base_dyn_inst.hh revision 8733
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/faults.hh"
54#include "arch/utility.hh"
55#include "base/fast_alloc.hh"
56#include "base/trace.hh"
57#include "config/full_system.hh"
58#include "config/the_isa.hh"
59#include "config/use_checker.hh"
60#include "cpu/o3/comm.hh"
61#include "cpu/exetrace.hh"
62#include "cpu/inst_seq.hh"
63#include "cpu/op_class.hh"
64#include "cpu/static_inst.hh"
65#include "cpu/translation.hh"
66#include "mem/packet.hh"
67#include "sim/byteswap.hh"
68#include "sim/system.hh"
69#include "sim/tlb.hh"
70
71/**
72 * @file
73 * Defines a dynamic instruction context.
74 */
75
76template <class Impl>
77class BaseDynInst : public FastAlloc, public RefCounted
78{
79  public:
80    // Typedef for the CPU.
81    typedef typename Impl::CPUType ImplCPU;
82    typedef typename ImplCPU::ImplState ImplState;
83
84    // Logical register index type.
85    typedef TheISA::RegIndex RegIndex;
86    // Integer register type.
87    typedef TheISA::IntReg IntReg;
88    // Floating point register type.
89    typedef TheISA::FloatReg FloatReg;
90
91    // The DynInstPtr type.
92    typedef typename Impl::DynInstPtr DynInstPtr;
93    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
94
95    // The list of instructions iterator type.
96    typedef typename std::list<DynInstPtr>::iterator ListIt;
97
98    enum {
99        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
100        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
101    };
102
103    /** The StaticInst used by this BaseDynInst. */
104    StaticInstPtr staticInst;
105    StaticInstPtr macroop;
106
107    ////////////////////////////////////////////
108    //
109    // INSTRUCTION EXECUTION
110    //
111    ////////////////////////////////////////////
112    /** InstRecord that tracks this instructions. */
113    Trace::InstRecord *traceData;
114
115    void demapPage(Addr vaddr, uint64_t asn)
116    {
117        cpu->demapPage(vaddr, asn);
118    }
119    void demapInstPage(Addr vaddr, uint64_t asn)
120    {
121        cpu->demapPage(vaddr, asn);
122    }
123    void demapDataPage(Addr vaddr, uint64_t asn)
124    {
125        cpu->demapPage(vaddr, asn);
126    }
127
128    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
129
130    Fault writeMem(uint8_t *data, unsigned size,
131                   Addr addr, unsigned flags, uint64_t *res);
132
133    /** Splits a request in two if it crosses a dcache block. */
134    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
135                      RequestPtr &sreqHigh);
136
137    /** Initiate a DTB address translation. */
138    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
139                             RequestPtr sreqHigh, uint64_t *res,
140                             BaseTLB::Mode mode);
141
142    /** Finish a DTB address translation. */
143    void finishTranslation(WholeTranslationState *state);
144
145    /** True if the DTB address translation has started. */
146    bool translationStarted;
147
148    /** True if the DTB address translation has completed. */
149    bool translationCompleted;
150
151    /** True if this address was found to match a previous load and they issued
152     * out of order. If that happend, then it's only a problem if an incoming
153     * snoop invalidate modifies the line, in which case we need to squash.
154     * If nothing modified the line the order doesn't matter.
155     */
156    bool possibleLoadViolation;
157
158    /** True if the address hit a external snoop while sitting in the LSQ.
159     * If this is true and a older instruction sees it, this instruction must
160     * reexecute
161     */
162    bool hitExternalSnoop;
163
164    /**
165     * Returns true if the DTB address translation is being delayed due to a hw
166     * page table walk.
167     */
168    bool isTranslationDelayed() const
169    {
170        return (translationStarted && !translationCompleted);
171    }
172
173    /**
174     * Saved memory requests (needed when the DTB address translation is
175     * delayed due to a hw page table walk).
176     */
177    RequestPtr savedReq;
178    RequestPtr savedSreqLow;
179    RequestPtr savedSreqHigh;
180
181#if USE_CHECKER
182    // Need a copy of main request pointer to verify on writes.
