base_dyn_inst.hh revision 2935:d1223a6c9156
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/exetrace.hh"
43#include "cpu/inst_seq.hh"
44#include "cpu/op_class.hh"
45#include "cpu/static_inst.hh"
46#include "mem/packet.hh"
47#include "sim/system.hh"
48
49/**
50 * @file
51 * Defines a dynamic instruction context.
52 */
53
54// Forward declaration.
55class StaticInstPtr;
56
57template <class Impl>
58class BaseDynInst : public FastAlloc, public RefCounted
59{
60  public:
61    // Typedef for the CPU.
62    typedef typename Impl::CPUType ImplCPU;
63    typedef typename ImplCPU::ImplState ImplState;
64
65    // Binary machine instruction type.
66    typedef TheISA::MachInst MachInst;
67    // Extended machine instruction type
68    typedef TheISA::ExtMachInst ExtMachInst;
69    // Logical register index type.
70    typedef TheISA::RegIndex RegIndex;
71    // Integer register type.
72    typedef TheISA::IntReg IntReg;
73    // Floating point register type.
74    typedef TheISA::FloatReg FloatReg;
75
76    // The DynInstPtr type.
77    typedef typename Impl::DynInstPtr DynInstPtr;
78
79    // The list of instructions iterator type.
80    typedef typename std::list<DynInstPtr>::iterator ListIt;
81
82    enum {
83        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	/// Max source regs
84        MaxInstDestRegs = TheISA::MaxInstDestRegs,	/// Max dest regs
85    };
86
87    /** The StaticInst used by this BaseDynInst. */
88    StaticInstPtr staticInst;
89
90    ////////////////////////////////////////////
91    //
92    // INSTRUCTION EXECUTION
93    //
94    ////////////////////////////////////////////
95    /** InstRecord that tracks this instructions. */
96    Trace::InstRecord *traceData;
97
98    /**
99     * Does a read to a given address.
100     * @param addr The address to read.
101     * @param data The read's data is written into this parameter.
102     * @param flags The request's flags.
103     * @return Returns any fault due to the read.
104     */
105    template <class T>
106    Fault read(Addr addr, T &data, unsigned flags);
107
108    /**
109     * Does a write to a given address.
110     * @param data The data to be written.
111     * @param addr The address to write to.
112     * @param flags The request's flags.
113     * @param res The result of the write (for load locked/store conditionals).
114     * @return Returns any fault due to the write.
115     */
116    template <class T>
117    Fault write(T data, Addr addr, unsigned flags,
118                        uint64_t *res);
119
120    void prefetch(Addr addr, unsigned flags);
121    void writeHint(Addr addr, int size, unsigned flags);
122    Fault copySrcTranslate(Addr src);
123    Fault copy(Addr dest);
124
125    /** @todo: Consider making this private. */
126  public:
127    /** The sequence number of the instruction. */
128    InstSeqNum seqNum;
129
130    enum Status {
131        IqEntry,                 /// Instruction is in the IQ
132        RobEntry,                /// Instruction is in the ROB
133        LsqEntry,                /// Instruction is in the LSQ
134        Completed,               /// Instruction has completed
135        ResultReady,             /// Instruction has its result
136        CanIssue,                /// Instruction can issue and execute
137        Issued,                  /// Instruction has issued
138        Executed,                /// Instruction has executed
139        CanCommit,               /// Instruction can commit
140        AtCommit,                /// Instruction has reached commit
141        Committed,               /// Instruction has committed
142        Squashed,                /// Instruction is squashed
143        SquashedInIQ,            /// Instruction is squashed in the IQ
144        SquashedInLSQ,           /// Instruction is squashed in the LSQ
145        SquashedInROB,           /// Instruction is squashed in the ROB
146        RecoverInst,             /// Is a recover instruction
147        BlockingInst,            /// Is a blocking instruction
148        ThreadsyncWait,          /// Is a thread synchronization instruction
149        SerializeBefore,         /// Needs to serialize on
150                                 /// instructions ahead of it
151        SerializeAfter,          /// Needs to serialize instructions behind it
152        SerializeHandled,        /// Serialization has been handled
153        NumStatus
154    };
155
156    /** The status of this BaseDynInst.  Several bits can be set. */
157    std::bitset<NumStatus> status;
158
159    /** The thread this instruction is from. */
160    short threadNumber;
161
162    /** data address space ID, for loads & stores. */
163    short asid;
164
165    /** How many source registers are ready. */
166    unsigned readyRegs;
167
168    /** Pointer to the Impl's CPU object. */
169    ImplCPU *cpu;
170
171    /** Pointer to the thread state. */
172    ImplState *thread;
173
174    /** The kind of fault this instruction has generated. */
175    Fault fault;
176
177    /** The memory request. */
178    Request *req;
179
180    /** Pointer to the data for the memory access. */
181    uint8_t *memData;
182
183    /** The effective virtual address (lds & stores only). */
184    Addr effAddr;
185
186    /** The effective physical address. */
187    Addr physEffAddr;
188
189    /** Effective virtual address for a copy source. */
190    Addr copySrcEffAddr;
191
192    /** Effective physical address for a copy source. */
193    Addr copySrcPhysEffAddr;
194
195    /** The memory request flags (from translation). */
196    unsigned memReqFlags;
197
198    union Result {
199        uint64_t integer;
200        float fp;
201        double dbl;
202    };
203
204    /** The result of the instruction; assumes for now that there's only one
205     *  destination register.
