base_dyn_inst.hh revision 7784
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 *          Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "arch/utility.hh"
42#include "base/fast_alloc.hh"
43#include "base/trace.hh"
44#include "config/full_system.hh"
45#include "config/the_isa.hh"
46#include "cpu/o3/comm.hh"
47#include "cpu/exetrace.hh"
48#include "cpu/inst_seq.hh"
49#include "cpu/op_class.hh"
50#include "cpu/static_inst.hh"
51#include "cpu/translation.hh"
52#include "mem/packet.hh"
53#include "sim/byteswap.hh"
54#include "sim/system.hh"
55#include "sim/tlb.hh"
56
57/**
58 * @file
59 * Defines a dynamic instruction context.
60 */
61
62// Forward declaration.
63class StaticInstPtr;
64
65template <class Impl>
66class BaseDynInst : public FastAlloc, public RefCounted
67{
68  public:
69    // Typedef for the CPU.
70    typedef typename Impl::CPUType ImplCPU;
71    typedef typename ImplCPU::ImplState ImplState;
72
73    // Logical register index type.
74    typedef TheISA::RegIndex RegIndex;
75    // Integer register type.
76    typedef TheISA::IntReg IntReg;
77    // Floating point register type.
78    typedef TheISA::FloatReg FloatReg;
79
80    // The DynInstPtr type.
81    typedef typename Impl::DynInstPtr DynInstPtr;
82
83    // The list of instructions iterator type.
84    typedef typename std::list<DynInstPtr>::iterator ListIt;
85
86    enum {
87        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
88        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
89    };
90
91    /** The StaticInst used by this BaseDynInst. */
92    StaticInstPtr staticInst;
93
94    ////////////////////////////////////////////
95    //
96    // INSTRUCTION EXECUTION
97    //
98    ////////////////////////////////////////////
99    /** InstRecord that tracks this instructions. */
100    Trace::InstRecord *traceData;
101
102    void demapPage(Addr vaddr, uint64_t asn)
103    {
104        cpu->demapPage(vaddr, asn);
105    }
106    void demapInstPage(Addr vaddr, uint64_t asn)
107    {
108        cpu->demapPage(vaddr, asn);
109    }
110    void demapDataPage(Addr vaddr, uint64_t asn)
111    {
112        cpu->demapPage(vaddr, asn);
113    }
114
115    /**
116     * Does a read to a given address.
117     * @param addr The address to read.
118     * @param data The read's data is written into this parameter.
119     * @param flags The request's flags.
120     * @return Returns any fault due to the read.
121     */
122    template <class T>
123    Fault read(Addr addr, T &data, unsigned flags);
124
125    Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
126
127    /**
128     * Does a write to a given address.
129     * @param data The data to be written.
130     * @param addr The address to write to.
131     * @param flags The request's flags.
132     * @param res The result of the write (for load locked/store conditionals).
133     * @return Returns any fault due to the write.
134     */
135    template <class T>
136    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
137
138    Fault writeBytes(uint8_t *data, unsigned size,
139                     Addr addr, unsigned flags, uint64_t *res);
140
141    /** Splits a request in two if it crosses a dcache block. */
142    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
143                      RequestPtr &sreqHigh);
144
145    /** Initiate a DTB address translation. */
146    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
147                             RequestPtr sreqHigh, uint64_t *res,
148                             BaseTLB::Mode mode);
149
150    /** Finish a DTB address translation. */
151    void finishTranslation(WholeTranslationState *state);
152
153    /** @todo: Consider making this private. */
154  public:
155    /** The sequence number of the instruction. */
156    InstSeqNum seqNum;
157
158    enum Status {
159        IqEntry,                 /// Instruction is in the IQ
160        RobEntry,                /// Instruction is in the ROB
161        LsqEntry,                /// Instruction is in the LSQ
162        Completed,               /// Instruction has completed
163        ResultReady,             /// Instruction has its result
164        CanIssue,                /// Instruction can issue and execute
165        Issued,                  /// Instruction has issued
166        Executed,                /// Instruction has executed
167        CanCommit,               /// Instruction can commit
168        AtCommit,                /// Instruction has reached commit
169        Committed,               /// Instruction has committed
170        Squashed,                /// Instruction is squashed
171        SquashedInIQ,            /// Instruction is squashed in the IQ
