base_dyn_inst.hh revision 10030:b531e328342d
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <bitset>
50#include <list>
51#include <string>
52#include <queue>
53
54#include "arch/utility.hh"
55#include "base/trace.hh"
56#include "config/the_isa.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/fault_fwd.hh"
67#include "sim/system.hh"
68#include "sim/tlb.hh"
69
70/**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75template <class Impl>
76class BaseDynInst : public RefCounted
77{
78  public:
79    // Typedef for the CPU.
80    typedef typename Impl::CPUType ImplCPU;
81    typedef typename ImplCPU::ImplState ImplState;
82
83    // Logical register index type.
84    typedef TheISA::RegIndex RegIndex;
85    // Integer register type.
86    typedef TheISA::IntReg IntReg;
87    // Floating point register type.
88    typedef TheISA::FloatReg FloatReg;
89
90    // The DynInstPtr type.
91    typedef typename Impl::DynInstPtr DynInstPtr;
92    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94    // The list of instructions iterator type.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    enum {
98        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
99        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
100    };
101
102    union Result {
103        uint64_t integer;
104        double dbl;
105        void set(uint64_t i) { integer = i; }
106        void set(double d) { dbl = d; }
107        void get(uint64_t& i) { i = integer; }
108        void get(double& d) { d = dbl; }
109    };
110
111  protected:
112    enum Status {
113        IqEntry,                 /// Instruction is in the IQ
114        RobEntry,                /// Instruction is in the ROB
115        LsqEntry,                /// Instruction is in the LSQ
116        Completed,               /// Instruction has completed
117        ResultReady,             /// Instruction has its result
118        CanIssue,                /// Instruction can issue and execute
119        Issued,                  /// Instruction has issued
120        Executed,                /// Instruction has executed
121        CanCommit,               /// Instruction can commit
122        AtCommit,                /// Instruction has reached commit
123        Committed,               /// Instruction has committed
124        Squashed,                /// Instruction is squashed
125        SquashedInIQ,            /// Instruction is squashed in the IQ
126        SquashedInLSQ,           /// Instruction is squashed in the LSQ
127        SquashedInROB,           /// Instruction is squashed in the ROB
128        RecoverInst,             /// Is a recover instruction
129        BlockingInst,            /// Is a blocking instruction
130        ThreadsyncWait,          /// Is a thread synchronization instruction
131        SerializeBefore,         /// Needs to serialize on
132                                 /// instructions ahead of it
133        SerializeAfter,          /// Needs to serialize instructions behind it
134        SerializeHandled,        /// Serialization has been handled
135        NumStatus
136    };
137
138    enum Flags {
139        TranslationStarted,
140        TranslationCompleted,
141        PossibleLoadViolation,
142        HitExternalSnoop,
143        EffAddrValid,
144        RecordResult,
145        Predicate,
146        PredTaken,
147        /** Whether or not the effective address calculation is completed.
148         *  @todo: Consider if this is necessary or not.
149         */
150        EACalcDone,
151        IsUncacheable,
152        ReqMade,
153        MemOpDone,
154        MaxFlags
155    };
156
157  public:
158    /** The sequence number of the instruction. */
159    InstSeqNum seqNum;
160
161    /** The StaticInst used by this BaseDynInst. */
162    StaticInstPtr staticInst;
163
164    /** Pointer to the Impl's CPU object. */
165    ImplCPU *cpu;
166
167    BaseCPU *getCpuPtr() { return cpu; }
168
169    /** Pointer to the thread state. */
170    ImplState *thread;
171
172    /** The kind of fault this instruction has generated. */
173    Fault fault;
174
175    /** InstRecord that tracks this instructions. */
176    Trace::InstRecord *traceData;
177
178  protected:
179    /** The result of the instruction; assumes an instruction can have many
180     *  destination registers.