183    RequestPtr reqToVerify;
184#endif //USE_CHECKER
185
186    /** @todo: Consider making this private. */
187  public:
188    /** The sequence number of the instruction. */
189    InstSeqNum seqNum;
190
191    enum Status {
192        IqEntry,                 /// Instruction is in the IQ
193        RobEntry,                /// Instruction is in the ROB
194        LsqEntry,                /// Instruction is in the LSQ
195        Completed,               /// Instruction has completed
196        ResultReady,             /// Instruction has its result
197        CanIssue,                /// Instruction can issue and execute
198        Issued,                  /// Instruction has issued
199        Executed,                /// Instruction has executed
200        CanCommit,               /// Instruction can commit
201        AtCommit,                /// Instruction has reached commit
202        Committed,               /// Instruction has committed
203        Squashed,                /// Instruction is squashed
204        SquashedInIQ,            /// Instruction is squashed in the IQ
205        SquashedInLSQ,           /// Instruction is squashed in the LSQ
206        SquashedInROB,           /// Instruction is squashed in the ROB
207        RecoverInst,             /// Is a recover instruction
208        BlockingInst,            /// Is a blocking instruction
209        ThreadsyncWait,          /// Is a thread synchronization instruction
210        SerializeBefore,         /// Needs to serialize on
211                                 /// instructions ahead of it
212        SerializeAfter,          /// Needs to serialize instructions behind it
213        SerializeHandled,        /// Serialization has been handled
214        NumStatus
215    };
216
217    /** The status of this BaseDynInst.  Several bits can be set. */
218    std::bitset<NumStatus> status;
219
220    /** The thread this instruction is from. */
221    ThreadID threadNumber;
222
223    /** data address space ID, for loads & stores. */
224    short asid;
225
226    /** How many source registers are ready. */
227    unsigned readyRegs;
228
229    /** Pointer to the Impl's CPU object. */
230    ImplCPU *cpu;
231
232    /** Pointer to the thread state. */
233    ImplState *thread;
234
235    /** The kind of fault this instruction has generated. */
236    Fault fault;
237
238    /** Pointer to the data for the memory access. */
239    uint8_t *memData;
240
241    /** The effective virtual address (lds & stores only). */
242    Addr effAddr;
243
244    /** The size of the request */
245    Addr effSize;
246
247    /** Is the effective virtual address valid. */
248    bool effAddrValid;
249
250    /** The effective physical address. */
251    Addr physEffAddr;
252
253    /** The memory request flags (from translation). */
254    unsigned memReqFlags;
255
256    union Result {
257        uint64_t integer;
258        double dbl;
259        void set(uint64_t i) { integer = i; }
260        void set(double d) { dbl = d; }
261        void get(uint64_t& i) { i = integer; }
262        void get(double& d) { d = dbl; }
263    };
264
265    /** The result of the instruction; assumes an instruction can have many
266     *  destination registers.
267     */
268    std::queue<Result> instResult;
269
270    /** Records changes to result? */
271    bool recordResult;
272
273    /** Did this instruction execute, or is it predicated false */
274    bool predicate;
275
276  protected:
277    /** PC state for this instruction. */
278    TheISA::PCState pc;
279
280    /** Predicted PC state after this instruction. */
281    TheISA::PCState predPC;
282
283    /** If this is a branch that was predicted taken */
284    bool predTaken;
285
286  public:
287
288#ifdef DEBUG
289    void dumpSNList();
290#endif
291
292    /** Whether or not the source register is ready.
293     *  @todo: Not sure this should be here vs the derived class.
294     */
295    bool _readySrcRegIdx[MaxInstSrcRegs];
296
297  protected:
298    /** Flattened register index of the destination registers of this
299     *  instruction.
300     */
301    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
302
303    /** Flattened register index of the source registers of this
304     *  instruction.
305     */
306    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
307
308    /** Physical register index of the destination registers of this
309     *  instruction.
310     */
311    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
312
313    /** Physical register index of the source registers of this
314     *  instruction.
315     */
316    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
317
318    /** Physical register index of the previous producers of the
319     *  architected destinations.
320     */
321    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
322
323  public:
324
325    /** Returns the physical register index of the i'th destination
326     *  register.
327     */
328    PhysRegIndex renamedDestRegIdx(int idx) const
329    {
330        return _destRegIdx[idx];
331    }
332
333    /** Returns the physical register index of the i'th source register. */
334    PhysRegIndex renamedSrcRegIdx(int idx) const
335    {
336        return _srcRegIdx[idx];
337    }
338
339    /** Returns the flattened register index of the i'th destination
340     *  register.
