base_dyn_inst.hh revision 5714
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61  public:
62    // Typedef for the CPU.
63    typedef typename Impl::CPUType ImplCPU;
64    typedef typename ImplCPU::ImplState ImplState;
65
66    // Logical register index type.
67    typedef TheISA::RegIndex RegIndex;
68    // Integer register type.
69    typedef TheISA::IntReg IntReg;
70    // Floating point register type.
71    typedef TheISA::FloatReg FloatReg;
72
73    // The DynInstPtr type.
74    typedef typename Impl::DynInstPtr DynInstPtr;
75
76    // The list of instructions iterator type.
77    typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79    enum {
80        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
81        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
82    };
83
84    /** The StaticInst used by this BaseDynInst. */
85    StaticInstPtr staticInst;
86
87    ////////////////////////////////////////////
88    //
89    // INSTRUCTION EXECUTION
90    //
91    ////////////////////////////////////////////
92    /** InstRecord that tracks this instructions. */
93    Trace::InstRecord *traceData;
94
95    void demapPage(Addr vaddr, uint64_t asn)
96    {
97        cpu->demapPage(vaddr, asn);
98    }
99    void demapInstPage(Addr vaddr, uint64_t asn)
100    {
101        cpu->demapPage(vaddr, asn);
102    }
103    void demapDataPage(Addr vaddr, uint64_t asn)
104    {
105        cpu->demapPage(vaddr, asn);
106    }
107
108    /**
109     * Does a read to a given address.
110     * @param addr The address to read.
111     * @param data The read's data is written into this parameter.
112     * @param flags The request's flags.
113     * @return Returns any fault due to the read.
114     */
115    template <class T>
116    Fault read(Addr addr, T &data, unsigned flags);
117
118    Fault translateDataReadAddr(Addr vaddr, Addr &paddr,
119            int size, unsigned flags);
120
121    /**
122     * Does a write to a given address.
123     * @param data The data to be written.
124     * @param addr The address to write to.
125     * @param flags The request's flags.
126     * @param res The result of the write (for load locked/store conditionals).
127     * @return Returns any fault due to the write.
128     */
129    template <class T>
130    Fault write(T data, Addr addr, unsigned flags,
131                        uint64_t *res);
132
133    Fault translateDataWriteAddr(Addr vaddr, Addr &paddr,
134            int size, unsigned flags);
135
136    void prefetch(Addr addr, unsigned flags);
137    void writeHint(Addr addr, int size, unsigned flags);
138    Fault copySrcTranslate(Addr src);
139    Fault copy(Addr dest);
140
141    /** @todo: Consider making this private. */
142  public:
143    /** The sequence number of the instruction. */
144    InstSeqNum seqNum;
145
146    enum Status {
147        IqEntry,                 /// Instruction is in the IQ
148        RobEntry,                /// Instruction is in the ROB
149        LsqEntry,                /// Instruction is in the LSQ
150        Completed,               /// Instruction has completed
151        ResultReady,             /// Instruction has its result
152        CanIssue,                /// Instruction can issue and execute
153        Issued,                  /// Instruction has issued
154        Executed,                /// Instruction has executed
155        CanCommit,               /// Instruction can commit
156        AtCommit,                /// Instruction has reached commit
157        Committed,               /// Instruction has committed
158        Squashed,                /// Instruction is squashed
159        SquashedInIQ,            /// Instruction is squashed in the IQ
160        SquashedInLSQ,           /// Instruction is squashed in the LSQ
161        SquashedInROB,           /// Instruction is squashed in the ROB
162        RecoverInst,             /// Is a recover instruction
163        BlockingInst,            /// Is a blocking instruction
164        ThreadsyncWait,          /// Is a thread synchronization instruction
165        SerializeBefore,         /// Needs to serialize on
166                                 /// instructions ahead of it
167        SerializeAfter,          /// Needs to serialize instructions behind it
168        SerializeHandled,        /// Serialization has been handled
169        NumStatus
170    };
171
172    /** The status of this BaseDynInst.  Several bits can be set. */
173    std::bitset<NumStatus> status;
174
175    /** The thread this instruction is from. */
176    short threadNumber;
177
178    /** data address space ID, for loads & stores. */
179    short asid;
180
181    /** How many source registers are ready. */
182    unsigned readyRegs;
183
184    /** Pointer to the Impl's CPU object. */
185    ImplCPU *cpu;
186
187    /** Pointer to the thread state. */
188    ImplState *thread;
189
190    /** The kind of fault this instruction has generated. */
191    Fault fault;
192
193    /** Pointer to the data for the memory access. */
194    uint8_t *memData;
195
196    /** The effective virtual address (lds & stores only). */
197    Addr effAddr;
198
199    /** Is the effective virtual address valid. */
200    bool effAddrValid;
201
202    /** The effective physical address. */
203    Addr physEffAddr;
204
205    /** Effective virtual address for a copy source. */
206    Addr copySrcEffAddr;
207
208    /** Effective physical address for a copy source. */
209    Addr copySrcPhysEffAddr;
210
211    /** The memory request flags (from translation). */
212    unsigned memReqFlags;
213
214    union Result {
215        uint64_t integer;
216//        float fp;
217        double dbl;
218    };
219
220    /** The result of the instruction; assumes for now that there's only one
221     *  destination register.
