base.cc revision 12811
1/*
2 * Copyright (c) 2011-2012,2016-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 *          Nathan Binkert
45 *          Rick Strong
46 */
47
48#include "cpu/base.hh"
49
50#include <iostream>
51#include <sstream>
52#include <string>
53
54#include "arch/generic/tlb.hh"
55#include "base/cprintf.hh"
56#include "base/loader/symtab.hh"
57#include "base/logging.hh"
58#include "base/output.hh"
59#include "base/trace.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/cpuevent.hh"
62#include "cpu/profile.hh"
63#include "cpu/thread_context.hh"
64#include "debug/Mwait.hh"
65#include "debug/SyscallVerbose.hh"
66#include "mem/page_table.hh"
67#include "params/BaseCPU.hh"
68#include "sim/clocked_object.hh"
69#include "sim/full_system.hh"
70#include "sim/process.hh"
71#include "sim/sim_events.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75// Hack
76#include "sim/stat_control.hh"
77
78using namespace std;
79
80vector<BaseCPU *> BaseCPU::cpuList;
81
82// This variable reflects the max number of threads in any CPU.  Be
83// careful to only use it once all the CPUs that you care about have
84// been initialized
85int maxThreadsPerCPU = 1;
86
87CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88    : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89      cpu(_cpu), _repeatEvent(true)
90{
91    if (_interval)
92        cpu->schedule(this, curTick() + _interval);
93}
94
95void
96CPUProgressEvent::process()
97{
98    Counter temp = cpu->totalOps();
99
100    if (_repeatEvent)
101      cpu->schedule(this, curTick() + _interval);
102
103    if (cpu->switchedOut()) {
104      return;
105    }
106
107#ifndef NDEBUG
108    double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110    DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111             "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112             ipc);
113    ipc = 0.0;
114#else
115    cprintf("%lli: %s progress event, total committed:%i, progress insts "
116            "committed: %lli\n", curTick(), cpu->name(), temp,
117            temp - lastNumInst);
118#endif
119    lastNumInst = temp;
120}
121
122const char *
123CPUProgressEvent::description() const
124{
125    return "CPU Progress";
126}
127
128BaseCPU::BaseCPU(Params *p, bool is_checker)
129    : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130      _instMasterId(p->system->getMasterId(this, "inst")),
131      _dataMasterId(p->system->getMasterId(this, "data")),
132      _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133      _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134      interrupts(p->interrupts), profileEvent(NULL),
135      numThreads(p->numThreads), system(p->system),
136      previousCycle(0), previousState(CPU_STATE_SLEEP),
137      functionTraceStream(nullptr), currentFunctionStart(0),
138      currentFunctionEnd(0), functionEntryTick(0),
139      addressMonitor(p->numThreads),
140      syscallRetryLatency(p->syscallRetryLatency),
141      pwrGatingLatency(p->pwr_gating_latency),
142      powerGatingOnIdle(p->power_gating_on_idle),
143      enterPwrGatingEvent([this]{ enterPwrGating(); }, name())
144{
145    // if Python did not provide a valid ID, do it here
146    if (_cpuId == -1 ) {
147        _cpuId = cpuList.size();
148    }
149
150    // add self to global list of CPUs
151    cpuList.push_back(this);
152
153    DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
154                _cpuId, _socketId);
155
156    if (numThreads > maxThreadsPerCPU)
157        maxThreadsPerCPU = numThreads;
158
159    // allocate per-thread instruction-based event queues
160    comInstEventQueue = new EventQueue *[numThreads];
161    for (ThreadID tid = 0; tid < numThreads; ++tid)
162        comInstEventQueue[tid] =
163            new EventQueue("instruction-based event queue");
164
165    //
166    // set up instruction-count-based termination events, if any
167    //
168    if (p->max_insts_any_thread != 0) {
169        const char *cause = "a thread reached the max instruction count";
170        for (ThreadID tid = 0; tid < numThreads; ++tid)
171            scheduleInstStop(tid, p->max_insts_any_thread, cause);
172    }
173
174    // Set up instruction-count-based termination events for SimPoints
175    // Typically, there are more than one action points.
176    // Simulation.py is responsible to take the necessary actions upon
177    // exitting the simulation loop.
