base_dyn_inst.hh revision 4032
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61  public:
62    // Typedef for the CPU.
63    typedef typename Impl::CPUType ImplCPU;
64    typedef typename ImplCPU::ImplState ImplState;
65
66    // Logical register index type.
67    typedef TheISA::RegIndex RegIndex;
68    // Integer register type.
69    typedef TheISA::IntReg IntReg;
70    // Floating point register type.
71    typedef TheISA::FloatReg FloatReg;
72
73    // The DynInstPtr type.
74    typedef typename Impl::DynInstPtr DynInstPtr;
75
76    // The list of instructions iterator type.
77    typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79    enum {
80        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	/// Max source regs
81        MaxInstDestRegs = TheISA::MaxInstDestRegs,	/// Max dest regs
82    };
83
84    /** The StaticInst used by this BaseDynInst. */
85    StaticInstPtr staticInst;
86
87    ////////////////////////////////////////////
88    //
89    // INSTRUCTION EXECUTION
90    //
91    ////////////////////////////////////////////
92    /** InstRecord that tracks this instructions. */
93    Trace::InstRecord *traceData;
94
95    /**
96     * Does a read to a given address.
97     * @param addr The address to read.
98     * @param data The read's data is written into this parameter.
99     * @param flags The request's flags.
100     * @return Returns any fault due to the read.
101     */
102    template <class T>
103    Fault read(Addr addr, T &data, unsigned flags);
104
105    /**
106     * Does a write to a given address.
107     * @param data The data to be written.
108     * @param addr The address to write to.
109     * @param flags The request's flags.
110     * @param res The result of the write (for load locked/store conditionals).
111     * @return Returns any fault due to the write.
112     */
113    template <class T>
114    Fault write(T data, Addr addr, unsigned flags,
115                        uint64_t *res);
116
117    void prefetch(Addr addr, unsigned flags);
118    void writeHint(Addr addr, int size, unsigned flags);
119    Fault copySrcTranslate(Addr src);
120    Fault copy(Addr dest);
121
122    /** @todo: Consider making this private. */
123  public:
124    /** The sequence number of the instruction. */
125    InstSeqNum seqNum;
126
127    enum Status {
128        IqEntry,                 /// Instruction is in the IQ
129        RobEntry,                /// Instruction is in the ROB
130        LsqEntry,                /// Instruction is in the LSQ
131        Completed,               /// Instruction has completed
132        ResultReady,             /// Instruction has its result
133        CanIssue,                /// Instruction can issue and execute
134        Issued,                  /// Instruction has issued
135        Executed,                /// Instruction has executed
136        CanCommit,               /// Instruction can commit
137        AtCommit,                /// Instruction has reached commit
138        Committed,               /// Instruction has committed
139        Squashed,                /// Instruction is squashed
140        SquashedInIQ,            /// Instruction is squashed in the IQ
141        SquashedInLSQ,           /// Instruction is squashed in the LSQ
142        SquashedInROB,           /// Instruction is squashed in the ROB
143        RecoverInst,             /// Is a recover instruction
144        BlockingInst,            /// Is a blocking instruction
145        ThreadsyncWait,          /// Is a thread synchronization instruction
146        SerializeBefore,         /// Needs to serialize on
147                                 /// instructions ahead of it
148        SerializeAfter,          /// Needs to serialize instructions behind it
149        SerializeHandled,        /// Serialization has been handled
150        NumStatus
151    };
152
153    /** The status of this BaseDynInst.  Several bits can be set. */
154    std::bitset<NumStatus> status;
155
156    /** The thread this instruction is from. */
157    short threadNumber;
158
159    /** data address space ID, for loads & stores. */
160    short asid;
161
162    /** How many source registers are ready. */
163    unsigned readyRegs;
164
165    /** Pointer to the Impl's CPU object. */
166    ImplCPU *cpu;
167
168    /** Pointer to the thread state. */
169    ImplState *thread;
170
171    /** The kind of fault this instruction has generated. */
172    Fault fault;
173
174    /** Pointer to the data for the memory access. */
175    uint8_t *memData;
176
177    /** The effective virtual address (lds & stores only). */
178    Addr effAddr;
179
180    /** Is the effective virtual address valid. */
181    bool effAddrValid;
182
183    /** The effective physical address. */
184    Addr physEffAddr;
185
186    /** Effective virtual address for a copy source. */
187    Addr copySrcEffAddr;
188
189    /** Effective physical address for a copy source. */
190    Addr copySrcPhysEffAddr;
191
192    /** The memory request flags (from translation). */
193    unsigned memReqFlags;
194
195    union Result {
196        uint64_t integer;
197//        float fp;
198        double dbl;
199    };
200
201    /** The result of the instruction; assumes for now that there's only one
202     *  destination register.
