base_dyn_inst.hh revision 7577
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 *          Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/system.hh"
53#include "sim/tlb.hh"
54
55/**
56 * @file
57 * Defines a dynamic instruction context.
58 */
59
60// Forward declaration.
61class StaticInstPtr;
62
63template <class Impl>
64class BaseDynInst : public FastAlloc, public RefCounted
65{
66  public:
67    // Typedef for the CPU.
68    typedef typename Impl::CPUType ImplCPU;
69    typedef typename ImplCPU::ImplState ImplState;
70
71    // Logical register index type.
72    typedef TheISA::RegIndex RegIndex;
73    // Integer register type.
74    typedef TheISA::IntReg IntReg;
75    // Floating point register type.
76    typedef TheISA::FloatReg FloatReg;
77
78    // The DynInstPtr type.
79    typedef typename Impl::DynInstPtr DynInstPtr;
80
81    // The list of instructions iterator type.
82    typedef typename std::list<DynInstPtr>::iterator ListIt;
83
84    enum {
85        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
86        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
87    };
88
89    /** The StaticInst used by this BaseDynInst. */
90    StaticInstPtr staticInst;
91
92    ////////////////////////////////////////////
93    //
94    // INSTRUCTION EXECUTION
95    //
96    ////////////////////////////////////////////
97    /** InstRecord that tracks this instructions. */
98    Trace::InstRecord *traceData;
99
100    void demapPage(Addr vaddr, uint64_t asn)
101    {
102        cpu->demapPage(vaddr, asn);
103    }
104    void demapInstPage(Addr vaddr, uint64_t asn)
105    {
106        cpu->demapPage(vaddr, asn);
107    }
108    void demapDataPage(Addr vaddr, uint64_t asn)
109    {
110        cpu->demapPage(vaddr, asn);
111    }
112
113    /**
114     * Does a read to a given address.
115     * @param addr The address to read.
116     * @param data The read's data is written into this parameter.
117     * @param flags The request's flags.
118     * @return Returns any fault due to the read.
119     */
120    template <class T>
121    Fault read(Addr addr, T &data, unsigned flags);
122
123    Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
124
125    /**
126     * Does a write to a given address.
127     * @param data The data to be written.
128     * @param addr The address to write to.
129     * @param flags The request's flags.
130     * @param res The result of the write (for load locked/store conditionals).
131     * @return Returns any fault due to the write.
132     */
133    template <class T>
134    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
135
136    Fault writeBytes(uint8_t *data, unsigned size,
137                     Addr addr, unsigned flags, uint64_t *res);
138
139    /** Splits a request in two if it crosses a dcache block. */
140    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
141                      RequestPtr &sreqHigh);
142
143    /** Initiate a DTB address translation. */
144    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
145                             RequestPtr sreqHigh, uint64_t *res,
146                             BaseTLB::Mode mode);
147
148    /** Finish a DTB address translation. */
149    void finishTranslation(WholeTranslationState *state);
150
151    void prefetch(Addr addr, unsigned flags);
152    void writeHint(Addr addr, int size, unsigned flags);
153    Fault copySrcTranslate(Addr src);
154    Fault copy(Addr dest);
155
156    /** @todo: Consider making this private. */
157  public:
158    /** The sequence number of the instruction. */
159    InstSeqNum seqNum;
160
161    enum Status {
162        IqEntry,                 /// Instruction is in the IQ
163        RobEntry,                /// Instruction is in the ROB
164        LsqEntry,                /// Instruction is in the LSQ
165        Completed,               /// Instruction has completed
166        ResultReady,             /// Instruction has its result
167        CanIssue,                /// Instruction can issue and execute
168        Issued,                  /// Instruction has issued
169        Executed,                /// Instruction has executed
170        CanCommit,               /// Instruction can commit
171        AtCommit,                /// Instruction has reached commit
172        Committed,               /// Instruction has committed
173        Squashed,                /// Instruction is squashed
174        SquashedInIQ,            /// Instruction is squashed in the IQ
175        SquashedInLSQ,           /// Instruction is squashed in the LSQ
176        SquashedInROB,           /// Instruction is squashed in the ROB
177        RecoverInst,             /// Is a recover instruction
178        BlockingInst,            /// Is a blocking instruction