206     */
207    Result instResult;
208
209    /** PC of this instruction. */
210    Addr PC;
211
212    /** Next non-speculative PC.  It is not filled in at fetch, but rather
213     *  once the target of the branch is truly known (either decode or
214     *  execute).
215     */
216    Addr nextPC;
217
218    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
219    Addr nextNPC;
220
221    /** Predicted next PC. */
222    Addr predPC;
223
224    /** Count of total number of dynamic instructions. */
225    static int instcount;
226
227#ifdef DEBUG
228    void dumpSNList();
229#endif
230
231    /** Whether or not the source register is ready.
232     *  @todo: Not sure this should be here vs the derived class.
233     */
234    bool _readySrcRegIdx[MaxInstSrcRegs];
235
236  public:
237    /** BaseDynInst constructor given a binary instruction.
238     *  @param inst The binary instruction.
239     *  @param PC The PC of the instruction.
240     *  @param pred_PC The predicted next PC.
241     *  @param seq_num The sequence number of the instruction.
242     *  @param cpu Pointer to the instruction's CPU.
243     */
244    BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
245                ImplCPU *cpu);
246
247    /** BaseDynInst constructor given a StaticInst pointer.
248     *  @param _staticInst The StaticInst for this BaseDynInst.
249     */
250    BaseDynInst(StaticInstPtr &_staticInst);
251
252    /** BaseDynInst destructor. */
253    ~BaseDynInst();
254
255  private:
256    /** Function to initialize variables in the constructors. */
257    void initVars();
258
259  public:
260    /** Dumps out contents of this BaseDynInst. */
261    void dump();
262
263    /** Dumps out contents of this BaseDynInst into given string. */
264    void dump(std::string &outstring);
265
266    /** Returns the fault type. */
267    Fault getFault() { return fault; }
268
269    /** Checks whether or not this instruction has had its branch target
270     *  calculated yet.  For now it is not utilized and is hacked to be
271     *  always false.
272     *  @todo: Actually use this instruction.
273     */
274    bool doneTargCalc() { return false; }
275
276    /** Returns the next PC.  This could be the speculative next PC if it is
277     *  called prior to the actual branch target being calculated.
278     */
279    Addr readNextPC() { return nextPC; }
280
281    /** Returns the next NPC.  This could be the speculative next NPC if it is
282     *  called prior to the actual branch target being calculated.
283     */
284    Addr readNextNPC() { return nextNPC; }
285
286    /** Set the predicted target of this current instruction. */
287    void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
288
289    /** Returns the predicted target of the branch. */
290    Addr readPredTarg() { return predPC; }
291
292    /** Returns whether the instruction was predicted taken or not. */
293    bool predTaken()
294#if THE_ISA == ALPHA_ISA
295    { return predPC != (PC + sizeof(MachInst)); }
296#else
297    { return predPC != (nextPC + sizeof(MachInst)); }
298#endif
299
300    /** Returns whether the instruction mispredicted. */
301    bool mispredicted()
302#if THE_ISA == ALPHA_ISA
303    { return predPC != nextPC; }
304#else
305    { return predPC != nextNPC; }
306#endif
307    //
308    //  Instruction types.  Forward checks to StaticInst object.