203     */
204    Result instResult;
205
206    /** Records changes to result? */
207    bool recordResult;
208
209    /** PC of this instruction. */
210    Addr PC;
211
212  protected:
213    /** Next non-speculative PC.  It is not filled in at fetch, but rather
214     *  once the target of the branch is truly known (either decode or
215     *  execute).
216     */
217    Addr nextPC;
218
219    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
220    Addr nextNPC;
221
222    /** Predicted next PC. */
223    Addr predPC;
224
225    /** Predicted next NPC. */
226    Addr predNPC;
227
228    /** If this is a branch that was predicted taken */
229    bool predTaken;
230
231  public:
232
233    /** Count of total number of dynamic instructions. */
234    static int instcount;
235
236#ifdef DEBUG
237    void dumpSNList();
238#endif
239
240    /** Whether or not the source register is ready.
241     *  @todo: Not sure this should be here vs the derived class.
242     */
243    bool _readySrcRegIdx[MaxInstSrcRegs];
244
245  protected:
246    /** Flattened register index of the destination registers of this
247     *  instruction.
248     */
249    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
250
251    /** Flattened register index of the source registers of this
252     *  instruction.
253     */
254    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
255
256    /** Physical register index of the destination registers of this
257     *  instruction.
258     */
259    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
260
261    /** Physical register index of the source registers of this
262     *  instruction.
263     */
264    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
265
266    /** Physical register index of the previous producers of the
267     *  architected destinations.
268     */
269    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
270
271  public:
272
273    /** Returns the physical register index of the i'th destination
274     *  register.
275     */
276    PhysRegIndex renamedDestRegIdx(int idx) const
277    {
278        return _destRegIdx[idx];
279    }
280
281    /** Returns the physical register index of the i'th source register. */
282    PhysRegIndex renamedSrcRegIdx(int idx) const
283    {
284        return _srcRegIdx[idx];
285    }
286
287    /** Returns the flattened register index of the i'th destination
288     *  register.
289     */
290    TheISA::RegIndex flattenedDestRegIdx(int idx) const
291    {
292        return _flatDestRegIdx[idx];
293    }
294
295    /** Returns the flattened register index of the i'th source register */
296    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
297    {
298        return _flatSrcRegIdx[idx];
299    }
300
301    /** Returns the physical register index of the previous physical register
302     *  that remapped to the same logical register index.
303     */
304    PhysRegIndex prevDestRegIdx(int idx) const
305    {
306        return _prevDestRegIdx[idx];
307    }
308
309    /** Renames a destination register to a physical register.  Also records
310     *  the previous physical register that the logical register mapped to.
311     */
312    void renameDestReg(int idx,
313                       PhysRegIndex renamed_dest,
314                       PhysRegIndex previous_rename)
315    {
316        _destRegIdx[idx] = renamed_dest;
317        _prevDestRegIdx[idx] = previous_rename;
318    }
319
320    /** Renames a source logical register to the physical register which
321     *  has/will produce that logical register's result.
322     *  @todo: add in whether or not the source register is ready.
323     */
324    void renameSrcReg(int idx, PhysRegIndex renamed_src)
325    {
326        _srcRegIdx[idx] = renamed_src;
327    }
328
329    /** Flattens a source architectural register index into a logical index.
330     */
331    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
332    {
333        _flatSrcRegIdx[idx] = flattened_src;
334    }
335
336    /** Flattens a destination architectural register index into a logical
337     * index.
338     */
339    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
340    {
341        _flatDestRegIdx[idx] = flattened_dest;
342    }
343
344    /** BaseDynInst constructor given a binary instruction.
345     *  @param inst The binary instruction.
346     *  @param PC The PC of the instruction.
347     *  @param pred_PC The predicted next PC.
348     *  @param pred_NPC The predicted next NPC.
349     *  @param seq_num The sequence number of the instruction.
350     *  @param cpu Pointer to the instruction's CPU.