179        ThreadsyncWait,          /// Is a thread synchronization instruction
180        SerializeBefore,         /// Needs to serialize on
181                                 /// instructions ahead of it
182        SerializeAfter,          /// Needs to serialize instructions behind it
183        SerializeHandled,        /// Serialization has been handled
184        NumStatus
185    };
186
187    /** The status of this BaseDynInst.  Several bits can be set. */
188    std::bitset<NumStatus> status;
189
190    /** The thread this instruction is from. */
191    ThreadID threadNumber;
192
193    /** data address space ID, for loads & stores. */
194    short asid;
195
196    /** How many source registers are ready. */
197    unsigned readyRegs;
198
199    /** Pointer to the Impl's CPU object. */
200    ImplCPU *cpu;
201
202    /** Pointer to the thread state. */
203    ImplState *thread;
204
205    /** The kind of fault this instruction has generated. */
206    Fault fault;
207
208    /** Pointer to the data for the memory access. */
209    uint8_t *memData;
210
211    /** The effective virtual address (lds & stores only). */
212    Addr effAddr;
213
214    /** Is the effective virtual address valid. */
215    bool effAddrValid;
216
217    /** The effective physical address. */
218    Addr physEffAddr;
219
220    /** Effective virtual address for a copy source. */
221    Addr copySrcEffAddr;
222
223    /** Effective physical address for a copy source. */
224    Addr copySrcPhysEffAddr;
225
226    /** The memory request flags (from translation). */
227    unsigned memReqFlags;
228
229    union Result {
230        uint64_t integer;
231//        float fp;
232        double dbl;
233    };
234
235    /** The result of the instruction; assumes for now that there's only one
236     *  destination register.
237     */
238    Result instResult;
239
240    /** Records changes to result? */
241    bool recordResult;
242
243    /** PC of this instruction. */
244    Addr PC;
245
246    /** Micro PC of this instruction. */
247    Addr microPC;
248
249  protected:
250    /** Next non-speculative PC.  It is not filled in at fetch, but rather
251     *  once the target of the branch is truly known (either decode or
252     *  execute).
253     */
254    Addr nextPC;
255
256    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
257    Addr nextNPC;
258
259    /** Next non-speculative micro PC. */
260    Addr nextMicroPC;
261
262    /** Predicted next PC. */
263    Addr predPC;
264
265    /** Predicted next NPC. */
266    Addr predNPC;
267
268    /** Predicted next microPC */
269    Addr predMicroPC;
270
271    /** If this is a branch that was predicted taken */
272    bool predTaken;
273
274  public:
275
276#ifdef DEBUG
277    void dumpSNList();
278#endif
279
280    /** Whether or not the source register is ready.
281     *  @todo: Not sure this should be here vs the derived class.
282     */
283    bool _readySrcRegIdx[MaxInstSrcRegs];
284
285  protected:
286    /** Flattened register index of the destination registers of this
287     *  instruction.
288     */
289    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
290
291    /** Flattened register index of the source registers of this
292     *  instruction.
293     */
294    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
295
296    /** Physical register index of the destination registers of this
297     *  instruction.
298     */
299    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
300
301    /** Physical register index of the source registers of this
302     *  instruction.
303     */
304    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
305
306    /** Physical register index of the previous producers of the
307     *  architected destinations.
308     */
309    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
310
311  public:
312
313    /** Returns the physical register index of the i'th destination
314     *  register.
315     */
316    PhysRegIndex renamedDestRegIdx(int idx) const
317    {
318        return _destRegIdx[idx];
319    }
320
321    /** Returns the physical register index of the i'th source register. */
322    PhysRegIndex renamedSrcRegIdx(int idx) const
323    {
324        return _srcRegIdx[idx];
325    }
326
327    /** Returns the flattened register index of the i'th destination
328     *  register.
329     */
330    TheISA::RegIndex flattenedDestRegIdx(int idx) const
331    {
332        return _flatDestRegIdx[idx];
333    }
334
335    /** Returns the flattened register index of the i'th source register */
336    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
337    {
338        return _flatSrcRegIdx[idx];
339    }
340
341    /** Returns the physical register index of the previous physical register
342     *  that remapped to the same logical register index.