172        SquashedInLSQ,           /// Instruction is squashed in the LSQ
173        SquashedInROB,           /// Instruction is squashed in the ROB
174        RecoverInst,             /// Is a recover instruction
175        BlockingInst,            /// Is a blocking instruction
176        ThreadsyncWait,          /// Is a thread synchronization instruction
177        SerializeBefore,         /// Needs to serialize on
178                                 /// instructions ahead of it
179        SerializeAfter,          /// Needs to serialize instructions behind it
180        SerializeHandled,        /// Serialization has been handled
181        NumStatus
182    };
183
184    /** The status of this BaseDynInst.  Several bits can be set. */
185    std::bitset<NumStatus> status;
186
187    /** The thread this instruction is from. */
188    ThreadID threadNumber;
189
190    /** data address space ID, for loads & stores. */
191    short asid;
192
193    /** How many source registers are ready. */
194    unsigned readyRegs;
195
196    /** Pointer to the Impl's CPU object. */
197    ImplCPU *cpu;
198
199    /** Pointer to the thread state. */
200    ImplState *thread;
201
202    /** The kind of fault this instruction has generated. */
203    Fault fault;
204
205    /** Pointer to the data for the memory access. */
206    uint8_t *memData;
207
208    /** The effective virtual address (lds & stores only). */
209    Addr effAddr;
210
211    /** Is the effective virtual address valid. */
212    bool effAddrValid;
213
214    /** The effective physical address. */
215    Addr physEffAddr;
216
217    /** Effective virtual address for a copy source. */
218    Addr copySrcEffAddr;
219
220    /** Effective physical address for a copy source. */
221    Addr copySrcPhysEffAddr;
222
223    /** The memory request flags (from translation). */
224    unsigned memReqFlags;
225
226    union Result {
227        uint64_t integer;
228//        float fp;
229        double dbl;
230    };
231
232    /** The result of the instruction; assumes for now that there's only one
233     *  destination register.
234     */
235    Result instResult;
236
237    /** Records changes to result? */
238    bool recordResult;
239
240    /** Did this instruction execute, or is it predicated false */
241    bool predicate;
242
243  protected:
244    /** PC state for this instruction. */
245    TheISA::PCState pc;
246
247    /** Predicted PC state after this instruction. */
248    TheISA::PCState predPC;
249
250    /** If this is a branch that was predicted taken */
251    bool predTaken;
252
253  public:
254
255#ifdef DEBUG
256    void dumpSNList();
257#endif
258
259    /** Whether or not the source register is ready.
260     *  @todo: Not sure this should be here vs the derived class.
261     */
262    bool _readySrcRegIdx[MaxInstSrcRegs];
263
264  protected:
265    /** Flattened register index of the destination registers of this
266     *  instruction.
267     */
268    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
269
270    /** Flattened register index of the source registers of this
271     *  instruction.
272     */
273    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
274
275    /** Physical register index of the destination registers of this
276     *  instruction.
277     */
278    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
279
280    /** Physical register index of the source registers of this
281     *  instruction.
282     */
283    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
284
285    /** Physical register index of the previous producers of the
286     *  architected destinations.
287     */
288    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
289
290  public:
291
292    /** Returns the physical register index of the i'th destination
293     *  register.
294     */
295    PhysRegIndex renamedDestRegIdx(int idx) const
296    {
297        return _destRegIdx[idx];
298    }
299
300    /** Returns the physical register index of the i'th source register. */
301    PhysRegIndex renamedSrcRegIdx(int idx) const
302    {
303        return _srcRegIdx[idx];
304    }
305
306    /** Returns the flattened register index of the i'th destination
307     *  register.
308     */
309    TheISA::RegIndex flattenedDestRegIdx(int idx) const
310    {
311        return _flatDestRegIdx[idx];
312    }
313
314    /** Returns the flattened register index of the i'th source register */
315    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
316    {
317        return _flatSrcRegIdx[idx];
318    }
319
320    /** Returns the physical register index of the previous physical register
321     *  that remapped to the same logical register index.