222     */
223    Result instResult;
224
225    /** Records changes to result? */
226    bool recordResult;
227
228    /** PC of this instruction. */
229    Addr PC;
230
231    /** Micro PC of this instruction. */
232    Addr microPC;
233
234  protected:
235    /** Next non-speculative PC.  It is not filled in at fetch, but rather
236     *  once the target of the branch is truly known (either decode or
237     *  execute).
238     */
239    Addr nextPC;
240
241    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
242    Addr nextNPC;
243
244    /** Next non-speculative micro PC. */
245    Addr nextMicroPC;
246
247    /** Predicted next PC. */
248    Addr predPC;
249
250    /** Predicted next NPC. */
251    Addr predNPC;
252
253    /** Predicted next microPC */
254    Addr predMicroPC;
255
256    /** If this is a branch that was predicted taken */
257    bool predTaken;
258
259  public:
260
261    /** Count of total number of dynamic instructions. */
262    static int instcount;
263
264#ifdef DEBUG
265    void dumpSNList();
266#endif
267
268    /** Whether or not the source register is ready.
269     *  @todo: Not sure this should be here vs the derived class.
270     */
271    bool _readySrcRegIdx[MaxInstSrcRegs];
272
273  protected:
274    /** Flattened register index of the destination registers of this
275     *  instruction.
276     */
277    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
278
279    /** Flattened register index of the source registers of this
280     *  instruction.
281     */
282    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
283
284    /** Physical register index of the destination registers of this
285     *  instruction.
286     */
287    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
288
289    /** Physical register index of the source registers of this
290     *  instruction.
291     */
292    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
293
294    /** Physical register index of the previous producers of the
295     *  architected destinations.
296     */
297    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
298
299  public:
300
301    /** Returns the physical register index of the i'th destination
302     *  register.
303     */
304    PhysRegIndex renamedDestRegIdx(int idx) const
305    {
306        return _destRegIdx[idx];
307    }
308
309    /** Returns the physical register index of the i'th source register. */
310    PhysRegIndex renamedSrcRegIdx(int idx) const
311    {
312        return _srcRegIdx[idx];
313    }
314
315    /** Returns the flattened register index of the i'th destination
316     *  register.
317     */
318    TheISA::RegIndex flattenedDestRegIdx(int idx) const
319    {
320        return _flatDestRegIdx[idx];
321    }
322
323    /** Returns the flattened register index of the i'th source register */
324    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
325    {
326        return _flatSrcRegIdx[idx];
327    }
328
329    /** Returns the physical register index of the previous physical register
330     *  that remapped to the same logical register index.
331     */
332    PhysRegIndex prevDestRegIdx(int idx) const
333    {
334        return _prevDestRegIdx[idx];
335    }
336
337    /** Renames a destination register to a physical register.  Also records
338     *  the previous physical register that the logical register mapped to.
