /** Returns whether or not this instruction is in the LSQ. */
750    bool isInLSQ() const { return status[LsqEntry]; }
751
752    /** Sets this instruction as squashed in the LSQ. */
753    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
754
755    /** Returns whether or not this instruction is squashed in the LSQ. */
756    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
757
758
759    //Reorder Buffer Functions
760    //-----------------------
761    /** Sets this instruction as a entry the ROB. */
762    void setInROB() { status.set(RobEntry); }
763
764    /** Sets this instruction as a entry the ROB. */
765    void clearInROB() { status.reset(RobEntry); }
766
767    /** Returns whether or not this instruction is in the ROB. */
768    bool isInROB() const { return status[RobEntry]; }
769
770    /** Sets this instruction as squashed in the ROB. */
771    void setSquashedInROB() { status.set(SquashedInROB); }
772
773    /** Returns whether or not this instruction is squashed in the ROB. */
774    bool isSquashedInROB() const { return status[SquashedInROB]; }
775
776    /** Read the PC of this instruction. */
777    const Addr readPC() const { return PC; }
778
779    /**Read the micro PC of this instruction. */
780    const Addr readMicroPC() const { return microPC; }
781
782    /** Set the next PC of this instruction (its actual target). */
783    void setNextPC(Addr val)
784    {
785        nextPC = val;
786    }
787
788    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
789    void setNextNPC(Addr val)
790    {
791#if ISA_HAS_DELAY_SLOT
792        nextNPC = val;
793#endif
794    }
795
796    void setNextMicroPC(Addr val)
797    {
798        nextMicroPC = val;
799    }
800
801    bool readPredicate()
802    {
803        return predicate;
804    }
805
806    void setPredicate(bool val)
807    {
808        predicate = val;
809
810        if (traceData) {
811            traceData->setPredicate(val);
812        }
813    }
814
815    /** Sets the ASID. */
816    void setASID(short addr_space_id) { asid = addr_space_id; }
817
818    /** Sets the thread id. */
819    void setTid(ThreadID tid) { threadNumber = tid; }
820
821    /** Sets the pointer to the thread state. */
822    void setThreadState(ImplState *state) { thread = state; }
823
824    /** Returns the thread context. */
825    ThreadContext *tcBase() { return thread->getTC(); }
826
827  private:
828    /** Instruction effective address.
829     *  @todo: Consider if this is necessary or not.
830     */
831    Addr instEffAddr;
832
833    /** Whether or not the effective address calculation is completed.
834     *  @todo: Consider if this is necessary or not.
835     */
836    bool eaCalcDone;
837
838    /** Is this instruction's memory access uncacheable. */
839    bool isUncacheable;
840
841    /** Has this instruction generated a memory request. */
842    bool reqMade;
843
844  public:
845    /** Sets the effective address. */
846    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
847
848    /** Returns the effective address. */
849    const Addr &getEA() const { return instEffAddr; }
850
851    /** Returns whether or not the eff. addr. calculation has been completed. */
852    bool doneEACalc() { return eaCalcDone; }
853
854    /** Returns whether or not the eff. addr. source registers are ready. */
855    bool eaSrcsReady();
856
857    /** Whether or not the memory operation is done. */
858    bool memOpDone;
859
860    /** Is this instruction's memory access uncacheable. */
861    bool uncacheable() { return isUncacheable; }
862
863    /** Has this instruction generated a memory request. */
864    bool hasRequest() { return reqMade; }
865
866  public:
867    /** Load queue index. */
868    int16_t lqIdx;
869
870    /** Store queue index. */
871    int16_t sqIdx;
872
873    /** Iterator pointing to this BaseDynInst in the list of all insts. */
874    ListIt instListIt;
875
876    /** Returns iterator to this instruction in the list of all insts. */
877    ListIt &getInstListIt() { return instListIt; }
878
879    /** Sets iterator for this instruction in the list of all insts. */
880    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
881
882  public:
883    /** Returns the number of consecutive store conditional failures. */
884    unsigned readStCondFailures()
885    { return thread->storeCondFailures; }
886
887    /** Sets the number of consecutive store conditional failures. */
888    void setStCondFailures(unsigned sc_failures)
889    { thread->storeCondFailures = sc_failures; }
890};
891
892template<class Impl>
893Fault
894BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
895                             unsigned size, unsigned flags)
896{
897    reqMade = true;
898    Request *req = new Request(asid, addr, size, flags, this->PC,
899                               thread->contextId(), threadNumber);
900
901    Request *sreqLow = NULL;
902    Request *sreqHigh = NULL;
903
904    // Only split the request if the ISA supports unaligned accesses.