351     */
352    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC,
353            Addr pred_PC, Addr pred_NPC,
354            InstSeqNum seq_num, ImplCPU *cpu);
355
356    /** BaseDynInst constructor given a StaticInst pointer.
357     *  @param _staticInst The StaticInst for this BaseDynInst.
358     */
359    BaseDynInst(StaticInstPtr &_staticInst);
360
361    /** BaseDynInst destructor. */
362    ~BaseDynInst();
363
364  private:
365    /** Function to initialize variables in the constructors. */
366    void initVars();
367
368  public:
369    /** Dumps out contents of this BaseDynInst. */
370    void dump();
371
372    /** Dumps out contents of this BaseDynInst into given string. */
373    void dump(std::string &outstring);
374
375    /** Read this CPU's ID. */
376    int readCpuId() { return cpu->readCpuId(); }
377
378    /** Returns the fault type. */
379    Fault getFault() { return fault; }
380
381    /** Checks whether or not this instruction has had its branch target
382     *  calculated yet.  For now it is not utilized and is hacked to be
383     *  always false.
384     *  @todo: Actually use this instruction.
385     */
386    bool doneTargCalc() { return false; }
387
388    /** Returns the next PC.  This could be the speculative next PC if it is
389     *  called prior to the actual branch target being calculated.
390     */
391    Addr readNextPC() { return nextPC; }
392
393    /** Returns the next NPC.  This could be the speculative next NPC if it is
394     *  called prior to the actual branch target being calculated.
395     */
396    Addr readNextNPC()
397    {
398#if ISA_HAS_DELAY_SLOT
399        return nextNPC;
400#else
401        return nextPC + sizeof(TheISA::MachInst);
402#endif
403    }
404
405    /** Set the predicted target of this current instruction. */
406    void setPredTarg(Addr predicted_PC, Addr predicted_NPC)
407    {
408        predPC = predicted_PC;
409        predNPC = predicted_NPC;
410    }
411
412    /** Returns the predicted PC immediately after the branch. */
413    Addr readPredPC() { return predPC; }
414
415    /** Returns the predicted PC two instructions after the branch */
416    Addr readPredNPC() { return predNPC; }
417
418    /** Returns whether the instruction was predicted taken or not. */
419    bool readPredTaken()
420    {
421        return predTaken;
422    }
423
424    void setPredTaken(bool predicted_taken)
425    {
426        predTaken = predicted_taken;
427    }
428
429    /** Returns whether the instruction mispredicted. */
430    bool mispredicted()
431    {
432        return readPredPC() != readNextPC() ||
433            readPredNPC() != readNextNPC();
434    }
435
436    //
437    //  Instruction types.  Forward checks to StaticInst object.
438    //
439    bool isNop()	  const { return staticInst->isNop(); }
440    bool isMemRef()    	  const { return staticInst->isMemRef(); }
441    bool isLoad()	  const { return staticInst->isLoad(); }
442    bool isStore()	  const { return staticInst->isStore(); }
443    bool isStoreConditional() const
444    { return staticInst->isStoreConditional(); }
445    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
446    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
447    bool isCopy()         const { return staticInst->isCopy(); }
448    bool isInteger()	  const { return staticInst->isInteger(); }
449    bool isFloating()	  const { return staticInst->isFloating(); }
450    bool isControl()	  const { return staticInst->isControl(); }
451    bool isCall()	  const { return staticInst->isCall(); }
452    bool isReturn()	  const { return staticInst->isReturn(); }
453    bool isDirectCtrl()	  const { return staticInst->isDirectCtrl(); }
454    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
455    bool isCondCtrl()	  const { return staticInst->isCondCtrl(); }
456    bool isUncondCtrl()	  const { return staticInst->isUncondCtrl(); }
457    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
458    bool isThreadSync()   const { return staticInst->isThreadSync(); }
459    bool isSerializing()  const { return staticInst->isSerializing(); }
460    bool isSerializeBefore() const
461    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
462    bool isSerializeAfter() const
463    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
464    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
465    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
466    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
467    bool isQuiesce() const { return staticInst->isQuiesce(); }
468    bool isIprAccess() const { return staticInst->isIprAccess(); }
469    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
470
471    /** Temporarily sets this instruction as a serialize before instruction. */
472    void setSerializeBefore() { status.set(SerializeBefore); }
473
474    /** Clears the serializeBefore part of this instruction. */
475    void clearSerializeBefore() { status.reset(SerializeBefore); }
476
477    /** Checks if this serializeBefore is only temporarily set. */
478    bool isTempSerializeBefore() { return status[SerializeBefore]; }
479
480    /** Temporarily sets this instruction as a serialize after instruction. */
481    void setSerializeAfter() { status.set(SerializeAfter); }
482
483    /** Clears the serializeAfter part of this instruction.*/
484    void clearSerializeAfter() { status.reset(SerializeAfter); }
485
486    /** Checks if this serializeAfter is only temporarily set. */
487    bool isTempSerializeAfter() { return status[SerializeAfter]; }
488
489    /** Sets the serialization part of this instruction as handled. */
490    void setSerializeHandled() { status.set(SerializeHandled); }
491
492    /** Checks if the serialization part of this instruction has been
493     *  handled.  This does not apply to the temporary serializing
494     *  state; it only applies to this instruction's own permanent
495     *  serializing state.