181     */
182    std::queue<Result> instResult;
183
184    /** PC state for this instruction. */
185    TheISA::PCState pc;
186
187    /* An amalgamation of a lot of boolean values into one */
188    std::bitset<MaxFlags> instFlags;
189
190    /** The status of this BaseDynInst.  Several bits can be set. */
191    std::bitset<NumStatus> status;
192
193     /** Whether or not the source register is ready.
194     *  @todo: Not sure this should be here vs the derived class.
195     */
196    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
197
198  public:
199    /** The thread this instruction is from. */
200    ThreadID threadNumber;
201
202    /** Iterator pointing to this BaseDynInst in the list of all insts. */
203    ListIt instListIt;
204
205    ////////////////////// Branch Data ///////////////
206    /** Predicted PC state after this instruction. */
207    TheISA::PCState predPC;
208
209    /** The Macroop if one exists */
210    StaticInstPtr macroop;
211
212    /** How many source registers are ready. */
213    uint8_t readyRegs;
214
215  public:
216    /////////////////////// Load Store Data //////////////////////
217    /** The effective virtual address (lds & stores only). */
218    Addr effAddr;
219
220    /** The effective physical address. */
221    Addr physEffAddr;
222
223    /** The memory request flags (from translation). */
224    unsigned memReqFlags;
225
226    /** data address space ID, for loads & stores. */
227    short asid;
228
229    /** The size of the request */
230    uint8_t effSize;
231
232    /** Pointer to the data for the memory access. */
233    uint8_t *memData;
234
235    /** Load queue index. */
236    int16_t lqIdx;
237
238    /** Store queue index. */
239    int16_t sqIdx;
240
241
242    /////////////////////// TLB Miss //////////////////////
243    /**
244     * Saved memory requests (needed when the DTB address translation is
245     * delayed due to a hw page table walk).
246     */
247    RequestPtr savedReq;
248    RequestPtr savedSreqLow;
249    RequestPtr savedSreqHigh;
250
251    /////////////////////// Checker //////////////////////
252    // Need a copy of main request pointer to verify on writes.
253    RequestPtr reqToVerify;
254
255  private:
256    /** Instruction effective address.
257     *  @todo: Consider if this is necessary or not.
258     */
259    Addr instEffAddr;
260
261  protected:
262    /** Flattened register index of the destination registers of this
263     *  instruction.
264     */
265    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
266
267    /** Physical register index of the destination registers of this
268     *  instruction.
269     */
270    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
271
272    /** Physical register index of the source registers of this
273     *  instruction.
274     */
275    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
276
277    /** Physical register index of the previous producers of the
278     *  architected destinations.
279     */
280    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
281
282
283  public:
284    /** Records changes to result? */
285    void recordResult(bool f) { instFlags[RecordResult] = f; }
286
287    /** Is the effective virtual address valid. */
288    bool effAddrValid() const { return instFlags[EffAddrValid]; }
289
290    /** Whether or not the memory operation is done. */
291    bool memOpDone() const { return instFlags[MemOpDone]; }
292    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
293
294
295    ////////////////////////////////////////////
296    //
297    // INSTRUCTION EXECUTION
298    //
299    ////////////////////////////////////////////
300
301    void demapPage(Addr vaddr, uint64_t asn)
302    {
303        cpu->demapPage(vaddr, asn);
304    }
305    void demapInstPage(Addr vaddr, uint64_t asn)
306    {
307        cpu->demapPage(vaddr, asn);
308    }
309    void demapDataPage(Addr vaddr, uint64_t asn)
310    {
311        cpu->demapPage(vaddr, asn);
312    }
313
314    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
315
316    Fault writeMem(uint8_t *data, unsigned size,
317                   Addr addr, unsigned flags, uint64_t *res);
318
319    /** Splits a request in two if it crosses a dcache block. */
320    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
321                      RequestPtr &sreqHigh);
322
323    /** Initiate a DTB address translation. */
324    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
325                             RequestPtr sreqHigh, uint64_t *res,
326                             BaseTLB::Mode mode);
327
328    /** Finish a DTB address translation. */
329    void finishTranslation(WholeTranslationState *state);
330
331    /** True if the DTB address translation has started. */
332    bool translationStarted() const { return instFlags[TranslationStarted]; }
333    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
334
335    /** True if the DTB address translation has completed. */
336    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
337    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
338
339    /** True if this address was found to match a previous load and they issued
340     * out of order. If that happend, then it's only a problem if an incoming
341     * snoop invalidate modifies the line, in which case we need to squash.