339     */
340    void renameDestReg(int idx,
341                       PhysRegIndex renamed_dest,
342                       PhysRegIndex previous_rename)
343    {
344        _destRegIdx[idx] = renamed_dest;
345        _prevDestRegIdx[idx] = previous_rename;
346    }
347
348    /** Renames a source logical register to the physical register which
349     *  has/will produce that logical register's result.
350     *  @todo: add in whether or not the source register is ready.
351     */
352    void renameSrcReg(int idx, PhysRegIndex renamed_src)
353    {
354        _srcRegIdx[idx] = renamed_src;
355    }
356
357    /** Flattens a source architectural register index into a logical index.
358     */
359    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
360    {
361        _flatSrcRegIdx[idx] = flattened_src;
362    }
363
364    /** Flattens a destination architectural register index into a logical
365     * index.
366     */
367    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
368    {
369        _flatDestRegIdx[idx] = flattened_dest;
370    }
371    /** BaseDynInst constructor given a binary instruction.
372     *  @param staticInst A StaticInstPtr to the underlying instruction.
373     *  @param PC The PC of the instruction.
374     *  @param pred_PC The predicted next PC.
375     *  @param pred_NPC The predicted next NPC.
376     *  @param seq_num The sequence number of the instruction.
377     *  @param cpu Pointer to the instruction's CPU.
378     */
379    BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
380            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
381            InstSeqNum seq_num, ImplCPU *cpu);
382
383    /** BaseDynInst constructor given a binary instruction.
384     *  @param inst The binary instruction.
385     *  @param PC The PC of the instruction.
386     *  @param pred_PC The predicted next PC.
387     *  @param pred_NPC The predicted next NPC.
388     *  @param seq_num The sequence number of the instruction.
389     *  @param cpu Pointer to the instruction's CPU.
390     */
391    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
392            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
393            InstSeqNum seq_num, ImplCPU *cpu);
394
395    /** BaseDynInst constructor given a StaticInst pointer.
396     *  @param _staticInst The StaticInst for this BaseDynInst.
397     */
398    BaseDynInst(StaticInstPtr &_staticInst);
399
400    /** BaseDynInst destructor. */
401    ~BaseDynInst();
402
403  private:
404    /** Function to initialize variables in the constructors. */
405    void initVars();
406
407  public:
408    /** Dumps out contents of this BaseDynInst. */
409    void dump();
410
411    /** Dumps out contents of this BaseDynInst into given string. */
412    void dump(std::string &outstring);
413
414    /** Read this CPU's ID. */
415    int cpuId() { return cpu->cpuId(); }
416
417    /** Read this context's system-wide ID **/
418    int contextId() { return thread->contextId(); }
419
420    /** Returns the fault type. */
421    Fault getFault() { return fault; }
422
423    /** Checks whether or not this instruction has had its branch target
424     *  calculated yet.  For now it is not utilized and is hacked to be
425     *  always false.
426     *  @todo: Actually use this instruction.
427     */
428    bool doneTargCalc() { return false; }
429
430    /** Returns the next PC.  This could be the speculative next PC if it is
431     *  called prior to the actual branch target being calculated.
432     */
433    Addr readNextPC() { return nextPC; }
434
435    /** Returns the next NPC.  This could be the speculative next NPC if it is
436     *  called prior to the actual branch target being calculated.
437     */
438    Addr readNextNPC()
439    {
440#if ISA_HAS_DELAY_SLOT
441        return nextNPC;
442#else
443        return nextPC + sizeof(TheISA::MachInst);
444#endif
445    }
446
447    Addr readNextMicroPC()
448    {
449        return nextMicroPC;
450    }
451
452    /** Set the predicted target of this current instruction. */
453    void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
454            Addr predicted_MicroPC)
455    {
456        predPC = predicted_PC;
457        predNPC = predicted_NPC;
458        predMicroPC = predicted_MicroPC;
459    }
460
461    /** Returns the predicted PC immediately after the branch. */
462    Addr readPredPC() { return predPC; }
463
464    /** Returns the predicted PC two instructions after the branch */
465    Addr readPredNPC() { return predNPC; }
466
467    /** Returns the predicted micro PC after the branch */
468    Addr readPredMicroPC() { return predMicroPC; }
469
470    /** Returns whether the instruction was predicted taken or not. */
471    bool readPredTaken()
472    {
473        return predTaken;
474    }
475
476    void setPredTaken(bool predicted_taken)
477    {
478        predTaken = predicted_taken;
479    }
480
481    /** Returns whether the instruction mispredicted. */
482    bool mispredicted()
483    {
484        return readPredPC() != readNextPC() ||
485            readPredNPC() != readNextNPC() ||
486            readPredMicroPC() != readNextMicroPC();
487    }
488
489    //
490    //  Instruction types.  Forward checks to StaticInst object.