343     */
344    PhysRegIndex prevDestRegIdx(int idx) const
345    {
346        return _prevDestRegIdx[idx];
347    }
348
349    /** Renames a destination register to a physical register.  Also records
350     *  the previous physical register that the logical register mapped to.
351     */
352    void renameDestReg(int idx,
353                       PhysRegIndex renamed_dest,
354                       PhysRegIndex previous_rename)
355    {
356        _destRegIdx[idx] = renamed_dest;
357        _prevDestRegIdx[idx] = previous_rename;
358    }
359
360    /** Renames a source logical register to the physical register which
361     *  has/will produce that logical register's result.
362     *  @todo: add in whether or not the source register is ready.
363     */
364    void renameSrcReg(int idx, PhysRegIndex renamed_src)
365    {
366        _srcRegIdx[idx] = renamed_src;
367    }
368
369    /** Flattens a source architectural register index into a logical index.
370     */
371    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
372    {
373        _flatSrcRegIdx[idx] = flattened_src;
374    }
375
376    /** Flattens a destination architectural register index into a logical
377     * index.
378     */
379    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
380    {
381        _flatDestRegIdx[idx] = flattened_dest;
382    }
383    /** BaseDynInst constructor given a binary instruction.
384     *  @param staticInst A StaticInstPtr to the underlying instruction.
385     *  @param PC The PC of the instruction.
386     *  @param pred_PC The predicted next PC.
387     *  @param pred_NPC The predicted next NPC.
388     *  @param seq_num The sequence number of the instruction.
389     *  @param cpu Pointer to the instruction's CPU.
390     */
391    BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
392            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
393            InstSeqNum seq_num, ImplCPU *cpu);
394
395    /** BaseDynInst constructor given a binary instruction.
396     *  @param inst The binary instruction.
397     *  @param PC The PC of the instruction.
398     *  @param pred_PC The predicted next PC.
399     *  @param pred_NPC The predicted next NPC.
400     *  @param seq_num The sequence number of the instruction.
401     *  @param cpu Pointer to the instruction's CPU.
402     */
403    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
404            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
405            InstSeqNum seq_num, ImplCPU *cpu);
406
407    /** BaseDynInst constructor given a StaticInst pointer.
408     *  @param _staticInst The StaticInst for this BaseDynInst.
409     */
410    BaseDynInst(StaticInstPtr &_staticInst);
411
412    /** BaseDynInst destructor. */
413    ~BaseDynInst();
414
415  private:
416    /** Function to initialize variables in the constructors. */
417    void initVars();
418
419  public:
420    /** Dumps out contents of this BaseDynInst. */
421    void dump();
422
423    /** Dumps out contents of this BaseDynInst into given string. */
424    void dump(std::string &outstring);
425
426    /** Read this CPU's ID. */
427    int cpuId() { return cpu->cpuId(); }
428
429    /** Read this context's system-wide ID **/
430    int contextId() { return thread->contextId(); }
431
432    /** Returns the fault type. */
433    Fault getFault() { return fault; }
434
435    /** Checks whether or not this instruction has had its branch target
436     *  calculated yet.  For now it is not utilized and is hacked to be
437     *  always false.
438     *  @todo: Actually use this instruction.
439     */
440    bool doneTargCalc() { return false; }
441
442    /** Returns the next PC.  This could be the speculative next PC if it is
443     *  called prior to the actual branch target being calculated.
444     */
445    Addr readNextPC() { return nextPC; }
446
447    /** Returns the next NPC.  This could be the speculative next NPC if it is
448     *  called prior to the actual branch target being calculated.