342     * If nothing modified the line the order doesn't matter.
343     */
344    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
345    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
346
347    /** True if the address hit a external snoop while sitting in the LSQ.
348     * If this is true and a older instruction sees it, this instruction must
349     * reexecute
350     */
351    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
352    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
353
354    /**
355     * Returns true if the DTB address translation is being delayed due to a hw
356     * page table walk.
357     */
358    bool isTranslationDelayed() const
359    {
360        return (translationStarted() && !translationCompleted());
361    }
362
363  public:
364#ifdef DEBUG
365    void dumpSNList();
366#endif
367
368    /** Returns the physical register index of the i'th destination
369     *  register.
370     */
371    PhysRegIndex renamedDestRegIdx(int idx) const
372    {
373        return _destRegIdx[idx];
374    }
375
376    /** Returns the physical register index of the i'th source register. */
377    PhysRegIndex renamedSrcRegIdx(int idx) const
378    {
379        assert(TheISA::MaxInstSrcRegs > idx);
380        return _srcRegIdx[idx];
381    }
382
383    /** Returns the flattened register index of the i'th destination
384     *  register.
385     */
386    TheISA::RegIndex flattenedDestRegIdx(int idx) const
387    {
388        return _flatDestRegIdx[idx];
389    }
390
391    /** Returns the physical register index of the previous physical register
392     *  that remapped to the same logical register index.
393     */
394    PhysRegIndex prevDestRegIdx(int idx) const
395    {
396        return _prevDestRegIdx[idx];
397    }
398
399    /** Renames a destination register to a physical register.  Also records
400     *  the previous physical register that the logical register mapped to.
401     */
402    void renameDestReg(int idx,
403                       PhysRegIndex renamed_dest,
404                       PhysRegIndex previous_rename)
405    {
406        _destRegIdx[idx] = renamed_dest;
407        _prevDestRegIdx[idx] = previous_rename;
408    }
409
410    /** Renames a source logical register to the physical register which
411     *  has/will produce that logical register's result.
412     *  @todo: add in whether or not the source register is ready.
413     */
414    void renameSrcReg(int idx, PhysRegIndex renamed_src)
415    {
416        _srcRegIdx[idx] = renamed_src;
417    }
418
419    /** Flattens a destination architectural register index into a logical
420     * index.
421     */
422    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
423    {
424        _flatDestRegIdx[idx] = flattened_dest;
425    }
426    /** BaseDynInst constructor given a binary instruction.
427     *  @param staticInst A StaticInstPtr to the underlying instruction.
428     *  @param pc The PC state for the instruction.
429     *  @param predPC The predicted next PC state for the instruction.
430     *  @param seq_num The sequence number of the instruction.
431     *  @param cpu Pointer to the instruction's CPU.
432     */
433    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
434                TheISA::PCState pc, TheISA::PCState predPC,
435                InstSeqNum seq_num, ImplCPU *cpu);
436
437    /** BaseDynInst constructor given a StaticInst pointer.
438     *  @param _staticInst The StaticInst for this BaseDynInst.