491    //
492    bool isNop()          const { return staticInst->isNop(); }
493    bool isMemRef()       const { return staticInst->isMemRef(); }
494    bool isLoad()         const { return staticInst->isLoad(); }
495    bool isStore()        const { return staticInst->isStore(); }
496    bool isStoreConditional() const
497    { return staticInst->isStoreConditional(); }
498    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
499    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
500    bool isCopy()         const { return staticInst->isCopy(); }
501    bool isInteger()      const { return staticInst->isInteger(); }
502    bool isFloating()     const { return staticInst->isFloating(); }
503    bool isControl()      const { return staticInst->isControl(); }
504    bool isCall()         const { return staticInst->isCall(); }
505    bool isReturn()       const { return staticInst->isReturn(); }
506    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
507    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
508    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
509    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
510    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
511    bool isThreadSync()   const { return staticInst->isThreadSync(); }
512    bool isSerializing()  const { return staticInst->isSerializing(); }
513    bool isSerializeBefore() const
514    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
515    bool isSerializeAfter() const
516    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
517    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
518    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
519    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
520    bool isQuiesce() const { return staticInst->isQuiesce(); }
521    bool isIprAccess() const { return staticInst->isIprAccess(); }
522    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
523    bool isSyscall() const { return staticInst->isSyscall(); }
524    bool isMacroop() const { return staticInst->isMacroop(); }
525    bool isMicroop() const { return staticInst->isMicroop(); }
526    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
527    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
528    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
529    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
530
531    /** Temporarily sets this instruction as a serialize before instruction. */
532    void setSerializeBefore() { status.set(SerializeBefore); }
533
534    /** Clears the serializeBefore part of this instruction. */
535    void clearSerializeBefore() { status.reset(SerializeBefore); }
536
537    /** Checks if this serializeBefore is only temporarily set. */
538    bool isTempSerializeBefore() { return status[SerializeBefore]; }
539
540    /** Temporarily sets this instruction as a serialize after instruction. */
541    void setSerializeAfter() { status.set(SerializeAfter); }
542
543    /** Clears the serializeAfter part of this instruction.*/
544    void clearSerializeAfter() { status.reset(SerializeAfter); }
545
546    /** Checks if this serializeAfter is only temporarily set. */
547    bool isTempSerializeAfter() { return status[SerializeAfter]; }
548
549    /** Sets the serialization part of this instruction as handled. */
550    void setSerializeHandled() { status.set(SerializeHandled); }
551
552    /** Checks if the serialization part of this instruction has been
553     *  handled.  This does not apply to the temporary serializing
554     *  state; it only applies to this instruction's own permanent
555     *  serializing state.