341     */
342    TheISA::RegIndex flattenedDestRegIdx(int idx) const
343    {
344        return _flatDestRegIdx[idx];
345    }
346
347    /** Returns the flattened register index of the i'th source register */
348    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
349    {
350        return _flatSrcRegIdx[idx];
351    }
352
353    /** Returns the physical register index of the previous physical register
354     *  that remapped to the same logical register index.
355     */
356    PhysRegIndex prevDestRegIdx(int idx) const
357    {
358        return _prevDestRegIdx[idx];
359    }
360
361    /** Renames a destination register to a physical register.  Also records
362     *  the previous physical register that the logical register mapped to.
363     */
364    void renameDestReg(int idx,
365                       PhysRegIndex renamed_dest,
366                       PhysRegIndex previous_rename)
367    {
368        _destRegIdx[idx] = renamed_dest;
369        _prevDestRegIdx[idx] = previous_rename;
370    }
371
372    /** Renames a source logical register to the physical register which
373     *  has/will produce that logical register's result.
374     *  @todo: add in whether or not the source register is ready.
375     */
376    void renameSrcReg(int idx, PhysRegIndex renamed_src)
377    {
378        _srcRegIdx[idx] = renamed_src;
379    }
380
381    /** Flattens a source architectural register index into a logical index.
382     */
383    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
384    {
385        _flatSrcRegIdx[idx] = flattened_src;
386    }
387
388    /** Flattens a destination architectural register index into a logical
389     * index.
390     */
391    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
392    {
393        _flatDestRegIdx[idx] = flattened_dest;
394    }
395    /** BaseDynInst constructor given a binary instruction.
396     *  @param staticInst A StaticInstPtr to the underlying instruction.
397     *  @param pc The PC state for the instruction.
398     *  @param predPC The predicted next PC state for the instruction.
399     *  @param seq_num The sequence number of the instruction.
400     *  @param cpu Pointer to the instruction's CPU.
401     */
402    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
403                TheISA::PCState pc, TheISA::PCState predPC,
404                InstSeqNum seq_num, ImplCPU *cpu);
405
406    /** BaseDynInst constructor given a StaticInst pointer.
407     *  @param _staticInst The StaticInst for this BaseDynInst.
408     */
409    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
410
411    /** BaseDynInst destructor. */
412    ~BaseDynInst();
413
414  private:
415    /** Function to initialize variables in the constructors. */
416    void initVars();
417
418  public:
419    /** Dumps out contents of this BaseDynInst. */
420    void dump();
421
422    /** Dumps out contents of this BaseDynInst into given string. */
423    void dump(std::string &outstring);
424
425    /** Read this CPU's ID. */
426    int cpuId() { return cpu->cpuId(); }
427
428    /** Read this context's system-wide ID **/
429    int contextId() { return thread->contextId(); }
430
431    /** Returns the fault type. */
432    Fault getFault() { return fault; }
433
434    /** Checks whether or not this instruction has had its branch target
435     *  calculated yet.  For now it is not utilized and is hacked to be
436     *  always false.
437     *  @todo: Actually use this instruction.
438     */
439    bool doneTargCalc() { return false; }
440
441    /** Set the predicted target of this current instruction. */
442    void setPredTarg(const TheISA::PCState &_predPC)
443    {
444        predPC = _predPC;
445    }
446
447    const TheISA::PCState &readPredTarg() { return predPC; }
448
449    /** Returns the predicted PC immediately after the branch. */
450    Addr predInstAddr() { return predPC.instAddr(); }
451
452    /** Returns the predicted PC two instructions after the branch */
453    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
454
455    /** Returns the predicted micro PC after the branch */
456    Addr predMicroPC() { return predPC.microPC(); }
457
458    /** Returns whether the instruction was predicted taken or not. */
459    bool readPredTaken()
460    {
461        return predTaken;
462    }
463
464    void setPredTaken(bool predicted_taken)
465    {
466        predTaken = predicted_taken;
467    }
468
469    /** Returns whether the instruction mispredicted. */
470    bool mispredicted()
471    {
472        TheISA::PCState tempPC = pc;
473        TheISA::advancePC(tempPC, staticInst);
474        return !(tempPC == predPC);
475    }
476
477    //
478    //  Instruction types.  Forward checks to StaticInst object.