439     */
440    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
441
442    /** BaseDynInst destructor. */
443    ~BaseDynInst();
444
445  private:
446    /** Function to initialize variables in the constructors. */
447    void initVars();
448
449  public:
450    /** Dumps out contents of this BaseDynInst. */
451    void dump();
452
453    /** Dumps out contents of this BaseDynInst into given string. */
454    void dump(std::string &outstring);
455
456    /** Read this CPU's ID. */
457    int cpuId() { return cpu->cpuId(); }
458
459    /** Read this CPU's data requestor ID */
460    MasterID masterId() { return cpu->dataMasterId(); }
461
462    /** Read this context's system-wide ID **/
463    int contextId() { return thread->contextId(); }
464
465    /** Returns the fault type. */
466    Fault getFault() { return fault; }
467
468    /** Checks whether or not this instruction has had its branch target
469     *  calculated yet.  For now it is not utilized and is hacked to be
470     *  always false.
471     *  @todo: Actually use this instruction.
472     */
473    bool doneTargCalc() { return false; }
474
475    /** Set the predicted target of this current instruction. */
476    void setPredTarg(const TheISA::PCState &_predPC)
477    {
478        predPC = _predPC;
479    }
480
481    const TheISA::PCState &readPredTarg() { return predPC; }
482
483    /** Returns the predicted PC immediately after the branch. */
484    Addr predInstAddr() { return predPC.instAddr(); }
485
486    /** Returns the predicted PC two instructions after the branch */
487    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
488
489    /** Returns the predicted micro PC after the branch */
490    Addr predMicroPC() { return predPC.microPC(); }
491
492    /** Returns whether the instruction was predicted taken or not. */
493    bool readPredTaken()
494    {
495        return instFlags[PredTaken];
496    }
497
498    void setPredTaken(bool predicted_taken)
499    {
500        instFlags[PredTaken] = predicted_taken;
501    }
502
503    /** Returns whether the instruction mispredicted. */
504    bool mispredicted()
505    {
506        TheISA::PCState tempPC = pc;
507        TheISA::advancePC(tempPC, staticInst);
508        return !(tempPC == predPC);
509    }
510
511    //
512    //  Instruction types.  Forward checks to StaticInst object.
513    //
514    bool isNop()          const { return staticInst->isNop(); }
515    bool isMemRef()       const { return staticInst->isMemRef(); }
516    bool isLoad()         const { return staticInst->isLoad(); }
517    bool isStore()        const { return staticInst->isStore(); }
518    bool isStoreConditional() const
519    { return staticInst->isStoreConditional(); }
520    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
521    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
522    bool isInteger()      const { return staticInst->isInteger(); }
523    bool isFloating()     const { return staticInst->isFloating(); }
524    bool isControl()      const { return staticInst->isControl(); }
525    bool isCall()         const { return staticInst->isCall(); }
526    bool isReturn()       const { return staticInst->isReturn(); }
527    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
528    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
529    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
530    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
531    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
532    bool isThreadSync()   const { return staticInst->isThreadSync(); }
533    bool isSerializing()  const { return staticInst->isSerializing(); }
534    bool isSerializeBefore() const
535    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
536    bool isSerializeAfter() const
537    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
538    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
539    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
540    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
541    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
542    bool isQuiesce() const { return staticInst->isQuiesce(); }
543    bool isIprAccess() const { return staticInst->isIprAccess(); }
544    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
545    bool isSyscall() const { return staticInst->isSyscall(); }
546    bool isMacroop() const { return staticInst->isMacroop(); }
547    bool isMicroop() const { return staticInst->isMicroop(); }
548    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
549    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
550    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
551    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
552
553    /** Temporarily sets this instruction as a serialize before instruction. */
554    void setSerializeBefore() { status.set(SerializeBefore); }
555
556    /** Clears the serializeBefore part of this instruction. */
557    void clearSerializeBefore() { status.reset(SerializeBefore); }
558
559    /** Checks if this serializeBefore is only temporarily set. */
560    bool isTempSerializeBefore() { return status[SerializeBefore]; }
561
562    /** Temporarily sets this instruction as a serialize after instruction. */
563    void setSerializeAfter() { status.set(SerializeAfter); }
564
565    /** Clears the serializeAfter part of this instruction.*/
566    void clearSerializeAfter() { status.reset(SerializeAfter); }
567
568    /** Checks if this serializeAfter is only temporarily set. */
569    bool isTempSerializeAfter() { return status[SerializeAfter]; }
570
571    /** Sets the serialization part of this instruction as handled. */
572    void setSerializeHandled() { status.set(SerializeHandled); }
573
574    /** Checks if the serialization part of this instruction has been
575     *  handled.  This does not apply to the temporary serializing
576     *  state; it only applies to this instruction's own permanent
577     *  serializing state.