556     */
557    bool isSerializeHandled() { return status[SerializeHandled]; }
558
559    /** Returns the opclass of this instruction. */
560    OpClass opClass() const { return staticInst->opClass(); }
561
562    /** Returns the branch target address. */
563    Addr branchTarget() const { return staticInst->branchTarget(PC); }
564
565    /** Returns the number of source registers. */
566    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
567
568    /** Returns the number of destination registers. */
569    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
570
571    // the following are used to track physical register usage
572    // for machines with separate int & FP reg files
573    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
574    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
575
576    /** Returns the logical register index of the i'th destination register. */
577    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
578
579    /** Returns the logical register index of the i'th source register. */
580    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
581
582    /** Returns the result of an integer instruction. */
583    uint64_t readIntResult() { return instResult.integer; }
584
585    /** Returns the result of a floating point instruction. */
586    float readFloatResult() { return (float)instResult.dbl; }
587
588    /** Returns the result of a floating point (double) instruction. */
589    double readDoubleResult() { return instResult.dbl; }
590
591    /** Records an integer register being set to a value. */
592    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
593    {
594        if (recordResult)
595            instResult.integer = val;
596    }
597
598    /** Records an fp register being set to a value. */
599    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
600                            int width)
601    {
602        if (recordResult) {
603            if (width == 32)
604                instResult.dbl = (double)val;
605            else if (width == 64)
606                instResult.dbl = val;
607            else
608                panic("Unsupported width!");
609        }
610    }
611
612    /** Records an fp register being set to a value. */
613    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
614    {
615        if (recordResult)
616            instResult.dbl = (double)val;
617    }
618
619    /** Records an fp register being set to an integer value. */
620    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
621                                int width)
622    {
623        if (recordResult)
624            instResult.integer = val;
625    }
626
627    /** Records an fp register being set to an integer value. */
628    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
629    {
630        if (recordResult)
631            instResult.integer = val;
632    }
633
634    /** Records that one of the source registers is ready. */
635    void markSrcRegReady();
636
637    /** Marks a specific register as ready. */
638    void markSrcRegReady(RegIndex src_idx);
639
640    /** Returns if a source register is ready. */
641    bool isReadySrcRegIdx(int idx) const
642    {
643        return this->_readySrcRegIdx[idx];
644    }
645
646    /** Sets this instruction as completed. */
647    void setCompleted() { status.set(Completed); }
648
649    /** Returns whether or not this instruction is completed. */
650    bool isCompleted() const { return status[Completed]; }
651
652    /** Marks the result as ready. */
653    void setResultReady() { status.set(ResultReady); }
654
655    /** Returns whether or not the result is ready. */
656    bool isResultReady() const { return status[ResultReady]; }
657
658    /** Sets this instruction as ready to issue. */
659    void setCanIssue() { status.set(CanIssue); }
660
661    /** Returns whether or not this instruction is ready to issue. */
662    bool readyToIssue() const { return status[CanIssue]; }
663
664    /** Clears this instruction being able to issue. */
665    void clearCanIssue() { status.reset(CanIssue); }
666
667    /** Sets this instruction as issued from the IQ. */
668    void setIssued() { status.set(Issued); }
669
670    /** Returns whether or not this instruction has issued. */
671    bool isIssued() const { return status[Issued]; }
672
673    /** Clears this instruction as being issued. */
674    void clearIssued() { status.reset(Issued); }
675
676    /** Sets this instruction as executed. */
677    void setExecuted() { status.set(Executed); }
678
679    /** Returns whether or not this instruction has executed. */
680    bool isExecuted() const { return status[Executed]; }
681
682    /** Sets this instruction as ready to commit. */
683    void setCanCommit() { status.set(CanCommit); }
684
685    /** Clears this instruction as being ready to commit. */
686    void clearCanCommit() { status.reset(CanCommit); }
687