496     */
497    bool isSerializeHandled() { return status[SerializeHandled]; }
498
499    /** Returns the opclass of this instruction. */
500    OpClass opClass() const { return staticInst->opClass(); }
501
502    /** Returns the branch target address. */
503    Addr branchTarget() const { return staticInst->branchTarget(PC); }
504
505    /** Returns the number of source registers. */
506    int8_t numSrcRegs()	const { return staticInst->numSrcRegs(); }
507
508    /** Returns the number of destination registers. */
509    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
510
511    // the following are used to track physical register usage
512    // for machines with separate int & FP reg files
513    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
514    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
515
516    /** Returns the logical register index of the i'th destination register. */
517    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
518
519    /** Returns the logical register index of the i'th source register. */
520    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
521
522    /** Returns the result of an integer instruction. */
523    uint64_t readIntResult() { return instResult.integer; }
524
525    /** Returns the result of a floating point instruction. */
526    float readFloatResult() { return (float)instResult.dbl; }
527
528    /** Returns the result of a floating point (double) instruction. */
529    double readDoubleResult() { return instResult.dbl; }
530
531    /** Records an integer register being set to a value. */
532    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
533    {
534        if (recordResult)
535            instResult.integer = val;
536    }
537
538    /** Records an fp register being set to a value. */
539    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
540                            int width)
541    {
542        if (recordResult) {
543            if (width == 32)
544                instResult.dbl = (double)val;
545            else if (width == 64)
546                instResult.dbl = val;
547            else
548                panic("Unsupported width!");
549        }
550    }
551
552    /** Records an fp register being set to a value. */
553    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
554    {
555        if (recordResult)
556            instResult.dbl = (double)val;
557    }
558
559    /** Records an fp register being set to an integer value. */
560    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
561                                int width)
562    {
563        if (recordResult)
564            instResult.integer = val;
565    }
566
567    /** Records an fp register being set to an integer value. */
568    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
569    {
570        if (recordResult)
571            instResult.integer = val;
572    }
573
574    /** Records that one of the source registers is ready. */
575    void markSrcRegReady();
576
577    /** Marks a specific register as ready. */
578    void markSrcRegReady(RegIndex src_idx);
579
580    /** Returns if a source register is ready. */
581    bool isReadySrcRegIdx(int idx) const
582    {
583        return this->_readySrcRegIdx[idx];
584    }
585
586    /** Sets this instruction as completed. */
587    void setCompleted() { status.set(Completed); }
588
589    /** Returns whether or not this instruction is completed. */
590    bool isCompleted() const { return status[Completed]; }
591
592    /** Marks the result as ready. */
593    void setResultReady() { status.set(ResultReady); }
594
595    /** Returns whether or not the result is ready. */
596    bool isResultReady() const { return status[ResultReady]; }
597
598    /** Sets this instruction as ready to issue. */
599    void setCanIssue() { status.set(CanIssue); }
600
601    /** Returns whether or not this instruction is ready to issue. */
602    bool readyToIssue() const { return status[CanIssue]; }
603
604    /** Clears this instruction being able to issue. */
605    void clearCanIssue() { status.reset(CanIssue); }
606
607    /** Sets this instruction as issued from the IQ. */
608    void setIssued() { status.set(Issued); }
609
610    /** Returns whether or not this instruction has issued. */
611    bool isIssued() const { return status[Issued]; }
612
613    /** Clears this instruction as being issued. */