578     */
579    bool isSerializeHandled() { return status[SerializeHandled]; }
580
581    /** Returns the opclass of this instruction. */
582    OpClass opClass() const { return staticInst->opClass(); }
583
584    /** Returns the branch target address. */
585    TheISA::PCState branchTarget() const
586    { return staticInst->branchTarget(pc); }
587
588    /** Returns the number of source registers. */
589    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
590
591    /** Returns the number of destination registers. */
592    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
593
594    // the following are used to track physical register usage
595    // for machines with separate int & FP reg files
596    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
597    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
598
599    /** Returns the logical register index of the i'th destination register. */
600    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
601
602    /** Returns the logical register index of the i'th source register. */
603    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
604
605    /** Pops a result off the instResult queue */
606    template <class T>
607    void popResult(T& t)
608    {
609        if (!instResult.empty()) {
610            instResult.front().get(t);
611            instResult.pop();
612        }
613    }
614
615    /** Read the most recent result stored by this instruction */
616    template <class T>
617    void readResult(T& t)
618    {
619        instResult.back().get(t);
620    }
621
622    /** Pushes a result onto the instResult queue */
623    template <class T>
624    void setResult(T t)
625    {
626        if (instFlags[RecordResult]) {
627            Result instRes;
628            instRes.set(t);
629            instResult.push(instRes);
630        }
631    }
632
633    /** Records an integer register being set to a value. */
634    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
635    {
636        setResult<uint64_t>(val);
637    }
638
639    /** Records a CC register being set to a value. */
640    void setCCRegOperand(const StaticInst *si, int idx, uint64_t val)
641    {
642        setResult<uint64_t>(val);
643    }
644
645    /** Records an fp register being set to a value. */
646    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
647                            int width)
648    {
649        if (width == 32 || width == 64) {
650            setResult<double>(val);
651        } else {
652            panic("Unsupported width!");
653        }
654    }
655
656    /** Records an fp register being set to a value. */
657    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
658    {
659        setResult<double>(val);
660    }
661
662    /** Records an fp register being set to an integer value. */
663    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
664                                int width)
665    {
666        setResult<uint64_t>(val);
667    }
668
669    /** Records an fp register being set to an integer value. */
670    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
671    {
672        setResult<uint64_t>(val);
673    }
674
675    /** Records that one of the source registers is ready. */
676    void markSrcRegReady();
677
678    /** Marks a specific register as ready. */
679    void markSrcRegReady(RegIndex src_idx);
680
681    /** Returns if a source register is ready. */
682    bool isReadySrcRegIdx(int idx) const
683    {
684        return this->_readySrcRegIdx[idx];
685    }
686
687    /** Sets this instruction as completed. */
688    void setCompleted() { status.set(Completed); }
689
690    /** Returns whether or not this instruction is completed. */
691    bool isCompleted() const { return status[Completed]; }
692
693    /** Marks the result as ready. */
694    void setResultReady() { status.set(ResultReady); }
695
696    /** Returns whether or not the result is ready. */
697    bool isResultReady() const { return status[ResultReady]; }
698
699    /** Sets this instruction as ready to issue. */
700    void setCanIssue() { status.set(CanIssue); }
701
702    /** Returns whether or not this instruction is ready to issue. */
703    bool readyToIssue() const { return status[CanIssue]; }
704
705    /** Clears this instruction being able to issue. */
706    void clearCanIssue() { status.reset(CanIssue); }
707
708    /** Sets this instruction as issued from the IQ. */