688    /** Returns whether or not this instruction is ready to commit. */
689    bool readyToCommit() const { return status[CanCommit]; }
690
691    void setAtCommit() { status.set(AtCommit); }
692
693    bool isAtCommit() { return status[AtCommit]; }
694
695    /** Sets this instruction as committed. */
696    void setCommitted() { status.set(Committed); }
697
698    /** Returns whether or not this instruction is committed. */
699    bool isCommitted() const { return status[Committed]; }
700
701    /** Sets this instruction as squashed. */
702    void setSquashed() { status.set(Squashed); }
703
704    /** Returns whether or not this instruction is squashed. */
705    bool isSquashed() const { return status[Squashed]; }
706
707    //Instruction Queue Entry
708    //-----------------------
709    /** Sets this instruction as a entry the IQ. */
710    void setInIQ() { status.set(IqEntry); }
711
712    /** Sets this instruction as a entry the IQ. */
713    void clearInIQ() { status.reset(IqEntry); }
714
715    /** Returns whether or not this instruction has issued. */
716    bool isInIQ() const { return status[IqEntry]; }
717
718    /** Sets this instruction as squashed in the IQ. */
719    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
720
721    /** Returns whether or not this instruction is squashed in the IQ. */
722    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
723
724
725    //Load / Store Queue Functions
726    //-----------------------
727    /** Sets this instruction as a entry the LSQ. */
728    void setInLSQ() { status.set(LsqEntry); }
729
730    /** Sets this instruction as a entry the LSQ. */
731    void removeInLSQ() { status.reset(LsqEntry); }
732
733    /** Returns whether or not this instruction is in the LSQ. */
734    bool isInLSQ() const { return status[LsqEntry]; }
735
736    /** Sets this instruction as squashed in the LSQ. */
737    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
738
739    /** Returns whether or not this instruction is squashed in the LSQ. */
740    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
741
742
743    //Reorder Buffer Functions
744    //-----------------------
745    /** Sets this instruction as a entry the ROB. */
746    void setInROB() { status.set(RobEntry); }
747
748    /** Sets this instruction as a entry the ROB. */
749    void clearInROB() { status.reset(RobEntry); }
750
751    /** Returns whether or not this instruction is in the ROB. */
752    bool isInROB() const { return status[RobEntry]; }
753
754    /** Sets this instruction as squashed in the ROB. */
755    void setSquashedInROB() { status.set(SquashedInROB); }
756
757    /** Returns whether or not this instruction is squashed in the ROB. */
758    bool isSquashedInROB() const { return status[SquashedInROB]; }
759
760    /** Read the PC of this instruction. */
761    const Addr readPC() const { return PC; }
762
763    /**Read the micro PC of this instruction. */
764    const Addr readMicroPC() const { return microPC; }
765
766    /** Set the next PC of this instruction (its actual target). */
767    void setNextPC(Addr val)
768    {
769        nextPC = val;
770    }
771
772    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
773    void setNextNPC(Addr val)
774    {
775#if ISA_HAS_DELAY_SLOT
776        nextNPC = val;
777#endif
778    }
779
780    void setNextMicroPC(Addr val)
781    {
782        nextMicroPC = val;
783    }
784
785    /** Sets the ASID. */
786    void setASID(short addr_space_id) { asid = addr_space_id; }
787
788    /** Sets the thread id. */
789    void setTid(unsigned tid) { threadNumber = tid; }
790
791    /** Sets the pointer to the thread state. */
792    void setThreadState(ImplState *state) { thread = state; }
793
794    /** Returns the thread context. */
795    ThreadContext *tcBase() { return thread->getTC(); }
796
797  private:
798    /** Instruction effective address.
799     *  @todo: Consider if this is necessary or not.
800     */
801    Addr instEffAddr;
802
803    /** Whether or not the effective address calculation is completed.
804     *  @todo: Consider if this is necessary or not.
805     */
806    bool eaCalcDone;
807
808    /** Is this instruction's memory access uncacheable. */
809    bool isUncacheable;
810
811    /** Has this instruction generated a memory request. */
812    bool reqMade;
813
814  public:
815    /** Sets the effective address. */
816    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
817
818    /** Returns the effective address. */
819    const Addr &getEA() const { return instEffAddr; }
820
821    /** Returns whether or not the eff. addr. calculation has been completed. */
822    bool doneEACalc() { return eaCalcDone; }
823
824    /** Returns whether or not the eff. addr. source registers are ready. */
825    bool eaSrcsReady();
826
827    /** Whether or not the memory operation is done. */
828    bool memOpDone;
829
830    /** Is this instruction's memory access uncacheable. */