322     */
323    PhysRegIndex prevDestRegIdx(int idx) const
324    {
325        return _prevDestRegIdx[idx];
326    }
327
328    /** Renames a destination register to a physical register.  Also records
329     *  the previous physical register that the logical register mapped to.
330     */
331    void renameDestReg(int idx,
332                       PhysRegIndex renamed_dest,
333                       PhysRegIndex previous_rename)
334    {
335        _destRegIdx[idx] = renamed_dest;
336        _prevDestRegIdx[idx] = previous_rename;
337    }
338
339    /** Renames a source logical register to the physical register which
340     *  has/will produce that logical register's result.
341     *  @todo: add in whether or not the source register is ready.
342     */
343    void renameSrcReg(int idx, PhysRegIndex renamed_src)
344    {
345        _srcRegIdx[idx] = renamed_src;
346    }
347
348    /** Flattens a source architectural register index into a logical index.
349     */
350    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
351    {
352        _flatSrcRegIdx[idx] = flattened_src;
353    }
354
355    /** Flattens a destination architectural register index into a logical
356     * index.
357     */
358    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
359    {
360        _flatDestRegIdx[idx] = flattened_dest;
361    }
362    /** BaseDynInst constructor given a binary instruction.
363     *  @param staticInst A StaticInstPtr to the underlying instruction.
364     *  @param pc The PC state for the instruction.
365     *  @param predPC The predicted next PC state for the instruction.
366     *  @param seq_num The sequence number of the instruction.
367     *  @param cpu Pointer to the instruction's CPU.
368     */
369    BaseDynInst(StaticInstPtr staticInst, TheISA::PCState pc,
370                TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
371
372    /** BaseDynInst constructor given a binary instruction.
373     *  @param inst The binary instruction.
374     *  @param _pc The PC state for the instruction.
375     *  @param _predPC The predicted next PC state for the instruction.
376     *  @param seq_num The sequence number of the instruction.
377     *  @param cpu Pointer to the instruction's CPU.
378     */
379    BaseDynInst(TheISA::ExtMachInst inst, TheISA::PCState pc,
380                TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
381
382    /** BaseDynInst constructor given a StaticInst pointer.
383     *  @param _staticInst The StaticInst for this BaseDynInst.
384     */
385    BaseDynInst(StaticInstPtr &_staticInst);
386
387    /** BaseDynInst destructor. */
388    ~BaseDynInst();
389
390  private:
391    /** Function to initialize variables in the constructors. */
392    void initVars();
393
394  public:
395    /** Dumps out contents of this BaseDynInst. */
396    void dump();
397
398    /** Dumps out contents of this BaseDynInst into given string. */
399    void dump(std::string &outstring);
400
401    /** Read this CPU's ID. */
402    int cpuId() { return cpu->cpuId(); }
403
404    /** Read this context's system-wide ID **/
405    int contextId() { return thread->contextId(); }
406
407    /** Returns the fault type. */
408    Fault getFault() { return fault; }
409
410    /** Checks whether or not this instruction has had its branch target
411     *  calculated yet.  For now it is not utilized and is hacked to be
412     *  always false.
413     *  @todo: Actually use this instruction.
414     */
415    bool doneTargCalc() { return false; }
416
417    /** Set the predicted target of this current instruction. */
418    void setPredTarg(const TheISA::PCState &_predPC)
419    {
420        predPC = _predPC;
421    }
422
423    const TheISA::PCState &readPredTarg() { return predPC; }
424
425    /** Returns the predicted PC immediately after the branch. */
426    Addr predInstAddr() { return predPC.instAddr(); }
427
428    /** Returns the predicted PC two instructions after the branch */
429    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
430
431    /** Returns the predicted micro PC after the branch */
432    Addr predMicroPC() { return predPC.microPC(); }
433
434    /** Returns whether the instruction was predicted taken or not. */
435    bool readPredTaken()
436    {
437        return predTaken;
438    }
439
440    void setPredTaken(bool predicted_taken)
441    {
442        predTaken = predicted_taken;
443    }
444
445    /** Returns whether the instruction mispredicted. */
446    bool mispredicted()
447    {
448        TheISA::PCState tempPC = pc;
449        TheISA::advancePC(tempPC, staticInst);
450        return !(tempPC == predPC);
451    }
452
453    //
454    //  Instruction types.  Forward checks to StaticInst object.