709    void setIssued() { status.set(Issued); }
710
711    /** Returns whether or not this instruction has issued. */
712    bool isIssued() const { return status[Issued]; }
713
714    /** Clears this instruction as being issued. */
715    void clearIssued() { status.reset(Issued); }
716
717    /** Sets this instruction as executed. */
718    void setExecuted() { status.set(Executed); }
719
720    /** Returns whether or not this instruction has executed. */
721    bool isExecuted() const { return status[Executed]; }
722
723    /** Sets this instruction as ready to commit. */
724    void setCanCommit() { status.set(CanCommit); }
725
726    /** Clears this instruction as being ready to commit. */
727    void clearCanCommit() { status.reset(CanCommit); }
728
729    /** Returns whether or not this instruction is ready to commit. */
730    bool readyToCommit() const { return status[CanCommit]; }
731
732    void setAtCommit() { status.set(AtCommit); }
733
734    bool isAtCommit() { return status[AtCommit]; }
735
736    /** Sets this instruction as committed. */
737    void setCommitted() { status.set(Committed); }
738
739    /** Returns whether or not this instruction is committed. */
740    bool isCommitted() const { return status[Committed]; }
741
742    /** Sets this instruction as squashed. */
743    void setSquashed() { status.set(Squashed); }
744
745    /** Returns whether or not this instruction is squashed. */
746    bool isSquashed() const { return status[Squashed]; }
747
748    //Instruction Queue Entry
749    //-----------------------
750    /** Sets this instruction as a entry the IQ. */
751    void setInIQ() { status.set(IqEntry); }
752
753    /** Sets this instruction as a entry the IQ. */
754    void clearInIQ() { status.reset(IqEntry); }
755
756    /** Returns whether or not this instruction has issued. */
757    bool isInIQ() const { return status[IqEntry]; }
758
759    /** Sets this instruction as squashed in the IQ. */
760    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
761
762    /** Returns whether or not this instruction is squashed in the IQ. */
763    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
764
765
766    //Load / Store Queue Functions
767    //-----------------------
768    /** Sets this instruction as a entry the LSQ. */
769    void setInLSQ() { status.set(LsqEntry); }
770
771    /** Sets this instruction as a entry the LSQ. */
772    void removeInLSQ() { status.reset(LsqEntry); }
773
774    /** Returns whether or not this instruction is in the LSQ. */
775    bool isInLSQ() const { return status[LsqEntry]; }
776
777    /** Sets this instruction as squashed in the LSQ. */
778    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
779
780    /** Returns whether or not this instruction is squashed in the LSQ. */
781    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
782
783
784    //Reorder Buffer Functions
785    //-----------------------
786    /** Sets this instruction as a entry the ROB. */
787    void setInROB() { status.set(RobEntry); }
788
789    /** Sets this instruction as a entry the ROB. */
790    void clearInROB() { status.reset(RobEntry); }
791
792    /** Returns whether or not this instruction is in the ROB. */
793    bool isInROB() const { return status[RobEntry]; }
794
795    /** Sets this instruction as squashed in the ROB. */
796    void setSquashedInROB() { status.set(SquashedInROB); }
797
798    /** Returns whether or not this instruction is squashed in the ROB. */
799    bool isSquashedInROB() const { return status[SquashedInROB]; }
800
801    /** Read the PC state of this instruction. */
802    const TheISA::PCState pcState() const { return pc; }
803
804    /** Set the PC state of this instruction. */
805    const void pcState(const TheISA::PCState &val) { pc = val; }
806
807    /** Read the PC of this instruction. */
808    const Addr instAddr() const { return pc.instAddr(); }
809
810    /** Read the PC of the next instruction. */
811    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
812
813    /**Read the micro PC of this instruction. */
814    const Addr microPC() const { return pc.microPC(); }
815
816    bool readPredicate()
817    {
818        return instFlags[Predicate];
819    }
820
821    void setPredicate(bool val)
822    {
823        instFlags[Predicate] = val;
824
825        if (traceData) {
826            traceData->setPredicate(val);
827        }
828    }
829
830    /** Sets the ASID. */
831    void setASID(short addr_space_id) { asid = addr_space_id; }