479    //
480    bool isNop()          const { return staticInst->isNop(); }
481    bool isMemRef()       const { return staticInst->isMemRef(); }
482    bool isLoad()         const { return staticInst->isLoad(); }
483    bool isStore()        const { return staticInst->isStore(); }
484    bool isStoreConditional() const
485    { return staticInst->isStoreConditional(); }
486    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
487    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
488    bool isInteger()      const { return staticInst->isInteger(); }
489    bool isFloating()     const { return staticInst->isFloating(); }
490    bool isControl()      const { return staticInst->isControl(); }
491    bool isCall()         const { return staticInst->isCall(); }
492    bool isReturn()       const { return staticInst->isReturn(); }
493    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
494    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
495    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
496    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
497    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
498    bool isThreadSync()   const { return staticInst->isThreadSync(); }
499    bool isSerializing()  const { return staticInst->isSerializing(); }
500    bool isSerializeBefore() const
501    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
502    bool isSerializeAfter() const
503    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
504    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
505    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
506    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
507    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
508    bool isQuiesce() const { return staticInst->isQuiesce(); }
509    bool isIprAccess() const { return staticInst->isIprAccess(); }
510    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
511    bool isSyscall() const { return staticInst->isSyscall(); }
512    bool isMacroop() const { return staticInst->isMacroop(); }
513    bool isMicroop() const { return staticInst->isMicroop(); }
514    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
515    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
516    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
517    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
518
519    /** Temporarily sets this instruction as a serialize before instruction. */
520    void setSerializeBefore() { status.set(SerializeBefore); }
521
522    /** Clears the serializeBefore part of this instruction. */
523    void clearSerializeBefore() { status.reset(SerializeBefore); }
524
525    /** Checks if this serializeBefore is only temporarily set. */
526    bool isTempSerializeBefore() { return status[SerializeBefore]; }
527
528    /** Temporarily sets this instruction as a serialize after instruction. */
529    void setSerializeAfter() { status.set(SerializeAfter); }
530
531    /** Clears the serializeAfter part of this instruction.*/
532    void clearSerializeAfter() { status.reset(SerializeAfter); }
533
534    /** Checks if this serializeAfter is only temporarily set. */
535    bool isTempSerializeAfter() { return status[SerializeAfter]; }
536
537    /** Sets the serialization part of this instruction as handled. */
538    void setSerializeHandled() { status.set(SerializeHandled); }
539
540    /** Checks if the serialization part of this instruction has been
541     *  handled.  This does not apply to the temporary serializing
542     *  state; it only applies to this instruction's own permanent
543     *  serializing state.
544     */
545    bool isSerializeHandled() { return status[SerializeHandled]; }
546
547    /** Returns the opclass of this instruction. */
548    OpClass opClass() const { return staticInst->opClass(); }
549
550    /** Returns the branch target address. */
551    TheISA::PCState branchTarget() const
552    { return staticInst->branchTarget(pc); }
553
554    /** Returns the number of source registers. */
555    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
556
557    /** Returns the number of destination registers. */
558    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
559
560    // the following are used to track physical register usage
561    // for machines with separate int & FP reg files
562    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
563    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
564
565    /** Returns the logical register index of the i'th destination register. */
566    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
567
568    /** Returns the logical register index of the i'th source register. */
569    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
570
571    /** Pops a result off the instResult queue */
572    template <class T>
573    void popResult(T& t)
574    {
575        if (!instResult.empty()) {
576            instResult.front().get(t);
577            instResult.pop();
578        }
579    }
580
581    /** Read the most recent result stored by this instruction */
582    template <class T>
583    void readResult(T& t)
584    {