614    void clearIssued() { status.reset(Issued); }
615
616    /** Sets this instruction as executed. */
617    void setExecuted() { status.set(Executed); }
618
619    /** Returns whether or not this instruction has executed. */
620    bool isExecuted() const { return status[Executed]; }
621
622    /** Sets this instruction as ready to commit. */
623    void setCanCommit() { status.set(CanCommit); }
624
625    /** Clears this instruction as being ready to commit. */
626    void clearCanCommit() { status.reset(CanCommit); }
627
628    /** Returns whether or not this instruction is ready to commit. */
629    bool readyToCommit() const { return status[CanCommit]; }
630
631    void setAtCommit() { status.set(AtCommit); }
632
633    bool isAtCommit() { return status[AtCommit]; }
634
635    /** Sets this instruction as committed. */
636    void setCommitted() { status.set(Committed); }
637
638    /** Returns whether or not this instruction is committed. */
639    bool isCommitted() const { return status[Committed]; }
640
641    /** Sets this instruction as squashed. */
642    void setSquashed() { status.set(Squashed); }
643
644    /** Returns whether or not this instruction is squashed. */
645    bool isSquashed() const { return status[Squashed]; }
646
647    //Instruction Queue Entry
648    //-----------------------
649    /** Sets this instruction as a entry the IQ. */
650    void setInIQ() { status.set(IqEntry); }
651
652    /** Sets this instruction as a entry the IQ. */
653    void clearInIQ() { status.reset(IqEntry); }
654
655    /** Returns whether or not this instruction has issued. */
656    bool isInIQ() const { return status[IqEntry]; }
657
658    /** Sets this instruction as squashed in the IQ. */
659    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
660
661    /** Returns whether or not this instruction is squashed in the IQ. */
662    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
663
664
665    //Load / Store Queue Functions
666    //-----------------------
667    /** Sets this instruction as a entry the LSQ. */
668    void setInLSQ() { status.set(LsqEntry); }
669
670    /** Sets this instruction as a entry the LSQ. */
671    void removeInLSQ() { status.reset(LsqEntry); }
672
673    /** Returns whether or not this instruction is in the LSQ. */
674    bool isInLSQ() const { return status[LsqEntry]; }
675
676    /** Sets this instruction as squashed in the LSQ. */
677    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
678
679    /** Returns whether or not this instruction is squashed in the LSQ. */
680    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
681
682
683    //Reorder Buffer Functions
684    //-----------------------
685    /** Sets this instruction as a entry the ROB. */
686    void setInROB() { status.set(RobEntry); }
687
688    /** Sets this instruction as a entry the ROB. */
689    void clearInROB() { status.reset(RobEntry); }
690
691    /** Returns whether or not this instruction is in the ROB. */
692    bool isInROB() const { return status[RobEntry]; }
693
694    /** Sets this instruction as squashed in the ROB. */
695    void setSquashedInROB() { status.set(SquashedInROB); }
696
697    /** Returns whether or not this instruction is squashed in the ROB. */
698    bool isSquashedInROB() const { return status[SquashedInROB]; }
699
700    /** Read the PC of this instruction. */
701    const Addr readPC() const { return PC; }
702
703    /** Set the next PC of this instruction (its actual target). */
704    void setNextPC(uint64_t val)
705    {
706        nextPC = val;
707    }
708
709    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
710    void setNextNPC(uint64_t val)
711    {
712        nextNPC = val;
713    }
714
715    /** Sets the ASID. */
716    void setASID(short addr_space_id) { asid = addr_space_id; }
717
718    /** Sets the thread id. */
719    void setTid(unsigned tid) { threadNumber = tid; }
720
721    /** Sets the pointer to the thread state. */
722    void setThreadState(ImplState *state) { thread = state; }
723
724    /** Returns the thread context. */
725    ThreadContext *tcBase() { return thread->getTC(); }
726
727  private:
728    /** Instruction effective address.
729     *  @todo: Consider if this is necessary or not.
730     */
731    Addr instEffAddr;
732
733    /** Whether or not the effective address calculation is completed.
734     *  @todo: Consider if this is necessary or not.