449     */
450    Addr readNextNPC()
451    {
452#if ISA_HAS_DELAY_SLOT
453        return nextNPC;
454#else
455        return nextPC + sizeof(TheISA::MachInst);
456#endif
457    }
458
459    Addr readNextMicroPC()
460    {
461        return nextMicroPC;
462    }
463
464    /** Set the predicted target of this current instruction. */
465    void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
466            Addr predicted_MicroPC)
467    {
468        predPC = predicted_PC;
469        predNPC = predicted_NPC;
470        predMicroPC = predicted_MicroPC;
471    }
472
473    /** Returns the predicted PC immediately after the branch. */
474    Addr readPredPC() { return predPC; }
475
476    /** Returns the predicted PC two instructions after the branch */
477    Addr readPredNPC() { return predNPC; }
478
479    /** Returns the predicted micro PC after the branch */
480    Addr readPredMicroPC() { return predMicroPC; }
481
482    /** Returns whether the instruction was predicted taken or not. */
483    bool readPredTaken()
484    {
485        return predTaken;
486    }
487
488    void setPredTaken(bool predicted_taken)
489    {
490        predTaken = predicted_taken;
491    }
492
493    /** Returns whether the instruction mispredicted. */
494    bool mispredicted()
495    {
496        return readPredPC() != readNextPC() ||
497            readPredNPC() != readNextNPC() ||
498            readPredMicroPC() != readNextMicroPC();
499    }
500
501    //
502    //  Instruction types.  Forward checks to StaticInst object.
503    //
504    bool isNop()          const { return staticInst->isNop(); }
505    bool isMemRef()       const { return staticInst->isMemRef(); }
506    bool isLoad()         const { return staticInst->isLoad(); }
507    bool isStore()        const { return staticInst->isStore(); }
508    bool isStoreConditional() const
509    { return staticInst->isStoreConditional(); }
510    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
511    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
512    bool isCopy()         const { return staticInst->isCopy(); }
513    bool isInteger()      const { return staticInst->isInteger(); }
514    bool isFloating()     const { return staticInst->isFloating(); }
515    bool isControl()      const { return staticInst->isControl(); }
516    bool isCall()         const { return staticInst->isCall(); }
517    bool isReturn()       const { return staticInst->isReturn(); }
518    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
519    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
520    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
521    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
522    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
523    bool isThreadSync()   const { return staticInst->isThreadSync(); }
524    bool isSerializing()  const { return staticInst->isSerializing(); }
525    bool isSerializeBefore() const
526    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
527    bool isSerializeAfter() const
528    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
529    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
530    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
531    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
532    bool isQuiesce() const { return staticInst->isQuiesce(); }
533    bool isIprAccess() const { return staticInst->isIprAccess(); }
534    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
535    bool isSyscall() const { return staticInst->isSyscall(); }
536    bool isMacroop() const { return staticInst->isMacroop(); }
537    bool isMicroop() const { return staticInst->isMicroop(); }
538    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
539    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
540    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
541    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
542
543    /** Temporarily sets this instruction as a serialize before instruction. */
544    void setSerializeBefore() { status.set(SerializeBefore); }
545
546    /** Clears the serializeBefore part of this instruction. */
547    void clearSerializeBefore() { status.reset(SerializeBefore); }
548
549    /** Checks if this serializeBefore is only temporarily set. */
550    bool isTempSerializeBefore() { return status[SerializeBefore]; }
551
552    /** Temporarily sets this instruction as a serialize after instruction. */
553    void setSerializeAfter() { status.set(SerializeAfter); }
554
555    /** Clears the serializeAfter part of this instruction.*/
556    void clearSerializeAfter() { status.reset(SerializeAfter); }
557
558    /** Checks if this serializeAfter is only temporarily set. */
559    bool isTempSerializeAfter() { return status[SerializeAfter]; }
560
561    /** Sets the serialization part of this instruction as handled. */
562    void setSerializeHandled() { status.set(SerializeHandled); }
563
564    /** Checks if the serialization part of this instruction has been
565     *  handled.  This does not apply to the temporary serializing
566     *  state; it only applies to this instruction's own permanent
567     *  serializing state.