455    //
456    bool isNop()          const { return staticInst->isNop(); }
457    bool isMemRef()       const { return staticInst->isMemRef(); }
458    bool isLoad()         const { return staticInst->isLoad(); }
459    bool isStore()        const { return staticInst->isStore(); }
460    bool isStoreConditional() const
461    { return staticInst->isStoreConditional(); }
462    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
463    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
464    bool isCopy()         const { return staticInst->isCopy(); }
465    bool isInteger()      const { return staticInst->isInteger(); }
466    bool isFloating()     const { return staticInst->isFloating(); }
467    bool isControl()      const { return staticInst->isControl(); }
468    bool isCall()         const { return staticInst->isCall(); }
469    bool isReturn()       const { return staticInst->isReturn(); }
470    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
471    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
472    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
473    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
474    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
475    bool isThreadSync()   const { return staticInst->isThreadSync(); }
476    bool isSerializing()  const { return staticInst->isSerializing(); }
477    bool isSerializeBefore() const
478    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
479    bool isSerializeAfter() const
480    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
481    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
482    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
483    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
484    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
485    bool isQuiesce() const { return staticInst->isQuiesce(); }
486    bool isIprAccess() const { return staticInst->isIprAccess(); }
487    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
488    bool isSyscall() const { return staticInst->isSyscall(); }
489    bool isMacroop() const { return staticInst->isMacroop(); }
490    bool isMicroop() const { return staticInst->isMicroop(); }
491    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
492    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
493    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
494    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
495
496    /** Temporarily sets this instruction as a serialize before instruction. */
497    void setSerializeBefore() { status.set(SerializeBefore); }
498
499    /** Clears the serializeBefore part of this instruction. */
500    void clearSerializeBefore() { status.reset(SerializeBefore); }
501
502    /** Checks if this serializeBefore is only temporarily set. */
503    bool isTempSerializeBefore() { return status[SerializeBefore]; }
504
505    /** Temporarily sets this instruction as a serialize after instruction. */
506    void setSerializeAfter() { status.set(SerializeAfter); }
507
508    /** Clears the serializeAfter part of this instruction.*/
509    void clearSerializeAfter() { status.reset(SerializeAfter); }
510
511    /** Checks if this serializeAfter is only temporarily set. */
512    bool isTempSerializeAfter() { return status[SerializeAfter]; }
513
514    /** Sets the serialization part of this instruction as handled. */
515    void setSerializeHandled() { status.set(SerializeHandled); }
516
517    /** Checks if the serialization part of this instruction has been
518     *  handled.  This does not apply to the temporary serializing
519     *  state; it only applies to this instruction's own permanent
520     *  serializing state.
521     */
522    bool isSerializeHandled() { return status[SerializeHandled]; }
523
524    /** Returns the opclass of this instruction. */
525    OpClass opClass() const { return staticInst->opClass(); }
526
527    /** Returns the branch target address. */
528    TheISA::PCState branchTarget() const
529    { return staticInst->branchTarget(pc); }
530
531    /** Returns the number of source registers. */
532    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
533
534    /** Returns the number of destination registers. */
535    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
536
537    // the following are used to track physical register usage
538    // for machines with separate int & FP reg files
539    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
540    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
541
542    /** Returns the logical register index of the i'th destination register. */
543    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
544
545    /** Returns the logical register index of the i'th source register. */
546    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
547
548    /** Returns the result of an integer instruction. */
549    uint64_t readIntResult() { return instResult.integer; }
550
551    /** Returns the result of a floating point instruction. */
552    float readFloatResult() { return (float)instResult.dbl; }
553