178    if (!p->simpoint_start_insts.empty()) {
179        const char *cause = "simpoint starting point found";
180        for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
181            scheduleInstStop(0, p->simpoint_start_insts[i], cause);
182    }
183
184    if (p->max_insts_all_threads != 0) {
185        const char *cause = "all threads reached the max instruction count";
186
187        // allocate & initialize shared downcounter: each event will
188        // decrement this when triggered; simulation will terminate
189        // when counter reaches 0
190        int *counter = new int;
191        *counter = numThreads;
192        for (ThreadID tid = 0; tid < numThreads; ++tid) {
193            Event *event = new CountedExitEvent(cause, *counter);
194            comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
195        }
196    }
197
198    // allocate per-thread load-based event queues
199    comLoadEventQueue = new EventQueue *[numThreads];
200    for (ThreadID tid = 0; tid < numThreads; ++tid)
201        comLoadEventQueue[tid] = new EventQueue("load-based event queue");
202
203    //
204    // set up instruction-count-based termination events, if any
205    //
206    if (p->max_loads_any_thread != 0) {
207        const char *cause = "a thread reached the max load count";
208        for (ThreadID tid = 0; tid < numThreads; ++tid)
209            scheduleLoadStop(tid, p->max_loads_any_thread, cause);
210    }
211
212    if (p->max_loads_all_threads != 0) {
213        const char *cause = "all threads reached the max load count";
214        // allocate & initialize shared downcounter: each event will
215        // decrement this when triggered; simulation will terminate
216        // when counter reaches 0
217        int *counter = new int;
218        *counter = numThreads;
219        for (ThreadID tid = 0; tid < numThreads; ++tid) {
220            Event *event = new CountedExitEvent(cause, *counter);
221            comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
222        }
223    }
224
225    functionTracingEnabled = false;
226    if (p->function_trace) {
227        const string fname = csprintf("ftrace.%s", name());
228        functionTraceStream = simout.findOrCreate(fname)->stream();
229
230        currentFunctionStart = currentFunctionEnd = 0;
231        functionEntryTick = p->function_trace_start;
232
233        if (p->function_trace_start == 0) {
234            functionTracingEnabled = true;
235        } else {
236            Event *event = new EventFunctionWrapper(
237                [this]{ enableFunctionTrace(); }, name(), true);
238            schedule(event, p->function_trace_start);
239        }
240    }
241
242    // The interrupts should always be present unless this CPU is
243    // switched in later or in case it is a checker CPU
244    if (!params()->switched_out && !is_checker) {
245        fatal_if(interrupts.size() != numThreads,
246                 "CPU %s has %i interrupt controllers, but is expecting one "
247                 "per thread (%i)\n",
248                 name(), interrupts.size(), numThreads);
249        for (ThreadID tid = 0; tid < numThreads; tid++)
250            interrupts[tid]->setCPU(this);
251    }
252
253    if (FullSystem) {
254        if (params()->profile)
255            profileEvent = new EventFunctionWrapper(
256                [this]{ processProfileEvent(); },
257                name());
258    }
259    tracer = params()->tracer;
260
261    if (params()->isa.size() != numThreads) {
262        fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
263              "of threads (%i).\n", params()->isa.size(), numThreads);
264    }
265}
266
267void
268BaseCPU::enableFunctionTrace()
269{
270    functionTracingEnabled = true;
271}
272
273BaseCPU::~BaseCPU()
274{
275    delete profileEvent;
276    delete[] comLoadEventQueue;
277    delete[] comInstEventQueue;
278}
279
280void
281BaseCPU::armMonitor(ThreadID tid, Addr address)
282{
283    assert(tid < numThreads);
284    AddressMonitor &monitor = addressMonitor[tid];
285
286    monitor.armed = true;
287    monitor.vAddr = address;
288    monitor.pAddr = 0x0;
289    DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
290}
291
292bool
293BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
294{
295    assert(tid < numThreads);
296    AddressMonitor &monitor = addressMonitor[tid];
297
298    if (!monitor.gotWakeup) {
299        int block_size = cacheLineSize();
300        uint64_t mask = ~((uint64_t)(block_size - 1));
301
302        assert(pkt->req->hasPaddr());
303        monitor.pAddr = pkt->getAddr() & mask;
304        monitor.waiting = true;
305
306        DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
307                "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
308        return true;
309    } else {
310        monitor.gotWakeup = false;
311        return false;
312    }
313}
314
315void
316BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, BaseTLB *dtb)
317{
318    assert(tid < numThreads);
319    AddressMonitor &monitor = addressMonitor[tid];
320
321    RequestPtr req = std::make_shared<Request>();
322
323    Addr addr = monitor.vAddr;
324    int block_size = cacheLineSize();
325    uint64_t mask = ~((uint64_t)(block_size - 1));
326    int size = block_size;
327
328    //The address of the next line if it crosses a cache line boundary.