831    bool uncacheable() { return isUncacheable; }
832
833    /** Has this instruction generated a memory request. */
834    bool hasRequest() { return reqMade; }
835
836  public:
837    /** Load queue index. */
838    int16_t lqIdx;
839
840    /** Store queue index. */
841    int16_t sqIdx;
842
843    /** Iterator pointing to this BaseDynInst in the list of all insts. */
844    ListIt instListIt;
845
846    /** Returns iterator to this instruction in the list of all insts. */
847    ListIt &getInstListIt() { return instListIt; }
848
849    /** Sets iterator for this instruction in the list of all insts. */
850    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
851
852  public:
853    /** Returns the number of consecutive store conditional failures. */
854    unsigned readStCondFailures()
855    { return thread->storeCondFailures; }
856
857    /** Sets the number of consecutive store conditional failures. */
858    void setStCondFailures(unsigned sc_failures)
859    { thread->storeCondFailures = sc_failures; }
860};
861
862template<class Impl>
863Fault
864BaseDynInst<Impl>::translateDataReadAddr(Addr vaddr, Addr &paddr,
865        int size, unsigned flags)
866{
867    if (traceData) {
868        traceData->setAddr(vaddr);
869    }
870
871    reqMade = true;
872    Request *req = new Request();
873    req->setVirt(asid, vaddr, size, flags, PC);
874    req->setThreadContext(thread->contextId(), threadNumber);
875
876    fault = cpu->translateDataReadReq(req, thread);
877
878    if (fault == NoFault)
879        paddr = req->getPaddr();
880
881    delete req;
882    return fault;
883}
884
885template<class Impl>
886template<class T>
887inline Fault
888BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
889{
890    reqMade = true;
891    Request *req = new Request();
892    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
893    req->setThreadContext(thread->contextId(), threadNumber);
894
895    fault = cpu->translateDataReadReq(req, thread);
896
897    if (req->isUncacheable())
898        isUncacheable = true;
899
900    if (fault == NoFault) {
901        effAddr = req->getVaddr();
902        effAddrValid = true;
903        physEffAddr = req->getPaddr();
904        memReqFlags = req->getFlags();
905
906#if 0
907        if (cpu->system->memctrl->badaddr(physEffAddr)) {
908            fault = TheISA::genMachineCheckFault();
909            data = (T)-1;
910            this->setExecuted();
911        } else {
912            fault = cpu->read(req, data, lqIdx);
913        }
914#else
915        fault = cpu->read(req, data, lqIdx);
916#endif
917    } else {
918        // Return a fixed value to keep simulation deterministic even
919        // along misspeculated paths.
920        data = (T)-1;
921
922        // Commit will have to clean up whatever happened.  Set this
923        // instruction as executed.
924        this->setExecuted();
925        delete req;
926    }
927
928    if (traceData) {
929        traceData->setAddr(addr);
930        traceData->setData(data);
931    }
932
933    return fault;
934}
935
936template<class Impl>
937Fault
938BaseDynInst<Impl>::translateDataWriteAddr(Addr vaddr, Addr &paddr,
939        int size, unsigned flags)
940{
941    if (traceData) {
942        traceData->setAddr(vaddr);
943    }
944
945    reqMade = true;
946    Request *req = new Request();
947    req->setVirt(asid, vaddr, size, flags, PC);
948    req->setThreadContext(thread->contextId(), threadNumber);
949
950    fault = cpu->translateDataWriteReq(req, thread);
951
952    if (fault == NoFault)
953        paddr = req->getPaddr();
954
955    delete req;
956    return fault;
957}
958
959template<class Impl>
960template<class T>
961inline Fault
962BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
963{
964    if (traceData) {
965        traceData->setAddr(addr);
966        traceData->setData(data);
967    }
968
969    reqMade = true;
970    Request *req = new Request();
971    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
972    req->setThreadContext(thread->contextId(), threadNumber);
973
974    fault = cpu->translateDataWriteReq(req, thread);
975
976    if (req->isUncacheable())
977        isUncacheable = true;
978
979    if (fault == NoFault) {
980        effAddr = req->getVaddr();
981        effAddrValid = true;
982        physEffAddr = req->getPaddr();
983        memReqFlags = req->getFlags();
984
985        if (req->isCondSwap()) {
986            assert(res);
987            req->setExtraData(*res);
988        }
989#if 0
990        if (cpu->system->memctrl->badaddr(physEffAddr)) {
991            fault = TheISA::genMachineCheckFault();
992        } else {
993            fault = cpu->write(req, data, sqIdx);
994        }
995#else
996        fault = cpu->write(req, data, sqIdx);
997#endif
998    } else {
999        delete req;
1000    }
1001
1002    return fault;
1003}
1004
1005#endif // __CPU_BASE_DYN_INST_HH__
1006