554    /** Returns the result of a floating point (double) instruction. */
555    double readDoubleResult() { return instResult.dbl; }
556
557    /** Records an integer register being set to a value. */
558    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
559    {
560        if (recordResult)
561            instResult.integer = val;
562    }
563
564    /** Records an fp register being set to a value. */
565    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
566                            int width)
567    {
568        if (recordResult) {
569            if (width == 32)
570                instResult.dbl = (double)val;
571            else if (width == 64)
572                instResult.dbl = val;
573            else
574                panic("Unsupported width!");
575        }
576    }
577
578    /** Records an fp register being set to a value. */
579    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
580    {
581        if (recordResult)
582            instResult.dbl = (double)val;
583    }
584
585    /** Records an fp register being set to an integer value. */
586    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
587                                int width)
588    {
589        if (recordResult)
590            instResult.integer = val;
591    }
592
593    /** Records an fp register being set to an integer value. */
594    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
595    {
596        if (recordResult)
597            instResult.integer = val;
598    }
599
600    /** Records that one of the source registers is ready. */
601    void markSrcRegReady();
602
603    /** Marks a specific register as ready. */
604    void markSrcRegReady(RegIndex src_idx);
605
606    /** Returns if a source register is ready. */
607    bool isReadySrcRegIdx(int idx) const
608    {
609        return this->_readySrcRegIdx[idx];
610    }
611
612    /** Sets this instruction as completed. */
613    void setCompleted() { status.set(Completed); }
614
615    /** Returns whether or not this instruction is completed. */
616    bool isCompleted() const { return status[Completed]; }
617
618    /** Marks the result as ready. */
619    void setResultReady() { status.set(ResultReady); }
620
621    /** Returns whether or not the result is ready. */
622    bool isResultReady() const { return status[ResultReady]; }
623
624    /** Sets this instruction as ready to issue. */
625    void setCanIssue() { status.set(CanIssue); }
626
627    /** Returns whether or not this instruction is ready to issue. */
628    bool readyToIssue() const { return status[CanIssue]; }
629
630    /** Clears this instruction being able to issue. */
631    void clearCanIssue() { status.reset(CanIssue); }
632
633    /** Sets this instruction as issued from the IQ. */
634    void setIssued() { status.set(Issued); }
635
636    /** Returns whether or not this instruction has issued. */
637    bool isIssued() const { return status[Issued]; }
638
639    /** Clears this instruction as being issued. */
640    void clearIssued() { status.reset(Issued); }
641
642    /** Sets this instruction as executed. */
643    void setExecuted() { status.set(Executed); }
644
645    /** Returns whether or not this instruction has executed. */
646    bool isExecuted() const { return status[Executed]; }
647
648    /** Sets this instruction as ready to commit. */
649    void setCanCommit() { status.set(CanCommit); }
650
651    /** Clears this instruction as being ready to commit. */
652    void clearCanCommit() { status.reset(CanCommit); }
653
654    /** Returns whether or not this instruction is ready to commit. */
655    bool readyToCommit() const { return status[CanCommit]; }
656
657    void setAtCommit() { status.set(AtCommit); }
658
659    bool isAtCommit() { return status[AtCommit]; }
660
661    /** Sets this instruction as committed. */
662    void setCommitted() { status.set(Committed); }
663
664    /** Returns whether or not this instruction is committed. */
665    bool isCommitted() const { return status[Committed]; }
666
667    /** Sets this instruction as squashed. */
668    void setSquashed() { status.set(Squashed); }
669
670    /** Returns whether or not this instruction is squashed. */
671    bool isSquashed() const { return status[Squashed]; }
672
673    //Instruction Queue Entry
674    //-----------------------
675    /** Sets this instruction as a entry the IQ. */
676    void setInIQ() { status.set(IqEntry); }
677
678    /** Sets this instruction as a entry the IQ. */
679    void clearInIQ() { status.reset(IqEntry); }
680
681    /** Returns whether or not this instruction has issued. */
682    bool isInIQ() const { return status[IqEntry]; }
683
684    /** Sets this instruction as squashed in the IQ. */
685    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
686
687    /** Returns whether or not this instruction is squashed in the IQ. */
688    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
689
690
691    //Load / Store Queue Functions
692    //-----------------------
693    /** Sets this instruction as a entry the LSQ. */
694    void setInLSQ() { status.set(LsqEntry); }