329    Addr secondAddr = roundDown(addr + size - 1, block_size);
330
331    if (secondAddr > addr)
332        size = secondAddr - addr;
333
334    req->setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
335
336    // translate to physical address
337    Fault fault = dtb->translateAtomic(req, tc, BaseTLB::Read);
338    assert(fault == NoFault);
339
340    monitor.pAddr = req->getPaddr() & mask;
341    monitor.waiting = true;
342
343    DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
344            tid, monitor.vAddr, monitor.pAddr);
345}
346
347void
348BaseCPU::init()
349{
350    if (!params()->switched_out) {
351        registerThreadContexts();
352
353        verifyMemoryMode();
354    }
355}
356
357void
358BaseCPU::startup()
359{
360    if (FullSystem) {
361        if (!params()->switched_out && profileEvent)
362            schedule(profileEvent, curTick());
363    }
364
365    if (params()->progress_interval) {
366        new CPUProgressEvent(this, params()->progress_interval);
367    }
368
369    if (_switchedOut)
370        ClockedObject::pwrState(Enums::PwrState::OFF);
371
372    // Assumption CPU start to operate instantaneously without any latency
373    if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
374        ClockedObject::pwrState(Enums::PwrState::ON);
375
376}
377
378ProbePoints::PMUUPtr
379BaseCPU::pmuProbePoint(const char *name)
380{
381    ProbePoints::PMUUPtr ptr;
382    ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
383
384    return ptr;
385}
386
387void
388BaseCPU::regProbePoints()
389{
390    ppAllCycles = pmuProbePoint("Cycles");
391    ppActiveCycles = pmuProbePoint("ActiveCycles");
392
393    ppRetiredInsts = pmuProbePoint("RetiredInsts");
394    ppRetiredLoads = pmuProbePoint("RetiredLoads");
395    ppRetiredStores = pmuProbePoint("RetiredStores");
396    ppRetiredBranches = pmuProbePoint("RetiredBranches");
397
398    ppSleeping = new ProbePointArg<bool>(this->getProbeManager(),
399                                         "Sleeping");
400}
401
402void
403BaseCPU::probeInstCommit(const StaticInstPtr &inst)
404{
405    if (!inst->isMicroop() || inst->isLastMicroop())
406        ppRetiredInsts->notify(1);
407
408
409    if (inst->isLoad())
410        ppRetiredLoads->notify(1);
411
412    if (inst->isStore())
413        ppRetiredStores->notify(1);
414
415    if (inst->isControl())
416        ppRetiredBranches->notify(1);
417}
418
419void
420BaseCPU::regStats()
421{
422    MemObject::regStats();
423
424    using namespace Stats;
425
426    numCycles
427        .name(name() + ".numCycles")
428        .desc("number of cpu cycles simulated")
429        ;
430
431    numWorkItemsStarted
432        .name(name() + ".numWorkItemsStarted")
433        .desc("number of work items this cpu started")
434        ;
435
436    numWorkItemsCompleted
437        .name(name() + ".numWorkItemsCompleted")
438        .desc("number of work items this cpu completed")
439        ;
440
441    int size = threadContexts.size();
442    if (size > 1) {
443        for (int i = 0; i < size; ++i) {
444            stringstream namestr;
445            ccprintf(namestr, "%s.ctx%d", name(), i);
446            threadContexts[i]->regStats(namestr.str());
447        }
448    } else if (size == 1)
449        threadContexts[0]->regStats(name());
450}
451
452BaseMasterPort &
453BaseCPU::getMasterPort(const string &if_name, PortID idx)
454{
455    // Get the right port based on name. This applies to all the
456    // subclasses of the base CPU and relies on their implementation
457    // of getDataPort and getInstPort. In all cases there methods
458    // return a MasterPort pointer.