832
833    /** Sets the thread id. */
834    void setTid(ThreadID tid) { threadNumber = tid; }
835
836    /** Sets the pointer to the thread state. */
837    void setThreadState(ImplState *state) { thread = state; }
838
839    /** Returns the thread context. */
840    ThreadContext *tcBase() { return thread->getTC(); }
841
842  public:
843    /** Sets the effective address. */
844    void setEA(Addr &ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
845
846    /** Returns the effective address. */
847    const Addr &getEA() const { return instEffAddr; }
848
849    /** Returns whether or not the eff. addr. calculation has been completed. */
850    bool doneEACalc() { return instFlags[EACalcDone]; }
851
852    /** Returns whether or not the eff. addr. source registers are ready. */
853    bool eaSrcsReady();
854
855    /** Is this instruction's memory access uncacheable. */
856    bool uncacheable() { return instFlags[IsUncacheable]; }
857
858    /** Has this instruction generated a memory request. */
859    bool hasRequest() { return instFlags[ReqMade]; }
860
861    /** Returns iterator to this instruction in the list of all insts. */
862    ListIt &getInstListIt() { return instListIt; }
863
864    /** Sets iterator for this instruction in the list of all insts. */
865    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
866
867  public:
868    /** Returns the number of consecutive store conditional failures. */
869    unsigned readStCondFailures()
870    { return thread->storeCondFailures; }
871
872    /** Sets the number of consecutive store conditional failures. */
873    void setStCondFailures(unsigned sc_failures)
874    { thread->storeCondFailures = sc_failures; }
875};
876
877template<class Impl>
878Fault
879BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
880                           unsigned size, unsigned flags)
881{
882    instFlags[ReqMade] = true;
883    Request *req = NULL;
884    Request *sreqLow = NULL;
885    Request *sreqHigh = NULL;
886
887    if (instFlags[ReqMade] && translationStarted()) {
888        req = savedReq;
889        sreqLow = savedSreqLow;
890        sreqHigh = savedSreqHigh;
891    } else {
892        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
893                          thread->contextId(), threadNumber);
894
895        req->taskId(cpu->taskId());
896
897        // Only split the request if the ISA supports unaligned accesses.
898        if (TheISA::HasUnalignedMemAcc) {
899            splitRequest(req, sreqLow, sreqHigh);
900        }
901        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
902    }
903
904    if (translationCompleted()) {
905        if (fault == NoFault) {
906            effAddr = req->getVaddr();
907            effSize = size;
908            instFlags[EffAddrValid] = true;
909
910            if (cpu->checker) {
911                if (reqToVerify != NULL) {
912                    delete reqToVerify;
913                }
914                reqToVerify = new Request(*req);
915            }
916            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
917        } else {
918            // Commit will have to clean up whatever happened.  Set this
919            // instruction as executed.
920            this->setExecuted();
921        }
922
923        if (fault != NoFault) {
924            // Return a fixed value to keep simulation deterministic even
925            // along misspeculated paths.
926            if (data)
927                bzero(data, size);
928        }
929    }
930
931    if (traceData) {
932        traceData->setAddr(addr);
933    }
934
935    return fault;
936}
937
938template<class Impl>
939Fault
940BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
941                            Addr addr, unsigned flags, uint64_t *res)
942{
943    if (traceData) {
944        traceData->setAddr(addr);
945    }
946
947    instFlags[ReqMade] = true;
948    Request *req = NULL;
949    Request *sreqLow = NULL;
950    Request *sreqHigh = NULL;
951
952    if (instFlags[ReqMade] && translationStarted()) {
953        req = savedReq;
954        sreqLow = savedSreqLow;
955        sreqHigh = savedSreqHigh;
956    } else {
957        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
958                          thread->contextId(), threadNumber);
959
960        req->taskId(cpu->taskId());
961
962        // Only split the request if the ISA supports unaligned accesses.
