base_dyn_inst.hh revision 3735:86a7cf4dcc11
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/exetrace.hh"
43#include "cpu/inst_seq.hh"
44#include "cpu/op_class.hh"
45#include "cpu/static_inst.hh"
46#include "mem/packet.hh"
47#include "sim/system.hh"
48
49/**
50 * @file
51 * Defines a dynamic instruction context.
52 */
53
54// Forward declaration.
55class StaticInstPtr;
56
57template <class Impl>
58class BaseDynInst : public FastAlloc, public RefCounted
59{
60  public:
61    // Typedef for the CPU.
62    typedef typename Impl::CPUType ImplCPU;
63    typedef typename ImplCPU::ImplState ImplState;
64
65    // Binary machine instruction type.
66    typedef TheISA::MachInst MachInst;
67    // Extended machine instruction type
68    typedef TheISA::ExtMachInst ExtMachInst;
69    // Logical register index type.
70    typedef TheISA::RegIndex RegIndex;
71    // Integer register type.
72    typedef TheISA::IntReg IntReg;
73    // Floating point register type.
74    typedef TheISA::FloatReg FloatReg;
75
76    // The DynInstPtr type.
77    typedef typename Impl::DynInstPtr DynInstPtr;
78
79    // The list of instructions iterator type.
80    typedef typename std::list<DynInstPtr>::iterator ListIt;
81
82    enum {
83        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	/// Max source regs
84        MaxInstDestRegs = TheISA::MaxInstDestRegs,	/// Max dest regs
85    };
86
87    /** The StaticInst used by this BaseDynInst. */
88    StaticInstPtr staticInst;
89
90    ////////////////////////////////////////////
91    //
92    // INSTRUCTION EXECUTION
93    //
94    ////////////////////////////////////////////
95    /** InstRecord that tracks this instructions. */
96    Trace::InstRecord *traceData;
97
98    /**
99     * Does a read to a given address.
100     * @param addr The address to read.
101     * @param data The read's data is written into this parameter.
102     * @param flags The request's flags.
103     * @return Returns any fault due to the read.
104     */
105    template <class T>
106    Fault read(Addr addr, T &data, unsigned flags);
107
108    /**
109     * Does a write to a given address.
110     * @param data The data to be written.
111     * @param addr The address to write to.
112     * @param flags The request's flags.
113     * @param res The result of the write (for load locked/store conditionals).
114     * @return Returns any fault due to the write.
115     */
116    template <class T>
117    Fault write(T data, Addr addr, unsigned flags,
118                        uint64_t *res);
119
120    void prefetch(Addr addr, unsigned flags);
121    void writeHint(Addr addr, int size, unsigned flags);
122    Fault copySrcTranslate(Addr src);
123    Fault copy(Addr dest);
124
125    /** @todo: Consider making this private. */
126  public:
127    /** The sequence number of the instruction. */
128    InstSeqNum seqNum;
129
130    enum Status {
131        IqEntry,                 /// Instruction is in the IQ
132        RobEntry,                /// Instruction is in the ROB
133        LsqEntry,                /// Instruction is in the LSQ
134        Completed,               /// Instruction has completed
135        ResultReady,             /// Instruction has its result
136        CanIssue,                /// Instruction can issue and execute
137        Issued,                  /// Instruction has issued
138        Executed,                /// Instruction has executed
139        CanCommit,               /// Instruction can commit
140        AtCommit,                /// Instruction has reached commit
141        Committed,               /// Instruction has committed
142        Squashed,                /// Instruction is squashed
143        SquashedInIQ,            /// Instruction is squashed in the IQ
144        SquashedInLSQ,           /// Instruction is squashed in the LSQ
145        SquashedInROB,           /// Instruction is squashed in the ROB
146        RecoverInst,             /// Is a recover instruction
147        BlockingInst,            /// Is a blocking instruction
148        ThreadsyncWait,          /// Is a thread synchronization instruction
149        SerializeBefore,         /// Needs to serialize on
150                                 /// instructions ahead of it
151        SerializeAfter,          /// Needs to serialize instructions behind it
152        SerializeHandled,        /// Serialization has been handled
153        NumStatus
154    };
155
156    /** The status of this BaseDynInst.  Several bits can be set. */
157    std::bitset<NumStatus> status;
158
159    /** The thread this instruction is from. */
160    short threadNumber;
161
162    /** data address space ID, for loads & stores. */
163    short asid;
164
165    /** How many source registers are ready. */
166    unsigned readyRegs;
167
168    /** Pointer to the Impl's CPU object. */
169    ImplCPU *cpu;
170
171    /** Pointer to the thread state. */
172    ImplState *thread;
173
174    /** The kind of fault this instruction has generated. */
175    Fault fault;
176
177    /** The memory request. */
178    Request *req;
179
180    /** Pointer to the data for the memory access. */
181    uint8_t *memData;
182
183    /** The effective virtual address (lds & stores only). */
184    Addr effAddr;
185
186    /** The effective physical address. */
187    Addr physEffAddr;
188
189    /** Effective virtual address for a copy source. */
190    Addr copySrcEffAddr;
191
192    /** Effective physical address for a copy source. */
193    Addr copySrcPhysEffAddr;
194
195    /** The memory request flags (from translation). */
196    unsigned memReqFlags;
197
198    union Result {
199        uint64_t integer;
200//        float fp;
201        double dbl;
202    };
203
204    /** The result of the instruction; assumes for now that there's only one
205     *  destination register.