695
696    /** Sets this instruction as a entry the LSQ. */
697    void removeInLSQ() { status.reset(LsqEntry); }
698
699    /** Returns whether or not this instruction is in the LSQ. */
700    bool isInLSQ() const { return status[LsqEntry]; }
701
702    /** Sets this instruction as squashed in the LSQ. */
703    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
704
705    /** Returns whether or not this instruction is squashed in the LSQ. */
706    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
707
708
709    //Reorder Buffer Functions
710    //-----------------------
711    /** Sets this instruction as a entry the ROB. */
712    void setInROB() { status.set(RobEntry); }
713
714    /** Sets this instruction as a entry the ROB. */
715    void clearInROB() { status.reset(RobEntry); }
716
717    /** Returns whether or not this instruction is in the ROB. */
718    bool isInROB() const { return status[RobEntry]; }
719
720    /** Sets this instruction as squashed in the ROB. */
721    void setSquashedInROB() { status.set(SquashedInROB); }
722
723    /** Returns whether or not this instruction is squashed in the ROB. */
724    bool isSquashedInROB() const { return status[SquashedInROB]; }
725
726    /** Read the PC state of this instruction. */
727    const TheISA::PCState pcState() const { return pc; }
728
729    /** Set the PC state of this instruction. */
730    const void pcState(const TheISA::PCState &val) { pc = val; }
731
732    /** Read the PC of this instruction. */
733    const Addr instAddr() const { return pc.instAddr(); }
734
735    /** Read the PC of the next instruction. */
736    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
737
738    /**Read the micro PC of this instruction. */
739    const Addr microPC() const { return pc.microPC(); }
740
741    bool readPredicate()
742    {
743        return predicate;
744    }
745
746    void setPredicate(bool val)
747    {
748        predicate = val;
749
750        if (traceData) {
751            traceData->setPredicate(val);
752        }
753    }
754
755    /** Sets the ASID. */
756    void setASID(short addr_space_id) { asid = addr_space_id; }
757
758    /** Sets the thread id. */
759    void setTid(ThreadID tid) { threadNumber = tid; }
760
761    /** Sets the pointer to the thread state. */
762    void setThreadState(ImplState *state) { thread = state; }
763
764    /** Returns the thread context. */
765    ThreadContext *tcBase() { return thread->getTC(); }
766
767  private:
768    /** Instruction effective address.
769     *  @todo: Consider if this is necessary or not.
770     */
771    Addr instEffAddr;
772
773    /** Whether or not the effective address calculation is completed.
774     *  @todo: Consider if this is necessary or not.
775     */
776    bool eaCalcDone;
777
778    /** Is this instruction's memory access uncacheable. */
779    bool isUncacheable;
780
781    /** Has this instruction generated a memory request. */
782    bool reqMade;
783
784  public:
785    /** Sets the effective address. */
786    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
787
788    /** Returns the effective address. */
789    const Addr &getEA() const { return instEffAddr; }
790
791    /** Returns whether or not the eff. addr. calculation has been completed. */
792    bool doneEACalc() { return eaCalcDone; }
793
794    /** Returns whether or not the eff. addr. source registers are ready. */
795    bool eaSrcsReady();
796
797    /** Whether or not the memory operation is done. */
798    bool memOpDone;
799
800    /** Is this instruction's memory access uncacheable. */
801    bool uncacheable() { return isUncacheable; }
802
803    /** Has this instruction generated a memory request. */
804    bool hasRequest() { return reqMade; }
805
806  public:
807    /** Load queue index. */
808    int16_t lqIdx;
809
810    /** Store queue index. */
811    int16_t sqIdx;
812
813    /** Iterator pointing to this BaseDynInst in the list of all insts. */
814    ListIt instListIt;
815
816    /** Returns iterator to this instruction in the list of all insts. */
817    ListIt &getInstListIt() { return instListIt; }
818
819    /** Sets iterator for this instruction in the list of all insts. */
820    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
821
822  public:
823    /** Returns the number of consecutive store conditional failures. */
824    unsigned readStCondFailures()
825    { return thread->storeCondFailures; }
826
827    /** Sets the number of consecutive store conditional failures. */
828    void setStCondFailures(unsigned sc_failures)
829    { thread->storeCondFailures = sc_failures; }
830};
831
832template<class Impl>
833Fault
834BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
835                             unsigned size, unsigned flags)
836{
837    reqMade = true;
838    Request *req = new Request(asid, addr, size, flags, this->pc.instAddr(),
839                               thread->contextId(), threadNumber);
840
841    Request *sreqLow = NULL;
842    Request *sreqHigh = NULL;
843
844    // Only split the request if the ISA supports unaligned accesses.