585        instResult.back().get(t);
586    }
587
588    /** Pushes a result onto the instResult queue */
589    template <class T>
590    void setResult(T t)
591    {
592        if (recordResult) {
593            Result instRes;
594            instRes.set(t);
595            instResult.push(instRes);
596        }
597    }
598
599    /** Records an integer register being set to a value. */
600    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
601    {
602        setResult<uint64_t>(val);
603    }
604
605    /** Records an fp register being set to a value. */
606    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
607                            int width)
608    {
609        if (width == 32 || width == 64) {
610            setResult<double>(val);
611        } else {
612            panic("Unsupported width!");
613        }
614    }
615
616    /** Records an fp register being set to a value. */
617    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
618    {
619        setResult<double>(val);
620    }
621
622    /** Records an fp register being set to an integer value. */
623    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
624                                int width)
625    {
626        setResult<uint64_t>(val);
627    }
628
629    /** Records an fp register being set to an integer value. */
630    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
631    {
632        setResult<uint64_t>(val);
633    }
634
635    /** Records that one of the source registers is ready. */
636    void markSrcRegReady();
637
638    /** Marks a specific register as ready. */
639    void markSrcRegReady(RegIndex src_idx);
640
641    /** Returns if a source register is ready. */
642    bool isReadySrcRegIdx(int idx) const
643    {
644        return this->_readySrcRegIdx[idx];
645    }
646
647    /** Sets this instruction as completed. */
648    void setCompleted() { status.set(Completed); }
649
650    /** Returns whether or not this instruction is completed. */
651    bool isCompleted() const { return status[Completed]; }
652
653    /** Marks the result as ready. */
654    void setResultReady() { status.set(ResultReady); }
655
656    /** Returns whether or not the result is ready. */
657    bool isResultReady() const { return status[ResultReady]; }
658
659    /** Sets this instruction as ready to issue. */
660    void setCanIssue() { status.set(CanIssue); }
661
662    /** Returns whether or not this instruction is ready to issue. */
663    bool readyToIssue() const { return status[CanIssue]; }
664
665    /** Clears this instruction being able to issue. */
666    void clearCanIssue() { status.reset(CanIssue); }
667
668    /** Sets this instruction as issued from the IQ. */
669    void setIssued() { status.set(Issued); }
670
671    /** Returns whether or not this instruction has issued. */
672    bool isIssued() const { return status[Issued]; }
673
674    /** Clears this instruction as being issued. */
675    void clearIssued() { status.reset(Issued); }
676
677    /** Sets this instruction as executed. */
678    void setExecuted() { status.set(Executed); }
679
680    /** Returns whether or not this instruction has executed. */
681    bool isExecuted() const { return status[Executed]; }
682
683    /** Sets this instruction as ready to commit. */
684    void setCanCommit() { status.set(CanCommit); }
685
686    /** Clears this instruction as being ready to commit. */
687    void clearCanCommit() { status.reset(CanCommit); }
688
689    /** Returns whether or not this instruction is ready to commit. */
690    bool readyToCommit() const { return status[CanCommit]; }
691
692    void setAtCommit() { status.set(AtCommit); }
693
694    bool isAtCommit() { return status[AtCommit]; }
695
696    /** Sets this instruction as committed. */
697    void setCommitted() { status.set(Committed); }
698
699    /** Returns whether or not this instruction is committed. */
700    bool isCommitted() const { return status[Committed]; }
701
702    /** Sets this instruction as squashed. */
703    void setSquashed() { status.set(Squashed); }
704
705    /** Returns whether or not this instruction is squashed. */
706    bool isSquashed() const { return status[Squashed]; }
707
708    //Instruction Queue Entry
709    //-----------------------
710    /** Sets this instruction as a entry the IQ. */
711    void setInIQ() { status.set(IqEntry); }
712
713    /** Sets this instruction as a entry the IQ. */
714    void clearInIQ() { status.reset(IqEntry); }
715
716    /** Returns whether or not this instruction has issued. */
717    bool isInIQ() const { return status[IqEntry]; }
718
719    /** Sets this instruction as squashed in the IQ. */
720    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
721
722    /** Returns whether or not this instruction is squashed in the IQ. */
723    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
724
725
726    //Load / Store Queue Functions
727    //-----------------------
728    /** Sets this instruction as a entry the LSQ. */
729    void setInLSQ() { status.set(LsqEntry); }
730
731    /** Sets this instruction as a entry the LSQ. */
732    void removeInLSQ() { status.reset(LsqEntry); }