206     */
207    Result instResult;
208
209    /** Records changes to result? */
210    bool recordResult;
211
212    /** PC of this instruction. */
213    Addr PC;
214
215    /** Next non-speculative PC.  It is not filled in at fetch, but rather
216     *  once the target of the branch is truly known (either decode or
217     *  execute).
218     */
219    Addr nextPC;
220
221    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
222    Addr nextNPC;
223
224    /** Predicted next PC. */
225    Addr predPC;
226
227    /** Count of total number of dynamic instructions. */
228    static int instcount;
229
230#ifdef DEBUG
231    void dumpSNList();
232#endif
233
234    /** Whether or not the source register is ready.
235     *  @todo: Not sure this should be here vs the derived class.
236     */
237    bool _readySrcRegIdx[MaxInstSrcRegs];
238
239  public:
240    /** BaseDynInst constructor given a binary instruction.
241     *  @param inst The binary instruction.
242     *  @param PC The PC of the instruction.
243     *  @param pred_PC The predicted next PC.
244     *  @param seq_num The sequence number of the instruction.
245     *  @param cpu Pointer to the instruction's CPU.
246     */
247    BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
248                ImplCPU *cpu);
249
250    /** BaseDynInst constructor given a StaticInst pointer.
251     *  @param _staticInst The StaticInst for this BaseDynInst.
252     */
253    BaseDynInst(StaticInstPtr &_staticInst);
254
255    /** BaseDynInst destructor. */
256    ~BaseDynInst();
257
258  private:
259    /** Function to initialize variables in the constructors. */
260    void initVars();
261
262  public:
263    /** Dumps out contents of this BaseDynInst. */
264    void dump();
265
266    /** Dumps out contents of this BaseDynInst into given string. */
267    void dump(std::string &outstring);
268
269    /** Read this CPU's ID. */
270    int readCpuId() { return cpu->readCpuId(); }
271
272    /** Returns the fault type. */
273    Fault getFault() { return fault; }
274
275    /** Checks whether or not this instruction has had its branch target
276     *  calculated yet.  For now it is not utilized and is hacked to be
277     *  always false.
278     *  @todo: Actually use this instruction.
279     */
280    bool doneTargCalc() { return false; }
281
282    /** Returns the next PC.  This could be the speculative next PC if it is
283     *  called prior to the actual branch target being calculated.
284     */
285    Addr readNextPC() { return nextPC; }
286
287    /** Returns the next NPC.  This could be the speculative next NPC if it is
288     *  called prior to the actual branch target being calculated.
289     */
290    Addr readNextNPC() { return nextNPC; }
291
292    /** Set the predicted target of this current instruction. */
293    void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
294
295    /** Returns the predicted target of the branch. */
296    Addr readPredTarg() { return predPC; }
297
298    /** Returns whether the instruction was predicted taken or not. */
299    bool predTaken()
300#if ISA_HAS_DELAY_SLOT
301    { return predPC != (nextPC + sizeof(MachInst)); }
302#else
303    { return predPC != (PC + sizeof(MachInst)); }
304#endif
305
306    /** Returns whether the instruction mispredicted. */
307    bool mispredicted()
308#if ISA_HAS_DELAY_SLOT
309    { return predPC != nextNPC; }
310#else
311    { return predPC != nextPC; }
312#endif
313    //
314    //  Instruction types.  Forward checks to StaticInst object.