568     */
569    bool isSerializeHandled() { return status[SerializeHandled]; }
570
571    /** Returns the opclass of this instruction. */
572    OpClass opClass() const { return staticInst->opClass(); }
573
574    /** Returns the branch target address. */
575    Addr branchTarget() const { return staticInst->branchTarget(PC); }
576
577    /** Returns the number of source registers. */
578    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
579
580    /** Returns the number of destination registers. */
581    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
582
583    // the following are used to track physical register usage
584    // for machines with separate int & FP reg files
585    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
586    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
587
588    /** Returns the logical register index of the i'th destination register. */
589    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
590
591    /** Returns the logical register index of the i'th source register. */
592    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
593
594    /** Returns the result of an integer instruction. */
595    uint64_t readIntResult() { return instResult.integer; }
596
597    /** Returns the result of a floating point instruction. */
598    float readFloatResult() { return (float)instResult.dbl; }
599
600    /** Returns the result of a floating point (double) instruction. */
601    double readDoubleResult() { return instResult.dbl; }
602
603    /** Records an integer register being set to a value. */
604    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
605    {
606        if (recordResult)
607            instResult.integer = val;
608    }
609
610    /** Records an fp register being set to a value. */
611    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
612                            int width)
613    {
614        if (recordResult) {
615            if (width == 32)
616                instResult.dbl = (double)val;
617            else if (width == 64)
618                instResult.dbl = val;
619            else
620                panic("Unsupported width!");
621        }
622    }
623
624    /** Records an fp register being set to a value. */
625    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
626    {
627        if (recordResult)
628            instResult.dbl = (double)val;
629    }
630
631    /** Records an fp register being set to an integer value. */
632    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
633                                int width)
634    {
635        if (recordResult)
636            instResult.integer = val;
637    }
638
639    /** Records an fp register being set to an integer value. */
640    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
641    {
642        if (recordResult)
643            instResult.integer = val;
644    }
645
646    /** Records that one of the source registers is ready. */
647    void markSrcRegReady();
648
649    /** Marks a specific register as ready. */
650    void markSrcRegReady(RegIndex src_idx);
651
652    /** Returns if a source register is ready. */
653    bool isReadySrcRegIdx(int idx) const
654    {
655        return this->_readySrcRegIdx[idx];
656    }
657
658    /** Sets this instruction as completed. */
659    void setCompleted() { status.set(Completed); }
660
661    /** Returns whether or not this instruction is completed. */
662    bool isCompleted() const { return status[Completed]; }
663
664    /** Marks the result as ready. */
665    void setResultReady() { status.set(ResultReady); }
666
667    /** Returns whether or not the result is ready. */
668    bool isResultReady() const { return status[ResultReady]; }
669
670    /** Sets this instruction as ready to issue. */
671    void setCanIssue() { status.set(CanIssue); }
672
673    /** Returns whether or not this instruction is ready to issue. */
674    bool readyToIssue() const { return status[CanIssue]; }
675
676    /** Clears this instruction being able to issue. */
677    void clearCanIssue() { status.reset(CanIssue); }
678
679    /** Sets this instruction as issued from the IQ. */
680    void setIssued() { status.set(Issued); }
681
682    /** Returns whether or not this instruction has issued. */
683    bool isIssued() const { return status[Issued]; }
684
685    /** Clears this instruction as being issued. */
686    void clearIssued() { status.reset(Issued); }
687
688    /** Sets this instruction as executed. */
689    void setExecuted() { status.set(Executed); }
690
691    /** Returns whether or not this instruction has executed. */
692    bool isExecuted() const { return status[Executed]; }
693
694    /** Sets this instruction as ready to commit. */
695    void setCanCommit() { status.set(CanCommit); }
696
697    /** Clears this instruction as being ready to commit. */
698    void clearCanCommit() { status.reset(CanCommit); }
699
700    /** Returns whether or not this instruction is ready to commit. */
701    bool readyToCommit() const { return status[CanCommit]; }
702
703    void setAtCommit() { status.set(AtCommit); }
704
705    bool isAtCommit() { return status[AtCommit]; }
706
707    /** Sets this instruction as committed. */
708    void setCommitted() { status.set(Committed); }
709
710    /** Returns whether or not this instruction is committed. */
711    bool isCommitted() const { return status[Committed]; }
712
713    /** Sets this instruction as squashed. */
714    void setSquashed() { status.set(Squashed); }
715
716    /** Returns whether or not this instruction is squashed. */
717    bool isSquashed() const { return status[Squashed]; }
718
719    //Instruction Queue Entry