733
734    /** Returns whether or not this instruction is in the LSQ. */
735    bool isInLSQ() const { return status[LsqEntry]; }
736
737    /** Sets this instruction as squashed in the LSQ. */
738    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
739
740    /** Returns whether or not this instruction is squashed in the LSQ. */
741    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
742
743
744    //Reorder Buffer Functions
745    //-----------------------
746    /** Sets this instruction as a entry the ROB. */
747    void setInROB() { status.set(RobEntry); }
748
749    /** Sets this instruction as a entry the ROB. */
750    void clearInROB() { status.reset(RobEntry); }
751
752    /** Returns whether or not this instruction is in the ROB. */
753    bool isInROB() const { return status[RobEntry]; }
754
755    /** Sets this instruction as squashed in the ROB. */
756    void setSquashedInROB() { status.set(SquashedInROB); }
757
758    /** Returns whether or not this instruction is squashed in the ROB. */
759    bool isSquashedInROB() const { return status[SquashedInROB]; }
760
761    /** Read the PC state of this instruction. */
762    const TheISA::PCState pcState() const { return pc; }
763
764    /** Set the PC state of this instruction. */
765    const void pcState(const TheISA::PCState &val) { pc = val; }
766
767    /** Read the PC of this instruction. */
768    const Addr instAddr() const { return pc.instAddr(); }
769
770    /** Read the PC of the next instruction. */
771    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
772
773    /**Read the micro PC of this instruction. */
774    const Addr microPC() const { return pc.microPC(); }
775
776    bool readPredicate()
777    {
778        return predicate;
779    }
780
781    void setPredicate(bool val)
782    {
783        predicate = val;
784
785        if (traceData) {
786            traceData->setPredicate(val);
787        }
788    }
789
790    /** Sets the ASID. */
791    void setASID(short addr_space_id) { asid = addr_space_id; }
792
793    /** Sets the thread id. */
794    void setTid(ThreadID tid) { threadNumber = tid; }
795
796    /** Sets the pointer to the thread state. */
797    void setThreadState(ImplState *state) { thread = state; }
798
799    /** Returns the thread context. */
800    ThreadContext *tcBase() { return thread->getTC(); }
801
802  private:
803    /** Instruction effective address.
804     *  @todo: Consider if this is necessary or not.
805     */
806    Addr instEffAddr;
807
808    /** Whether or not the effective address calculation is completed.
809     *  @todo: Consider if this is necessary or not.
810     */
811    bool eaCalcDone;
812
813    /** Is this instruction's memory access uncacheable. */
814    bool isUncacheable;
815
816    /** Has this instruction generated a memory request. */
817    bool reqMade;
818
819  public:
820    /** Sets the effective address. */
821    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
822
823    /** Returns the effective address. */
824    const Addr &getEA() const { return instEffAddr; }
825
826    /** Returns whether or not the eff. addr. calculation has been completed. */
827    bool doneEACalc() { return eaCalcDone; }
828
829    /** Returns whether or not the eff. addr. source registers are ready. */
830    bool eaSrcsReady();
831
832    /** Whether or not the memory operation is done. */
833    bool memOpDone;
834
835    /** Is this instruction's memory access uncacheable. */
836    bool uncacheable() { return isUncacheable; }
837
838    /** Has this instruction generated a memory request. */
839    bool hasRequest() { return reqMade; }
840
841  public:
842    /** Load queue index. */
843    int16_t lqIdx;
844
845    /** Store queue index. */
846    int16_t sqIdx;
847
848    /** Iterator pointing to this BaseDynInst in the list of all insts. */
849    ListIt instListIt;
850
851    /** Returns iterator to this instruction in the list of all insts. */
852    ListIt &getInstListIt() { return instListIt; }
853
854    /** Sets iterator for this instruction in the list of all insts. */
855    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
856
857  public:
858    /** Returns the number of consecutive store conditional failures. */
859    unsigned readStCondFailures()
860    { return thread->storeCondFailures; }
861
862    /** Sets the number of consecutive store conditional failures. */
863    void setStCondFailures(unsigned sc_failures)
864    { thread->storeCondFailures = sc_failures; }
865};
866
867template<class Impl>
868Fault
869BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
870                           unsigned size, unsigned flags)
871{
872    reqMade = true;
873    Request *req = NULL;
874    Request *sreqLow = NULL;
875    Request *sreqHigh = NULL;
876
877    if (reqMade && translationStarted) {
878        req = savedReq;
879        sreqLow = savedSreqLow;
880        sreqHigh = savedSreqHigh;
881    } else {
882        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
883                          thread->contextId(), threadNumber);
884
885        // Only split the request if the ISA supports unaligned accesses.