845    if (TheISA::HasUnalignedMemAcc) {
846        splitRequest(req, sreqLow, sreqHigh);
847    }
848    initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
849
850    if (fault == NoFault) {
851        effAddr = req->getVaddr();
852        effAddrValid = true;
853        fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
854    } else {
855        // Commit will have to clean up whatever happened.  Set this
856        // instruction as executed.
857        this->setExecuted();
858    }
859
860    if (fault != NoFault) {
861        // Return a fixed value to keep simulation deterministic even
862        // along misspeculated paths.
863        if (data)
864            bzero(data, size);
865    }
866
867    if (traceData) {
868        traceData->setAddr(addr);
869    }
870
871    return fault;
872}
873
874template<class Impl>
875template<class T>
876inline Fault
877BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
878{
879    Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
880
881    data = TheISA::gtoh(data);
882
883    if (traceData) {
884        traceData->setData(data);
885    }
886
887    return fault;
888}
889
890template<class Impl>
891Fault
892BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
893                              Addr addr, unsigned flags, uint64_t *res)
894{
895    if (traceData) {
896        traceData->setAddr(addr);
897    }
898
899    reqMade = true;
900    Request *req = new Request(asid, addr, size, flags, this->pc.instAddr(),
901                               thread->contextId(), threadNumber);
902
903    Request *sreqLow = NULL;
904    Request *sreqHigh = NULL;
905
906    // Only split the request if the ISA supports unaligned accesses.
907    if (TheISA::HasUnalignedMemAcc) {
908        splitRequest(req, sreqLow, sreqHigh);
909    }
910    initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
911
912    if (fault == NoFault) {
913        effAddr = req->getVaddr();
914        effAddrValid = true;
915        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
916    }
917
918    return fault;
919}
920
921template<class Impl>
922template<class T>
923inline Fault
924BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
925{
926    if (traceData) {
927        traceData->setData(data);
928    }
929    data = TheISA::htog(data);
930    return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
931}
932
933template<class Impl>
934inline void
935BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
936                                RequestPtr &sreqHigh)
937{
938    // Check to see if the request crosses the next level block boundary.
939    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
940    Addr addr = req->getVaddr();
941    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
942    assert(split_addr <= addr || split_addr - addr < block_size);
943
944    // Spans two blocks.
945    if (split_addr > addr) {
946        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
947    }
948}
949
950template<class Impl>
951inline void
952BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
953                                       RequestPtr sreqHigh, uint64_t *res,
954                                       BaseTLB::Mode mode)
955{
956    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
957        WholeTranslationState *state =
958            new WholeTranslationState(req, NULL, res, mode);
959
960        // One translation if the request isn't split.
961        DataTranslation<BaseDynInst<Impl> > *trans =
962            new DataTranslation<BaseDynInst<Impl> >(this, state);
963        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
964    } else {
965        WholeTranslationState *state =
966            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
967
968        // Two translations when the request is split.
969        DataTranslation<BaseDynInst<Impl> > *stransLow =
970            new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
971        DataTranslation<BaseDynInst<Impl> > *stransHigh =
972            new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
973
974        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
975        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
976    }
977}
978
979template<class Impl>
980inline void
981BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
982{
983    fault = state->getFault();
984
985    if (state->isUncacheable())
986        isUncacheable = true;
987
988    if (fault == NoFault) {
989        physEffAddr = state->getPaddr();
990        memReqFlags = state->getFlags();
991
992        if (state->mainReq->isCondSwap()) {
993            assert(state->res);
994            state->mainReq->setExtraData(*state->res);
995        }
996
997    } else {
998        state->deleteReqs();
999    }
1000    delete state;
1001}
1002
1003#endif // __CPU_BASE_DYN_INST_HH__
1004