309    //
310    bool isNop()	  const { return staticInst->isNop(); }
311    bool isMemRef()    	  const { return staticInst->isMemRef(); }
312    bool isLoad()	  const { return staticInst->isLoad(); }
313    bool isStore()	  const { return staticInst->isStore(); }
314    bool isStoreConditional() const
315    { return staticInst->isStoreConditional(); }
316    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
317    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
318    bool isCopy()         const { return staticInst->isCopy(); }
319    bool isInteger()	  const { return staticInst->isInteger(); }
320    bool isFloating()	  const { return staticInst->isFloating(); }
321    bool isControl()	  const { return staticInst->isControl(); }
322    bool isCall()	  const { return staticInst->isCall(); }
323    bool isReturn()	  const { return staticInst->isReturn(); }
324    bool isDirectCtrl()	  const { return staticInst->isDirectCtrl(); }
325    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
326    bool isCondCtrl()	  const { return staticInst->isCondCtrl(); }
327    bool isUncondCtrl()	  const { return staticInst->isUncondCtrl(); }
328    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
329    bool isThreadSync()   const { return staticInst->isThreadSync(); }
330    bool isSerializing()  const { return staticInst->isSerializing(); }
331    bool isSerializeBefore() const
332    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
333    bool isSerializeAfter() const
334    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
335    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
336    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
337    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
338    bool isQuiesce() const { return staticInst->isQuiesce(); }
339    bool isIprAccess() const { return staticInst->isIprAccess(); }
340    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
341
342    /** Temporarily sets this instruction as a serialize before instruction. */
343    void setSerializeBefore() { status.set(SerializeBefore); }
344
345    /** Clears the serializeBefore part of this instruction. */
346    void clearSerializeBefore() { status.reset(SerializeBefore); }
347
348    /** Checks if this serializeBefore is only temporarily set. */
349    bool isTempSerializeBefore() { return status[SerializeBefore]; }
350
351    /** Temporarily sets this instruction as a serialize after instruction. */
352    void setSerializeAfter() { status.set(SerializeAfter); }
353
354    /** Clears the serializeAfter part of this instruction.*/
355    void clearSerializeAfter() { status.reset(SerializeAfter); }
356
357    /** Checks if this serializeAfter is only temporarily set. */
358    bool isTempSerializeAfter() { return status[SerializeAfter]; }
359
360    /** Sets the serialization part of this instruction as handled. */
361    void setSerializeHandled() { status.set(SerializeHandled); }
362
363    /** Checks if the serialization part of this instruction has been
364     *  handled.  This does not apply to the temporary serializing
365     *  state; it only applies to this instruction's own permanent
366     *  serializing state.
367     */
368    bool isSerializeHandled() { return status[SerializeHandled]; }
369
370    /** Returns the opclass of this instruction. */
371    OpClass opClass() const { return staticInst->opClass(); }
372
373    /** Returns the branch target address. */
374    Addr branchTarget() const { return staticInst->branchTarget(PC); }
375
376    /** Returns the number of source registers. */
377    int8_t numSrcRegs()	const { return staticInst->numSrcRegs(); }
378
379    /** Returns the number of destination registers. */
380    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
381
382    // the following are used to track physical register usage
383    // for machines with separate int & FP reg files
384    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
385    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
386
387    /** Returns the logical register index of the i'th destination register. */
388    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
389
390    /** Returns the logical register index of the i'th source register. */
391    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
392
393    /** Returns the result of an integer instruction. */
394    uint64_t readIntResult() { return instResult.integer; }
395
396    /** Returns the result of a floating point instruction. */
397    float readFloatResult() { return instResult.fp; }
398
399    /** Returns the result of a floating point (double) instruction. */
400    double readDoubleResult() { return instResult.dbl; }
401
402    /** Records an integer register being set to a value. */
403    void setIntReg(const StaticInst *si, int idx, uint64_t val)
404    {
405        instResult.integer = val;
406    }
407
408    /** Records an fp register being set to a value. */
409    void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width)
410    {
411        if (width == 32)
412            instResult.fp = val;
413        else if (width == 64)
414            instResult.dbl = val;
415        else
416            panic("Unsupported width!");
417    }
418
419    /** Records an fp register being set to a value. */
420    void setFloatReg(const StaticInst *si, int idx, FloatReg val)
421    {
422        instResult.fp = val;
423    }
424
425    /** Records an fp register being set to an integer value. */
426    void setFloatRegBits(const StaticInst *si, int idx, uint64_t val, int width)
427    {
428        instResult.integer = val;
429    }
430