735     */
736    bool eaCalcDone;
737
738    /** Is this instruction's memory access uncacheable. */
739    bool isUncacheable;
740
741    /** Has this instruction generated a memory request. */
742    bool reqMade;
743
744  public:
745    /** Sets the effective address. */
746    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
747
748    /** Returns the effective address. */
749    const Addr &getEA() const { return instEffAddr; }
750
751    /** Returns whether or not the eff. addr. calculation has been completed. */
752    bool doneEACalc() { return eaCalcDone; }
753
754    /** Returns whether or not the eff. addr. source registers are ready. */
755    bool eaSrcsReady();
756
757    /** Whether or not the memory operation is done. */
758    bool memOpDone;
759
760    /** Is this instruction's memory access uncacheable. */
761    bool uncacheable() { return isUncacheable; }
762
763    /** Has this instruction generated a memory request. */
764    bool hasRequest() { return reqMade; }
765
766  public:
767    /** Load queue index. */
768    int16_t lqIdx;
769
770    /** Store queue index. */
771    int16_t sqIdx;
772
773    /** Iterator pointing to this BaseDynInst in the list of all insts. */
774    ListIt instListIt;
775
776    /** Returns iterator to this instruction in the list of all insts. */
777    ListIt &getInstListIt() { return instListIt; }
778
779    /** Sets iterator for this instruction in the list of all insts. */
780    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
781
782  public:
783    /** Returns the number of consecutive store conditional failures. */
784    unsigned readStCondFailures()
785    { return thread->storeCondFailures; }
786
787    /** Sets the number of consecutive store conditional failures. */
788    void setStCondFailures(unsigned sc_failures)
789    { thread->storeCondFailures = sc_failures; }
790};
791
792template<class Impl>
793template<class T>
794inline Fault
795BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
796{
797    reqMade = true;
798    Request *req = new Request();
799    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
800    req->setThreadContext(thread->readCpuId(), threadNumber);
801
802    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
803        TheISA::VMPageSize) {
804        delete req;
805        return TheISA::genAlignmentFault();
806    }
807
808    fault = cpu->translateDataReadReq(req, thread);
809
810    if (req->isUncacheable())
811        isUncacheable = true;
812
813    if (fault == NoFault) {
814        effAddr = req->getVaddr();
815        effAddrValid = true;
816        physEffAddr = req->getPaddr();
817        memReqFlags = req->getFlags();
818
819#if 0
820        if (cpu->system->memctrl->badaddr(physEffAddr)) {
821            fault = TheISA::genMachineCheckFault();
822            data = (T)-1;
823            this->setExecuted();
824        } else {
825            fault = cpu->read(req, data, lqIdx);
826        }
827#else
828        fault = cpu->read(req, data, lqIdx);
829#endif
830    } else {
831        // Return a fixed value to keep simulation deterministic even
832        // along misspeculated paths.
833        data = (T)-1;
834
835        // Commit will have to clean up whatever happened.  Set this
836        // instruction as executed.
837        this->setExecuted();
838        delete req;
839    }
840
841    if (traceData) {
842        traceData->setAddr(addr);
843        traceData->setData(data);
844    }
845
846    return fault;
847}
848
849template<class Impl>
850template<class T>
851inline Fault
852BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
853{
854    if (traceData) {
855        traceData->setAddr(addr);
856        traceData->setData(data);
857    }
858
859    reqMade = true;
860    Request *req = new Request();
861    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
862    req->setThreadContext(thread->readCpuId(), threadNumber);
863
864    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
865        TheISA::VMPageSize) {
866        delete req;
867        return TheISA::genAlignmentFault();
868    }
869
870    fault = cpu->translateDataWriteReq(req, thread);
871
872    if (req->isUncacheable())
873        isUncacheable = true;
874
875    if (fault == NoFault) {
876        effAddr = req->getVaddr();
877        effAddrValid = true;
878        physEffAddr = req->getPaddr();
879        memReqFlags = req->getFlags();
880#if 0
881        if (cpu->system->memctrl->badaddr(physEffAddr)) {
882            fault = TheISA::genMachineCheckFault();
883        } else {
884            fault = cpu->write(req, data, sqIdx);
885        }
886#else
887        fault = cpu->write(req, data, sqIdx);
888#endif
889    } else {
890        delete req;
891    }
892
893    return fault;
894}
895
896#endif // __CPU_BASE_DYN_INST_HH__
897