886        if (TheISA::HasUnalignedMemAcc) {
887            splitRequest(req, sreqLow, sreqHigh);
888        }
889        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
890    }
891
892    if (translationCompleted) {
893        if (fault == NoFault) {
894            effAddr = req->getVaddr();
895            effSize = size;
896            effAddrValid = true;
897#if USE_CHECKER
898            if (reqToVerify != NULL) {
899                delete reqToVerify;
900            }
901            reqToVerify = new Request(*req);
902#endif //USE_CHECKER
903            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
904        } else {
905            // Commit will have to clean up whatever happened.  Set this
906            // instruction as executed.
907            this->setExecuted();
908        }
909
910        if (fault != NoFault) {
911            // Return a fixed value to keep simulation deterministic even
912            // along misspeculated paths.
913            if (data)
914                bzero(data, size);
915        }
916    }
917
918    if (traceData) {
919        traceData->setAddr(addr);
920    }
921
922    return fault;
923}
924
925template<class Impl>
926Fault
927BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
928                            Addr addr, unsigned flags, uint64_t *res)
929{
930    if (traceData) {
931        traceData->setAddr(addr);
932    }
933
934    reqMade = true;
935    Request *req = NULL;
936    Request *sreqLow = NULL;
937    Request *sreqHigh = NULL;
938
939    if (reqMade && translationStarted) {
940        req = savedReq;
941        sreqLow = savedSreqLow;
942        sreqHigh = savedSreqHigh;
943    } else {
944        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
945                          thread->contextId(), threadNumber);
946
947        // Only split the request if the ISA supports unaligned accesses.
948        if (TheISA::HasUnalignedMemAcc) {
949            splitRequest(req, sreqLow, sreqHigh);
950        }
951        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
952    }
953
954    if (fault == NoFault && translationCompleted) {
955        effAddr = req->getVaddr();
956        effSize = size;
957        effAddrValid = true;
958#if USE_CHECKER
959        if (reqToVerify != NULL) {
960            delete reqToVerify;
961        }
962        reqToVerify = new Request(*req);
963#endif // USE_CHECKER
964        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
965    }
966
967    return fault;
968}
969
970template<class Impl>
971inline void
972BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
973                                RequestPtr &sreqHigh)
974{
975    // Check to see if the request crosses the next level block boundary.
976    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
977    Addr addr = req->getVaddr();
978    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
979    assert(split_addr <= addr || split_addr - addr < block_size);
980
981    // Spans two blocks.
982    if (split_addr > addr) {
983        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
984    }
985}
986
987template<class Impl>
988inline void
989BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
990                                       RequestPtr sreqHigh, uint64_t *res,
991                                       BaseTLB::Mode mode)
992{
993    translationStarted = true;
994
995    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
996        WholeTranslationState *state =
997            new WholeTranslationState(req, NULL, res, mode);
998
999        // One translation if the request isn't split.
1000        DataTranslation<BaseDynInstPtr> *trans =
1001            new DataTranslation<BaseDynInstPtr>(this, state);
1002        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1003        if (!translationCompleted) {
1004            // Save memory requests.
1005            savedReq = state->mainReq;
1006            savedSreqLow = state->sreqLow;
1007            savedSreqHigh = state->sreqHigh;
1008        }
1009    } else {
1010        WholeTranslationState *state =
1011            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1012
1013        // Two translations when the request is split.
1014        DataTranslation<BaseDynInstPtr> *stransLow =
1015            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1016        DataTranslation<BaseDynInstPtr> *stransHigh =
1017            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1018
1019        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1020        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1021        if (!translationCompleted) {
1022            // Save memory requests.
1023            savedReq = state->mainReq;
1024            savedSreqLow = state->sreqLow;
1025            savedSreqHigh = state->sreqHigh;
1026        }
1027    }
1028}
1029
1030template<class Impl>
1031inline void
1032BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1033{
1034    fault = state->getFault();
1035
1036    if (state->isUncacheable())
1037        isUncacheable = true;
1038
1039    if (fault == NoFault) {
1040        physEffAddr = state->getPaddr();
1041        memReqFlags = state->getFlags();
1042
1043        if (state->mainReq->isCondSwap()) {
1044            assert(state->res);
1045            state->mainReq->setExtraData(*state->res);
1046        }
1047
1048    } else {
1049        state->deleteReqs();
1050    }
1051    delete state;
1052
1053    translationCompleted = true;
1054}
1055
1056#endif // __CPU_BASE_DYN_INST_HH__
1057