431    /** Records an fp register being set to an integer value. */
432    void setFloatRegBits(const StaticInst *si, int idx, uint64_t val)
433    {
434        instResult.integer = val;
435    }
436
437    /** Records that one of the source registers is ready. */
438    void markSrcRegReady();
439
440    /** Marks a specific register as ready. */
441    void markSrcRegReady(RegIndex src_idx);
442
443    /** Returns if a source register is ready. */
444    bool isReadySrcRegIdx(int idx) const
445    {
446        return this->_readySrcRegIdx[idx];
447    }
448
449    /** Sets this instruction as completed. */
450    void setCompleted() { status.set(Completed); }
451
452    /** Returns whether or not this instruction is completed. */
453    bool isCompleted() const { return status[Completed]; }
454
455    /** Marks the result as ready. */
456    void setResultReady() { status.set(ResultReady); }
457
458    /** Returns whether or not the result is ready. */
459    bool isResultReady() const { return status[ResultReady]; }
460
461    /** Sets this instruction as ready to issue. */
462    void setCanIssue() { status.set(CanIssue); }
463
464    /** Returns whether or not this instruction is ready to issue. */
465    bool readyToIssue() const { return status[CanIssue]; }
466
467    /** Sets this instruction as issued from the IQ. */
468    void setIssued() { status.set(Issued); }
469
470    /** Returns whether or not this instruction has issued. */
471    bool isIssued() const { return status[Issued]; }
472
473    /** Sets this instruction as executed. */
474    void setExecuted() { status.set(Executed); }
475
476    /** Returns whether or not this instruction has executed. */
477    bool isExecuted() const { return status[Executed]; }
478
479    /** Sets this instruction as ready to commit. */
480    void setCanCommit() { status.set(CanCommit); }
481
482    /** Clears this instruction as being ready to commit. */
483    void clearCanCommit() { status.reset(CanCommit); }
484
485    /** Returns whether or not this instruction is ready to commit. */
486    bool readyToCommit() const { return status[CanCommit]; }
487
488    void setAtCommit() { status.set(AtCommit); }
489
490    bool isAtCommit() { return status[AtCommit]; }
491
492    /** Sets this instruction as committed. */
493    void setCommitted() { status.set(Committed); }
494
495    /** Returns whether or not this instruction is committed. */
496    bool isCommitted() const { return status[Committed]; }
497
498    /** Sets this instruction as squashed. */
499    void setSquashed() { status.set(Squashed); }
500
501    /** Returns whether or not this instruction is squashed. */
502    bool isSquashed() const { return status[Squashed]; }
503
504    //Instruction Queue Entry
505    //-----------------------
506    /** Sets this instruction as a entry the IQ. */
507    void setInIQ() { status.set(IqEntry); }
508
509    /** Sets this instruction as a entry the IQ. */
510    void clearInIQ() { status.reset(IqEntry); }
511
512    /** Returns whether or not this instruction has issued. */
513    bool isInIQ() const { return status[IqEntry]; }
514
515    /** Sets this instruction as squashed in the IQ. */
516    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
517
518    /** Returns whether or not this instruction is squashed in the IQ. */
519    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
520
521
522    //Load / Store Queue Functions
523    //-----------------------
524    /** Sets this instruction as a entry the LSQ. */
525    void setInLSQ() { status.set(LsqEntry); }
526
527    /** Sets this instruction as a entry the LSQ. */
528    void removeInLSQ() { status.reset(LsqEntry); }
529
530    /** Returns whether or not this instruction is in the LSQ. */
531    bool isInLSQ() const { return status[LsqEntry]; }
532
533    /** Sets this instruction as squashed in the LSQ. */
534    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
535
536    /** Returns whether or not this instruction is squashed in the LSQ. */
537    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
538
539
540    //Reorder Buffer Functions
541    //-----------------------
542    /** Sets this instruction as a entry the ROB. */
543    void setInROB() { status.set(RobEntry); }
544
545    /** Sets this instruction as a entry the ROB. */
546    void clearInROB() { status.reset(RobEntry); }
547
548    /** Returns whether or not this instruction is in the ROB. */
549    bool isInROB() const { return status[RobEntry]; }
550
551    /** Sets this instruction as squashed in the ROB. */
552    void setSquashedInROB() { status.set(SquashedInROB); }
553
554    /** Returns whether or not this instruction is squashed in the ROB. */
555    bool isSquashedInROB() const { return status[SquashedInROB]; }
556
557    /** Read the PC of this instruction. */
558    const Addr readPC() const { return PC; }
559
560    /** Set the next PC of this instruction (its actual target). */
561    void setNextPC(uint64_t val)
562    {
563        nextPC = val;
564    }
565
566    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
567    void setNextNPC(uint64_t val)
568    {
569        nextNPC = val;
570    }
571
572    /** Sets the ASID. */
573    void setASID(short addr_space_id) { asid = addr_space_id; }
574
575    /** Sets the thread id. */
576    void setTid(unsigned tid) { threadNumber = tid; }
577
578    /** Sets the pointer to the thread state. */
579    void setThreadState(ImplState *state) { thread = state; }
580
581    /** Returns the thread context. */
582    ThreadContext *tcBase() { return thread->getTC(); }
583
584  private:
585    /** Instruction effective address.