315    //
316    bool isNop()	  const { return staticInst->isNop(); }
317    bool isMemRef()    	  const { return staticInst->isMemRef(); }
318    bool isLoad()	  const { return staticInst->isLoad(); }
319    bool isStore()	  const { return staticInst->isStore(); }
320    bool isStoreConditional() const
321    { return staticInst->isStoreConditional(); }
322    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
323    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
324    bool isCopy()         const { return staticInst->isCopy(); }
325    bool isInteger()	  const { return staticInst->isInteger(); }
326    bool isFloating()	  const { return staticInst->isFloating(); }
327    bool isControl()	  const { return staticInst->isControl(); }
328    bool isCall()	  const { return staticInst->isCall(); }
329    bool isReturn()	  const { return staticInst->isReturn(); }
330    bool isDirectCtrl()	  const { return staticInst->isDirectCtrl(); }
331    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
332    bool isCondCtrl()	  const { return staticInst->isCondCtrl(); }
333    bool isUncondCtrl()	  const { return staticInst->isUncondCtrl(); }
334    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
335    bool isThreadSync()   const { return staticInst->isThreadSync(); }
336    bool isSerializing()  const { return staticInst->isSerializing(); }
337    bool isSerializeBefore() const
338    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
339    bool isSerializeAfter() const
340    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
341    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
342    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
343    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
344    bool isQuiesce() const { return staticInst->isQuiesce(); }
345    bool isIprAccess() const { return staticInst->isIprAccess(); }
346    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
347
348    /** Temporarily sets this instruction as a serialize before instruction. */
349    void setSerializeBefore() { status.set(SerializeBefore); }
350
351    /** Clears the serializeBefore part of this instruction. */
352    void clearSerializeBefore() { status.reset(SerializeBefore); }
353
354    /** Checks if this serializeBefore is only temporarily set. */
355    bool isTempSerializeBefore() { return status[SerializeBefore]; }
356
357    /** Temporarily sets this instruction as a serialize after instruction. */
358    void setSerializeAfter() { status.set(SerializeAfter); }
359
360    /** Clears the serializeAfter part of this instruction.*/
361    void clearSerializeAfter() { status.reset(SerializeAfter); }
362
363    /** Checks if this serializeAfter is only temporarily set. */
364    bool isTempSerializeAfter() { return status[SerializeAfter]; }
365
366    /** Sets the serialization part of this instruction as handled. */
367    void setSerializeHandled() { status.set(SerializeHandled); }
368
369    /** Checks if the serialization part of this instruction has been
370     *  handled.  This does not apply to the temporary serializing
371     *  state; it only applies to this instruction's own permanent
372     *  serializing state.
373     */
374    bool isSerializeHandled() { return status[SerializeHandled]; }
375
376    /** Returns the opclass of this instruction. */
377    OpClass opClass() const { return staticInst->opClass(); }
378
379    /** Returns the branch target address. */
380    Addr branchTarget() const { return staticInst->branchTarget(PC); }
381
382    /** Returns the number of source registers. */
383    int8_t numSrcRegs()	const { return staticInst->numSrcRegs(); }
384
385    /** Returns the number of destination registers. */
386    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
387
388    // the following are used to track physical register usage
389    // for machines with separate int & FP reg files
390    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
391    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
392
393    /** Returns the logical register index of the i'th destination register. */
394    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
395
396    /** Returns the logical register index of the i'th source register. */
397    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
398
399    /** Returns the result of an integer instruction. */
400    uint64_t readIntResult() { return instResult.integer; }
401
402    /** Returns the result of a floating point instruction. */
403    float readFloatResult() { return (float)instResult.dbl; }
404
405    /** Returns the result of a floating point (double) instruction. */
406    double readDoubleResult() { return instResult.dbl; }
407
408    /** Records an integer register being set to a value. */
409    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
410    {
411        if (recordResult)
412            instResult.integer = val;
413    }
414
415    /** Records an fp register being set to a value. */
416    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
417                            int width)
418    {
419        if (recordResult) {
420            if (width == 32)
421                instResult.dbl = (double)val;
422            else if (width == 64)
423                instResult.dbl = val;
424            else
425                panic("Unsupported width!");
426        }
427    }
428
429    /** Records an fp register being set to a value. */
430    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
431    {
432        if (recordResult)
433            instResult.dbl = (double)val;
434    }
435
436    /** Records an fp register being set to an integer value. */
437    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
438                                int width)