459    if (if_name == "dcache_port")
460        return getDataPort();
461    else if (if_name == "icache_port")
462        return getInstPort();
463    else
464        return MemObject::getMasterPort(if_name, idx);
465}
466
467void
468BaseCPU::registerThreadContexts()
469{
470    assert(system->multiThread || numThreads == 1);
471
472    ThreadID size = threadContexts.size();
473    for (ThreadID tid = 0; tid < size; ++tid) {
474        ThreadContext *tc = threadContexts[tid];
475
476        if (system->multiThread) {
477            tc->setContextId(system->registerThreadContext(tc));
478        } else {
479            tc->setContextId(system->registerThreadContext(tc, _cpuId));
480        }
481
482        if (!FullSystem)
483            tc->getProcessPtr()->assignThreadContext(tc->contextId());
484    }
485}
486
487void
488BaseCPU::deschedulePowerGatingEvent()
489{
490    if (enterPwrGatingEvent.scheduled()){
491        deschedule(enterPwrGatingEvent);
492    }
493}
494
495void
496BaseCPU::schedulePowerGatingEvent()
497{
498    for (auto tc : threadContexts) {
499        if (tc->status() == ThreadContext::Active)
500            return;
501    }
502
503    if (ClockedObject::pwrState() == Enums::PwrState::CLK_GATED &&
504        powerGatingOnIdle) {
505        assert(!enterPwrGatingEvent.scheduled());
506        // Schedule a power gating event when clock gated for the specified
507        // amount of time
508        schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
509    }
510}
511
512int
513BaseCPU::findContext(ThreadContext *tc)
514{
515    ThreadID size = threadContexts.size();
516    for (ThreadID tid = 0; tid < size; ++tid) {
517        if (tc == threadContexts[tid])
518            return tid;
519    }
520    return 0;
521}
522
523void
524BaseCPU::activateContext(ThreadID thread_num)
525{
526    // Squash enter power gating event while cpu gets activated
527    if (enterPwrGatingEvent.scheduled())
528        deschedule(enterPwrGatingEvent);
529    // For any active thread running, update CPU power state to active (ON)
530    ClockedObject::pwrState(Enums::PwrState::ON);
531
532    updateCycleCounters(CPU_STATE_WAKEUP);
533}
534
535void
536BaseCPU::suspendContext(ThreadID thread_num)
537{
538    // Check if all threads are suspended
539    for (auto t : threadContexts) {
540        if (t->status() != ThreadContext::Suspended) {
541            return;
542        }
543    }
544
545    // All CPU thread are suspended, update cycle count
546    updateCycleCounters(CPU_STATE_SLEEP);
547
548    // All CPU threads suspended, enter lower power state for the CPU
549    ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
550
551    // If pwrGatingLatency is set to 0 then this mechanism is disabled
552    if (powerGatingOnIdle) {
553        // Schedule power gating event when clock gated for pwrGatingLatency
554        // cycles
555        schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
556    }
557}
558
559void
560BaseCPU::haltContext(ThreadID thread_num)
561{
562    updateCycleCounters(BaseCPU::CPU_STATE_SLEEP);
563}
564
565void
566BaseCPU::enterPwrGating(void)
567{
568    ClockedObject::pwrState(Enums::PwrState::OFF);
569}
570
571void
572BaseCPU::switchOut()
573{
574    assert(!_switchedOut);
575    _switchedOut = true;
576    if (profileEvent && profileEvent->scheduled())
577        deschedule(profileEvent);
578
579    // Flush all TLBs in the CPU to avoid having stale translations if
580    // it gets switched in later.