586     *  @todo: Consider if this is necessary or not.
587     */
588    Addr instEffAddr;
589
590    /** Whether or not the effective address calculation is completed.
591     *  @todo: Consider if this is necessary or not.
592     */
593    bool eaCalcDone;
594
595  public:
596    /** Sets the effective address. */
597    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
598
599    /** Returns the effective address. */
600    const Addr &getEA() const { return instEffAddr; }
601
602    /** Returns whether or not the eff. addr. calculation has been completed. */
603    bool doneEACalc() { return eaCalcDone; }
604
605    /** Returns whether or not the eff. addr. source registers are ready. */
606    bool eaSrcsReady();
607
608    /** Whether or not the memory operation is done. */
609    bool memOpDone;
610
611  public:
612    /** Load queue index. */
613    int16_t lqIdx;
614
615    /** Store queue index. */
616    int16_t sqIdx;
617
618    /** Iterator pointing to this BaseDynInst in the list of all insts. */
619    ListIt instListIt;
620
621    /** Returns iterator to this instruction in the list of all insts. */
622    ListIt &getInstListIt() { return instListIt; }
623
624    /** Sets iterator for this instruction in the list of all insts. */
625    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
626};
627
628template<class Impl>
629template<class T>
630inline Fault
631BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
632{
633    // Sometimes reads will get retried, so they may come through here
634    // twice.
635    if (!req) {
636        req = new Request();
637        req->setVirt(asid, addr, sizeof(T), flags, this->PC);
638        req->setThreadContext(thread->readCpuId(), threadNumber);
639    } else {
640        assert(addr == req->getVaddr());
641    }
642
643    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
644        TheISA::VMPageSize) {
645        return TheISA::genAlignmentFault();
646    }
647
648    fault = cpu->translateDataReadReq(req, thread);
649
650    if (fault == NoFault) {
651        effAddr = req->getVaddr();
652        physEffAddr = req->getPaddr();
653        memReqFlags = req->getFlags();
654
655#if 0
656        if (cpu->system->memctrl->badaddr(physEffAddr)) {
657            fault = TheISA::genMachineCheckFault();
658            data = (T)-1;
659            this->setExecuted();
660        } else {
661            fault = cpu->read(req, data, lqIdx);
662        }
663#else
664        fault = cpu->read(req, data, lqIdx);
665#endif
666    } else {
667        // Return a fixed value to keep simulation deterministic even
668        // along misspeculated paths.
669        data = (T)-1;
670
671        // Commit will have to clean up whatever happened.  Set this
672        // instruction as executed.
673        this->setExecuted();
674    }
675
676    if (traceData) {
677        traceData->setAddr(addr);
678        traceData->setData(data);
679    }
680
681    return fault;
682}
683
684template<class Impl>
685template<class T>
686inline Fault
687BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
688{
689    if (traceData) {
690        traceData->setAddr(addr);
691        traceData->setData(data);
692    }
693
694    assert(req == NULL);
695
696    req = new Request();
697    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
698    req->setThreadContext(thread->readCpuId(), threadNumber);
699
700    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
701        TheISA::VMPageSize) {
702        return TheISA::genAlignmentFault();
703    }
704
705    fault = cpu->translateDataWriteReq(req, thread);
706
707    if (fault == NoFault) {
708        effAddr = req->getVaddr();
709        physEffAddr = req->getPaddr();
710        memReqFlags = req->getFlags();
711#if 0
712        if (cpu->system->memctrl->badaddr(physEffAddr)) {
713            fault = TheISA::genMachineCheckFault();
714        } else {
715            fault = cpu->write(req, data, sqIdx);
716        }
717#else
718        fault = cpu->write(req, data, sqIdx);
719#endif
720    }
721
722    if (res) {
723        // always return some result to keep misspeculated paths
724        // (which will ignore faults) deterministic
725        *res = (fault == NoFault) ? req->getScResult() : 0;
726    }
727
728    return fault;
729}
730
731#endif // __CPU_BASE_DYN_INST_HH__
732