439    {
440        if (recordResult)
441            instResult.integer = val;
442    }
443
444    /** Records an fp register being set to an integer value. */
445    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
446    {
447        if (recordResult)
448            instResult.integer = val;
449    }
450
451    /** Records that one of the source registers is ready. */
452    void markSrcRegReady();
453
454    /** Marks a specific register as ready. */
455    void markSrcRegReady(RegIndex src_idx);
456
457    /** Returns if a source register is ready. */
458    bool isReadySrcRegIdx(int idx) const
459    {
460        return this->_readySrcRegIdx[idx];
461    }
462
463    /** Sets this instruction as completed. */
464    void setCompleted() { status.set(Completed); }
465
466    /** Returns whether or not this instruction is completed. */
467    bool isCompleted() const { return status[Completed]; }
468
469    /** Marks the result as ready. */
470    void setResultReady() { status.set(ResultReady); }
471
472    /** Returns whether or not the result is ready. */
473    bool isResultReady() const { return status[ResultReady]; }
474
475    /** Sets this instruction as ready to issue. */
476    void setCanIssue() { status.set(CanIssue); }
477
478    /** Returns whether or not this instruction is ready to issue. */
479    bool readyToIssue() const { return status[CanIssue]; }
480
481    /** Sets this instruction as issued from the IQ. */
482    void setIssued() { status.set(Issued); }
483
484    /** Returns whether or not this instruction has issued. */
485    bool isIssued() const { return status[Issued]; }
486
487    /** Sets this instruction as executed. */
488    void setExecuted() { status.set(Executed); }
489
490    /** Returns whether or not this instruction has executed. */
491    bool isExecuted() const { return status[Executed]; }
492
493    /** Sets this instruction as ready to commit. */
494    void setCanCommit() { status.set(CanCommit); }
495
496    /** Clears this instruction as being ready to commit. */
497    void clearCanCommit() { status.reset(CanCommit); }
498
499    /** Returns whether or not this instruction is ready to commit. */
500    bool readyToCommit() const { return status[CanCommit]; }
501
502    void setAtCommit() { status.set(AtCommit); }
503
504    bool isAtCommit() { return status[AtCommit]; }
505
506    /** Sets this instruction as committed. */
507    void setCommitted() { status.set(Committed); }
508
509    /** Returns whether or not this instruction is committed. */
510    bool isCommitted() const { return status[Committed]; }
511
512    /** Sets this instruction as squashed. */
513    void setSquashed() { status.set(Squashed); }
514
515    /** Returns whether or not this instruction is squashed. */
516    bool isSquashed() const { return status[Squashed]; }
517
518    //Instruction Queue Entry
519    //-----------------------
520    /** Sets this instruction as a entry the IQ. */
521    void setInIQ() { status.set(IqEntry); }
522
523    /** Sets this instruction as a entry the IQ. */
524    void clearInIQ() { status.reset(IqEntry); }
525
526    /** Returns whether or not this instruction has issued. */
527    bool isInIQ() const { return status[IqEntry]; }
528
529    /** Sets this instruction as squashed in the IQ. */
530    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
531
532    /** Returns whether or not this instruction is squashed in the IQ. */
533    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
534
535
536    //Load / Store Queue Functions
537    //-----------------------
538    /** Sets this instruction as a entry the LSQ. */
539    void setInLSQ() { status.set(LsqEntry); }
540
541    /** Sets this instruction as a entry the LSQ. */
542    void removeInLSQ() { status.reset(LsqEntry); }
543
544    /** Returns whether or not this instruction is in the LSQ. */
545    bool isInLSQ() const { return status[LsqEntry]; }
546
547    /** Sets this instruction as squashed in the LSQ. */
548    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
549
550    /** Returns whether or not this instruction is squashed in the LSQ. */
551    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
552
553
554    //Reorder Buffer Functions
555    //-----------------------
556    /** Sets this instruction as a entry the ROB. */
557    void setInROB() { status.set(RobEntry); }
558
559    /** Sets this instruction as a entry the ROB. */
560    void clearInROB() { status.reset(RobEntry); }
561
562    /** Returns whether or not this instruction is in the ROB. */
563    bool isInROB() const { return status[RobEntry]; }
564
565    /** Sets this instruction as squashed in the ROB. */
566    void setSquashedInROB() { status.set(SquashedInROB); }
567
568    /** Returns whether or not this instruction is squashed in the ROB. */
569    bool isSquashedInROB() const { return status[SquashedInROB]; }
570
571    /** Read the PC of this instruction. */
572    const Addr readPC() const { return PC; }
573
574    /** Set the next PC of this instruction (its actual target). */
575    void setNextPC(uint64_t val)
576    {
577        nextPC = val;
578    }
579
580    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
581    void setNextNPC(uint64_t val)
582    {
583        nextNPC = val;
584    }
585
586    /** Sets the ASID. */
587    void setASID(short addr_space_id) { asid = addr_space_id; }
588
589    /** Sets the thread id. */
590    void setTid(unsigned tid) { threadNumber = tid; }
591
592    /** Sets the pointer to the thread state. */
593    void setThreadState(ImplState *state) { thread = state; }
594
595    /** Returns the thread context. */
596    ThreadContext *tcBase() { return thread->getTC(); }
597
598  private:
599    /** Instruction effective address.