581    flushTLBs();
582
583    // Go to the power gating state
584    ClockedObject::pwrState(Enums::PwrState::OFF);
585}
586
587void
588BaseCPU::takeOverFrom(BaseCPU *oldCPU)
589{
590    assert(threadContexts.size() == oldCPU->threadContexts.size());
591    assert(_cpuId == oldCPU->cpuId());
592    assert(_switchedOut);
593    assert(oldCPU != this);
594    _pid = oldCPU->getPid();
595    _taskId = oldCPU->taskId();
596    // Take over the power state of the switchedOut CPU
597    ClockedObject::pwrState(oldCPU->pwrState());
598
599    previousState = oldCPU->previousState;
600    previousCycle = oldCPU->previousCycle;
601
602    _switchedOut = false;
603
604    ThreadID size = threadContexts.size();
605    for (ThreadID i = 0; i < size; ++i) {
606        ThreadContext *newTC = threadContexts[i];
607        ThreadContext *oldTC = oldCPU->threadContexts[i];
608
609        newTC->takeOverFrom(oldTC);
610
611        CpuEvent::replaceThreadContext(oldTC, newTC);
612
613        assert(newTC->contextId() == oldTC->contextId());
614        assert(newTC->threadId() == oldTC->threadId());
615        system->replaceThreadContext(newTC, newTC->contextId());
616
617        /* This code no longer works since the zero register (e.g.,
618         * r31 on Alpha) doesn't necessarily contain zero at this
619         * point.
620           if (DTRACE(Context))
621            ThreadContext::compare(oldTC, newTC);
622        */
623
624        BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
625        BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
626        BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
627        BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
628
629        // Move over any table walker ports if they exist
630        if (new_itb_port) {
631            assert(!new_itb_port->isConnected());
632            assert(old_itb_port);
633            assert(old_itb_port->isConnected());
634            BaseSlavePort &slavePort = old_itb_port->getSlavePort();
635            old_itb_port->unbind();
636            new_itb_port->bind(slavePort);
637        }
638        if (new_dtb_port) {
639            assert(!new_dtb_port->isConnected());
640            assert(old_dtb_port);
641            assert(old_dtb_port->isConnected());
642            BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
643            old_dtb_port->unbind();
644            new_dtb_port->bind(slavePort);
645        }
646        newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
647        newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
648
649        // Checker whether or not we have to transfer CheckerCPU
650        // objects over in the switch
651        CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
652        CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
653        if (oldChecker && newChecker) {
654            BaseMasterPort *old_checker_itb_port =
655                oldChecker->getITBPtr()->getMasterPort();
656            BaseMasterPort *old_checker_dtb_port =
657                oldChecker->getDTBPtr()->getMasterPort();
658            BaseMasterPort *new_checker_itb_port =
659                newChecker->getITBPtr()->getMasterPort();
660            BaseMasterPort *new_checker_dtb_port =
661                newChecker->getDTBPtr()->getMasterPort();
662
663            newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
664            newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
665
666            // Move over any table walker ports if they exist for checker
667            if (new_checker_itb_port) {
668                assert(!new_checker_itb_port->isConnected());
669                assert(old_checker_itb_port);
670                assert(old_checker_itb_port->isConnected());
671                BaseSlavePort &slavePort =
672                    old_checker_itb_port->getSlavePort();
673                old_checker_itb_port->unbind();
674                new_checker_itb_port->bind(slavePort);
675            }
676            if (new_checker_dtb_port) {
677                assert(!new_checker_dtb_port->isConnected());
678                assert(old_checker_dtb_port);
679                assert(old_checker_dtb_port->isConnected());
680                BaseSlavePort &slavePort =
681                    old_checker_dtb_port->getSlavePort();
682                old_checker_dtb_port->unbind();
683                new_checker_dtb_port->bind(slavePort);
684            }
685        }
686    }
687
688    interrupts = oldCPU->interrupts;
689    for (ThreadID tid = 0; tid < numThreads; tid++) {
690        interrupts[tid]->setCPU(this);
691    }
692    oldCPU->interrupts.clear();
693
694    if (FullSystem) {
695        for (ThreadID i = 0; i < size; ++i)
696            threadContexts[i]->profileClear();
697
698        if (profileEvent)
699            schedule(profileEvent, curTick());
700    }
701
702    // All CPUs have an instruction and a data port, and the new CPU's
703    // ports are dangling while the old CPU has its ports connected
704    // already. Unbind the old CPU and then bind the ports of the one
705    // we are switching to.