905    if (TheISA::HasUnalignedMemAcc) {
906        splitRequest(req, sreqLow, sreqHigh);
907    }
908    initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
909
910    if (fault == NoFault) {
911        effAddr = req->getVaddr();
912        effAddrValid = true;
913        fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
914    } else {
915        // Commit will have to clean up whatever happened.  Set this
916        // instruction as executed.
917        this->setExecuted();
918    }
919
920    if (fault != NoFault) {
921        // Return a fixed value to keep simulation deterministic even
922        // along misspeculated paths.
923        bzero(data, size);
924    }
925
926    if (traceData) {
927        traceData->setAddr(addr);
928    }
929
930    return fault;
931}
932
933template<class Impl>
934template<class T>
935inline Fault
936BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
937{
938    Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
939
940    data = TheISA::gtoh(data);
941
942    if (traceData) {
943        traceData->setData(data);
944    }
945
946    return fault;
947}
948
949template<class Impl>
950Fault
951BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
952                              Addr addr, unsigned flags, uint64_t *res)
953{
954    if (traceData) {
955        traceData->setAddr(addr);
956    }
957
958    reqMade = true;
959    Request *req = new Request(asid, addr, size, flags, this->PC,
960                               thread->contextId(), threadNumber);
961
962    Request *sreqLow = NULL;
963    Request *sreqHigh = NULL;
964
965    // Only split the request if the ISA supports unaligned accesses.
966    if (TheISA::HasUnalignedMemAcc) {
967        splitRequest(req, sreqLow, sreqHigh);
968    }
969    initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
970
971    if (fault == NoFault) {
972        effAddr = req->getVaddr();
973        effAddrValid = true;
974        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
975    }
976
977    return fault;
978}
979
980template<class Impl>
981template<class T>
982inline Fault
983BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
984{
985    if (traceData) {
986        traceData->setData(data);
987    }
988    data = TheISA::htog(data);
989    return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
990}
991
992template<class Impl>
993inline void
994BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
995                                RequestPtr &sreqHigh)
996{
997    // Check to see if the request crosses the next level block boundary.
998    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
999    Addr addr = req->getVaddr();
1000    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
1001    assert(split_addr <= addr || split_addr - addr < block_size);
1002
1003    // Spans two blocks.
1004    if (split_addr > addr) {
1005        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1006    }
1007}
1008
1009template<class Impl>
1010inline void
1011BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1012                                       RequestPtr sreqHigh, uint64_t *res,
1013                                       BaseTLB::Mode mode)
1014{
1015    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1016        WholeTranslationState *state =
1017            new WholeTranslationState(req, NULL, res, mode);
1018
1019        // One translation if the request isn't split.
1020        DataTranslation<BaseDynInst<Impl> > *trans =
1021            new DataTranslation<BaseDynInst<Impl> >(this, state);
1022        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1023    } else {
1024        WholeTranslationState *state =
1025            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1026
1027        // Two translations when the request is split.
1028        DataTranslation<BaseDynInst<Impl> > *stransLow =
1029            new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1030        DataTranslation<BaseDynInst<Impl> > *stransHigh =
1031            new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1032
1033        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1034        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1035    }
1036}
1037
1038template<class Impl>
1039inline void
1040BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1041{
1042    fault = state->getFault();
1043
1044    if (state->isUncacheable())
1045        isUncacheable = true;
1046
1047    if (fault == NoFault) {
1048        physEffAddr = state->getPaddr();
1049        memReqFlags = state->getFlags();
1050
1051        if (state->mainReq->isCondSwap()) {
1052            assert(state->res);
1053            state->mainReq->setExtraData(*state->res);
1054        }
1055
1056    } else {
1057        state->deleteReqs();
1058    }
1059    delete state;
1060}
1061
1062#endif // __CPU_BASE_DYN_INST_HH__
1063