963        if (TheISA::HasUnalignedMemAcc) {
964            splitRequest(req, sreqLow, sreqHigh);
965        }
966        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
967    }
968
969    if (fault == NoFault && translationCompleted()) {
970        effAddr = req->getVaddr();
971        effSize = size;
972        instFlags[EffAddrValid] = true;
973
974        if (cpu->checker) {
975            if (reqToVerify != NULL) {
976                delete reqToVerify;
977            }
978            reqToVerify = new Request(*req);
979        }
980        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
981    }
982
983    return fault;
984}
985
986template<class Impl>
987inline void
988BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
989                                RequestPtr &sreqHigh)
990{
991    // Check to see if the request crosses the next level block boundary.
992    unsigned block_size = cpu->cacheLineSize();
993    Addr addr = req->getVaddr();
994    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
995    assert(split_addr <= addr || split_addr - addr < block_size);
996
997    // Spans two blocks.
998    if (split_addr > addr) {
999        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1000    }
1001}
1002
1003template<class Impl>
1004inline void
1005BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1006                                       RequestPtr sreqHigh, uint64_t *res,
1007                                       BaseTLB::Mode mode)
1008{
1009    translationStarted(true);
1010
1011    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1012        WholeTranslationState *state =
1013            new WholeTranslationState(req, NULL, res, mode);
1014
1015        // One translation if the request isn't split.
1016        DataTranslation<BaseDynInstPtr> *trans =
1017            new DataTranslation<BaseDynInstPtr>(this, state);
1018
1019        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1020
1021        if (!translationCompleted()) {
1022            // The translation isn't yet complete, so we can't possibly have a
1023            // fault. Overwrite any existing fault we might have from a previous
1024            // execution of this instruction (e.g. an uncachable load that
1025            // couldn't execute because it wasn't at the head of the ROB).
1026            fault = NoFault;
1027
1028            // Save memory requests.
1029            savedReq = state->mainReq;
1030            savedSreqLow = state->sreqLow;
1031            savedSreqHigh = state->sreqHigh;
1032        }
1033    } else {
1034        WholeTranslationState *state =
1035            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1036
1037        // Two translations when the request is split.
1038        DataTranslation<BaseDynInstPtr> *stransLow =
1039            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1040        DataTranslation<BaseDynInstPtr> *stransHigh =
1041            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1042
1043        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1044        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1045
1046        if (!translationCompleted()) {
1047            // The translation isn't yet complete, so we can't possibly have a
1048            // fault. Overwrite any existing fault we might have from a previous
1049            // execution of this instruction (e.g. an uncachable load that
1050            // couldn't execute because it wasn't at the head of the ROB).
1051            fault = NoFault;
1052
1053            // Save memory requests.
1054            savedReq = state->mainReq;
1055            savedSreqLow = state->sreqLow;
1056            savedSreqHigh = state->sreqHigh;
1057        }
1058    }
1059}
1060
1061template<class Impl>
1062inline void
1063BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1064{
1065    fault = state->getFault();
1066
1067    instFlags[IsUncacheable] = state->isUncacheable();
1068
1069    if (fault == NoFault) {
1070        physEffAddr = state->getPaddr();
1071        memReqFlags = state->getFlags();
1072
1073        if (state->mainReq->isCondSwap()) {
1074            assert(state->res);
1075            state->mainReq->setExtraData(*state->res);
1076        }
1077
1078    } else {
1079        state->deleteReqs();
1080    }
1081    delete state;
1082
1083    translationCompleted(true);
1084}
1085
1086#endif // __CPU_BASE_DYN_INST_HH__
1087