706    assert(!getInstPort().isConnected());
707    assert(oldCPU->getInstPort().isConnected());
708    BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
709    oldCPU->getInstPort().unbind();
710    getInstPort().bind(inst_peer_port);
711
712    assert(!getDataPort().isConnected());
713    assert(oldCPU->getDataPort().isConnected());
714    BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
715    oldCPU->getDataPort().unbind();
716    getDataPort().bind(data_peer_port);
717}
718
719void
720BaseCPU::flushTLBs()
721{
722    for (ThreadID i = 0; i < threadContexts.size(); ++i) {
723        ThreadContext &tc(*threadContexts[i]);
724        CheckerCPU *checker(tc.getCheckerCpuPtr());
725
726        tc.getITBPtr()->flushAll();
727        tc.getDTBPtr()->flushAll();
728        if (checker) {
729            checker->getITBPtr()->flushAll();
730            checker->getDTBPtr()->flushAll();
731        }
732    }
733}
734
735void
736BaseCPU::processProfileEvent()
737{
738    ThreadID size = threadContexts.size();
739
740    for (ThreadID i = 0; i < size; ++i)
741        threadContexts[i]->profileSample();
742
743    schedule(profileEvent, curTick() + params()->profile);
744}
745
746void
747BaseCPU::serialize(CheckpointOut &cp) const
748{
749    SERIALIZE_SCALAR(instCnt);
750
751    if (!_switchedOut) {
752        /* Unlike _pid, _taskId is not serialized, as they are dynamically
753         * assigned unique ids that are only meaningful for the duration of
754         * a specific run. We will need to serialize the entire taskMap in
755         * system. */
756        SERIALIZE_SCALAR(_pid);
757
758        // Serialize the threads, this is done by the CPU implementation.
759        for (ThreadID i = 0; i < numThreads; ++i) {
760            ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
761            interrupts[i]->serialize(cp);
762            serializeThread(cp, i);
763        }
764    }
765}
766
767void
768BaseCPU::unserialize(CheckpointIn &cp)
769{
770    UNSERIALIZE_SCALAR(instCnt);
771
772    if (!_switchedOut) {
773        UNSERIALIZE_SCALAR(_pid);
774
775        // Unserialize the threads, this is done by the CPU implementation.
776        for (ThreadID i = 0; i < numThreads; ++i) {
777            ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
778            interrupts[i]->unserialize(cp);
779            unserializeThread(cp, i);
780        }
781    }
782}
783
784void
785BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
786{
787    const Tick now(comInstEventQueue[tid]->getCurTick());
788    Event *event(new LocalSimLoopExitEvent(cause, 0));
789
790    comInstEventQueue[tid]->schedule(event, now + insts);
791}
792
793uint64_t
794BaseCPU::getCurrentInstCount(ThreadID tid)
795{
796    return Tick(comInstEventQueue[tid]->getCurTick());
797}
798
799AddressMonitor::AddressMonitor() {
800    armed = false;
801    waiting = false;
802    gotWakeup = false;
803}
804
805bool AddressMonitor::doMonitor(PacketPtr pkt) {
806    assert(pkt->req->hasPaddr());
807    if (armed && waiting) {
808        if (pAddr == pkt->getAddr()) {
809            DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
810                    pkt->getAddr());
811            waiting = false;
812            return true;
813        }
814    }
815    return false;
816}
817
818void
819BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
820{
821    const Tick now(comLoadEventQueue[tid]->getCurTick());
822    Event *event(new LocalSimLoopExitEvent(cause, 0));
823
824    comLoadEventQueue[tid]->schedule(event, now + loads);
825}
826
827
828void
829BaseCPU::traceFunctionsInternal(Addr pc)
830{
831    if (!debugSymbolTable)
832        return;
833
834    // if pc enters different function, print new function symbol and
835    // update saved range.  Otherwise do nothing.
836    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
837        string sym_str;
838        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
839                                                         currentFunctionStart,
840                                                         currentFunctionEnd);
841
842        if (!found) {
843            // no symbol found: use addr as label
844            sym_str = csprintf("0x%x", pc);
845            currentFunctionStart = pc;
846            currentFunctionEnd = pc + 1;
847        }
848
849        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
850                 curTick() - functionEntryTick, curTick(), sym_str);
851        functionEntryTick = curTick();
852    }
853}
854
855bool
856BaseCPU::waitForRemoteGDB() const
857{
858    return params()->wait_for_remote_gdb;
859}
860