600     *  @todo: Consider if this is necessary or not.
601     */
602    Addr instEffAddr;
603
604    /** Whether or not the effective address calculation is completed.
605     *  @todo: Consider if this is necessary or not.
606     */
607    bool eaCalcDone;
608
609  public:
610    /** Sets the effective address. */
611    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
612
613    /** Returns the effective address. */
614    const Addr &getEA() const { return instEffAddr; }
615
616    /** Returns whether or not the eff. addr. calculation has been completed. */
617    bool doneEACalc() { return eaCalcDone; }
618
619    /** Returns whether or not the eff. addr. source registers are ready. */
620    bool eaSrcsReady();
621
622    /** Whether or not the memory operation is done. */
623    bool memOpDone;
624
625  public:
626    /** Load queue index. */
627    int16_t lqIdx;
628
629    /** Store queue index. */
630    int16_t sqIdx;
631
632    /** Iterator pointing to this BaseDynInst in the list of all insts. */
633    ListIt instListIt;
634
635    /** Returns iterator to this instruction in the list of all insts. */
636    ListIt &getInstListIt() { return instListIt; }
637
638    /** Sets iterator for this instruction in the list of all insts. */
639    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
640
641  public:
642    /** Returns the number of consecutive store conditional failures. */
643    unsigned readStCondFailures()
644    { return thread->storeCondFailures; }
645
646    /** Sets the number of consecutive store conditional failures. */
647    void setStCondFailures(unsigned sc_failures)
648    { thread->storeCondFailures = sc_failures; }
649};
650
651template<class Impl>
652template<class T>
653inline Fault
654BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
655{
656    // Sometimes reads will get retried, so they may come through here
657    // twice.
658    if (!req) {
659        req = new Request();
660        req->setVirt(asid, addr, sizeof(T), flags, this->PC);
661        req->setThreadContext(thread->readCpuId(), threadNumber);
662    } else {
663        assert(addr == req->getVaddr());
664    }
665
666    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
667        TheISA::VMPageSize) {
668        return TheISA::genAlignmentFault();
669    }
670
671    fault = cpu->translateDataReadReq(req, thread);
672
673    if (fault == NoFault) {
674        effAddr = req->getVaddr();
675        physEffAddr = req->getPaddr();
676        memReqFlags = req->getFlags();
677
678#if 0
679        if (cpu->system->memctrl->badaddr(physEffAddr)) {
680            fault = TheISA::genMachineCheckFault();
681            data = (T)-1;
682            this->setExecuted();
683        } else {
684            fault = cpu->read(req, data, lqIdx);
685        }
686#else
687        fault = cpu->read(req, data, lqIdx);
688#endif
689    } else {
690        // Return a fixed value to keep simulation deterministic even
691        // along misspeculated paths.
692        data = (T)-1;
693
694        // Commit will have to clean up whatever happened.  Set this
695        // instruction as executed.
696        this->setExecuted();
697    }
698
699    if (traceData) {
700        traceData->setAddr(addr);
701        traceData->setData(data);
702    }
703
704    return fault;
705}
706
707template<class Impl>
708template<class T>
709inline Fault
710BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
711{
712    if (traceData) {
713        traceData->setAddr(addr);
714        traceData->setData(data);
715    }
716
717    assert(req == NULL);
718
719    req = new Request();
720    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
721    req->setThreadContext(thread->readCpuId(), threadNumber);
722
723    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
724        TheISA::VMPageSize) {
725        return TheISA::genAlignmentFault();
726    }
727
728    fault = cpu->translateDataWriteReq(req, thread);
729
730    if (fault == NoFault) {
731        effAddr = req->getVaddr();
732        physEffAddr = req->getPaddr();
733        memReqFlags = req->getFlags();
734#if 0
735        if (cpu->system->memctrl->badaddr(physEffAddr)) {
736            fault = TheISA::genMachineCheckFault();
737        } else {
738            fault = cpu->write(req, data, sqIdx);
739        }
740#else
741        fault = cpu->write(req, data, sqIdx);
742#endif
743    }
744
745    if (res) {
746        // always return some result to keep misspeculated paths
747        // (which will ignore faults) deterministic
748        *res = (fault == NoFault) ? req->getScResult() : 0;
749    }
750
751    return fault;
752}
753
754#endif // __CPU_BASE_DYN_INST_HH__
755