720    //-----------------------
721    /** Sets this instruction as a entry the IQ. */
722    void setInIQ() { status.set(IqEntry); }
723
724    /** Sets this instruction as a entry the IQ. */
725    void clearInIQ() { status.reset(IqEntry); }
726
727    /** Returns whether or not this instruction has issued. */
728    bool isInIQ() const { return status[IqEntry]; }
729
730    /** Sets this instruction as squashed in the IQ. */
731    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
732
733    /** Returns whether or not this instruction is squashed in the IQ. */
734    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
735
736
737    //Load / Store Queue Functions
738    //-----------------------
739    /** Sets this instruction as a entry the LSQ. */
740    void setInLSQ() { status.set(LsqEntry); }
741
742    /** Sets this instruction as a entry the LSQ. */
743    void removeInLSQ() { status.reset(LsqEntry); }
744
745    /** Returns whether or not this instruction is in the LSQ. */
746    bool isInLSQ() const { return status[LsqEntry]; }
747
748    /** Sets this instruction as squashed in the LSQ. */
749    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
750
751    /** Returns whether or not this instruction is squashed in the LSQ. */
752    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
753
754
755    //Reorder Buffer Functions
756    //-----------------------
757    /** Sets this instruction as a entry the ROB. */
758    void setInROB() { status.set(RobEntry); }
759
760    /** Sets this instruction as a entry the ROB. */
761    void clearInROB() { status.reset(RobEntry); }
762
763    /** Returns whether or not this instruction is in the ROB. */
764    bool isInROB() const { return status[RobEntry]; }
765
766    /** Sets this instruction as squashed in the ROB. */
767    void setSquashedInROB() { status.set(SquashedInROB); }
768
769    /** Returns whether or not this instruction is squashed in the ROB. */
770    bool isSquashedInROB() const { return status[SquashedInROB]; }
771
772    /** Read the PC of this instruction. */
773    const Addr readPC() const { return PC; }
774
775    /**Read the micro PC of this instruction. */
776    const Addr readMicroPC() const { return microPC; }
777
778    /** Set the next PC of this instruction (its actual target). */
779    void setNextPC(Addr val)
780    {
781        nextPC = val;
782    }
783
784    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
785    void setNextNPC(Addr val)
786    {
787#if ISA_HAS_DELAY_SLOT
788        nextNPC = val;
789#endif
790    }
791
792    void setNextMicroPC(Addr val)
793    {
794        nextMicroPC = val;
795    }
796
797    /** Sets the ASID. */
798    void setASID(short addr_space_id) { asid = addr_space_id; }
799
800    /** Sets the thread id. */
801    void setTid(ThreadID tid) { threadNumber = tid; }
802
803    /** Sets the pointer to the thread state. */
804    void setThreadState(ImplState *state) { thread = state; }
805
806    /** Returns the thread context. */
807    ThreadContext *tcBase() { return thread->getTC(); }
808
809  private:
810    /** Instruction effective address.
811     *  @todo: Consider if this is necessary or not.
812     */
813    Addr instEffAddr;
814
815    /** Whether or not the effective address calculation is completed.
816     *  @todo: Consider if this is necessary or not.
817     */
818    bool eaCalcDone;
819
820    /** Is this instruction's memory access uncacheable. */
821    bool isUncacheable;
822
823    /** Has this instruction generated a memory request. */
824    bool reqMade;
825
826  public:
827    /** Sets the effective address. */
828    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
829
830    /** Returns the effective address. */
831    const Addr &getEA() const { return instEffAddr; }
832
833    /** Returns whether or not the eff. addr. calculation has been completed. */
834    bool doneEACalc() { return eaCalcDone; }
835
836    /** Returns whether or not the eff. addr. source registers are ready. */
837    bool eaSrcsReady();
838
839    /** Whether or not the memory operation is done. */
840    bool memOpDone;
841
842    /** Is this instruction's memory access uncacheable. */
843    bool uncacheable() { return isUncacheable; }
844
845    /** Has this instruction generated a memory request. */
846    bool hasRequest() { return reqMade; }
847
848  public:
849    /** Load queue index. */
850    int16_t lqIdx;
851
852    /** Store queue index. */
853    int16_t sqIdx;
854
855    /** Iterator pointing to this BaseDynInst in the list of all insts. */
856    ListIt instListIt;
857
858    /** Returns iterator to this instruction in the list of all insts. */
859    ListIt &getInstListIt() { return instListIt; }
860
861    /** Sets iterator for this instruction in the list of all insts. */
862    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
863
864  public:
865    /** Returns the number of consecutive store conditional failures. */
866    unsigned readStCondFailures()
867    { return thread->storeCondFailures; }
868
869    /** Sets the number of consecutive store conditional failures. */
870    void setStCondFailures(unsigned sc_failures)
871    { thread->storeCondFailures = sc_failures; }
872};
873
874template<class Impl>
875Fault
876BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
877                             unsigned size, unsigned flags)
878{
879    reqMade = true;
880    Request *req = new Request(asid, addr, size, flags, this->PC,
881                               thread->contextId(), threadNumber);
882
883    Request *sreqLow = NULL;
884    Request *sreqHigh = NULL;
885
886    // Only split the request if the ISA supports unaligned accesses.
887    if (TheISA::HasUnalignedMemAcc) {
888        splitRequest(req, sreqLow, sreqHigh);
889    }
890    initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
891
892    if (fault == NoFault) {
893        effAddr = req->getVaddr();
894        effAddrValid = true;
895        fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
896    } else {
897        // Commit will have to clean up whatever happened.  Set this
898        // instruction as executed.
899        this->setExecuted();
900    }
901
902    if (fault != NoFault) {
903        // Return a fixed value to keep simulation deterministic even
904        // along misspeculated paths.
905        bzero(data, size);
906    }
907
908    if (traceData) {
909        traceData->setAddr(addr);
910    }
911
912    return fault;
913}
914
915template<class Impl>
916template<class T>
917inline Fault
918BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
919{
920    Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
921
922    data = TheISA::gtoh(data);
923
924    if (traceData) {
925        traceData->setData(data);
926    }
927
928    return fault;
929}
930
931template<class Impl>
932Fault
933BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
934                              Addr addr, unsigned flags, uint64_t *res)
935{
936    if (traceData) {
937        traceData->setAddr(addr);
938    }
939
940    reqMade = true;
941    Request *req = new Request(asid, addr, size, flags, this->PC,
942                               thread->contextId(), threadNumber);
943
944    Request *sreqLow = NULL;
945    Request *sreqHigh = NULL;
946
947    // Only split the request if the ISA supports unaligned accesses.
948    if (TheISA::HasUnalignedMemAcc) {
949        splitRequest(req, sreqLow, sreqHigh);
950    }
951    initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
952
953    if (fault == NoFault) {
954        effAddr = req->getVaddr();
955        effAddrValid = true;
956        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
957    }
958
959    return fault;
960}
961
962template<class Impl>
963template<class T>
964inline Fault
965BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
966{
967    if (traceData) {
968        traceData->setData(data);
969    }
970    data = TheISA::htog(data);
971    return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
972}
973
974template<class Impl>
975inline void
976BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
977                                RequestPtr &sreqHigh)
978{
979    // Check to see if the request crosses the next level block boundary.
980    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
981    Addr addr = req->getVaddr();
982    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
983    assert(split_addr <= addr || split_addr - addr < block_size);
984
985    // Spans two blocks.
986    if (split_addr > addr) {
987        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
988    }
989}
990
991template<class Impl>
992inline void
993BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
994                                       RequestPtr sreqHigh, uint64_t *res,
995                                       BaseTLB::Mode mode)
996{
997    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998        WholeTranslationState *state =
999            new WholeTranslationState(req, NULL, res, mode);
1000
1001        // One translation if the request isn't split.
1002        DataTranslation<BaseDynInst<Impl> > *trans =
1003            new DataTranslation<BaseDynInst<Impl> >(this, state);
1004        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1005    } else {
1006        WholeTranslationState *state =
1007            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1008
1009        // Two translations when the request is split.
1010        DataTranslation<BaseDynInst<Impl> > *stransLow =
1011            new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1012        DataTranslation<BaseDynInst<Impl> > *stransHigh =
1013            new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1014
1015        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1016        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1017    }
1018}
1019
1020template<class Impl>
1021inline void
1022BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1023{
1024    fault = state->getFault();
1025
1026    if (state->isUncacheable())
1027        isUncacheable = true;
1028
1029    if (fault == NoFault) {
1030        physEffAddr = state->getPaddr();
1031        memReqFlags = state->getFlags();
1032
1033        if (state->mainReq->isCondSwap()) {
1034            assert(state->res);
1035            state->mainReq->setExtraData(*state->res);
1036        }
1037
1038    } else {
1039        state->deleteReqs();
1040    }
1041    delete state;
1042}
1043
1044#endif // __CPU_BASE_DYN_INST_HH__
1045