statistics.hh revision 6026:45c8a91d1174
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42*   -- these both can use the same function that prints out a
43*   specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/visit.hh"
69#include "base/stats/types.hh"
70#include "sim/host.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80struct StorageParams
81{
82    virtual ~StorageParams();
83};
84
85//////////////////////////////////////////////////////////////////////
86//
87// Statistics Framework Base classes
88//
89//////////////////////////////////////////////////////////////////////
90class Info
91{
92  public:
93    /** The name of the stat. */
94    std::string name;
95    /** The description of the stat. */
96    std::string desc;
97    /** The formatting flags. */
98    StatFlags flags;
99    /** The display precision. */
100    int precision;
101    /** A pointer to a prerequisite Stat. */
102    const Info *prereq;
103    /**
104     * A unique stat ID for each stat in the simulator.
105     * Can be used externally for lookups as well as for debugging.
106     */
107    static int id_count;
108    int id;
109
110  public:
111    const StorageParams *storageParams;
112
113  public:
114    Info();
115    virtual ~Info();
116
117    /** Set the name of this statistic */
118    void setName(const std::string &name);
119
120    /**
121     * Check that this stat has been set up properly and is ready for
122     * use
123     * @return true for success
124     */
125    virtual bool check() const = 0;
126    bool baseCheck() const;
127
128    /**
129     * Enable the stat for use
130     */
131    virtual void enable();
132
133    /**
134     * Prepare the stat for dumping.
135     */
136    virtual void prepare() = 0;
137
138    /**
139     * Reset the stat to the default state.
140     */
141    virtual void reset() = 0;
142
143    /**
144     * @return true if this stat has a value and satisfies its
145     * requirement as a prereq
146     */
147    virtual bool zero() const = 0;
148
149    /**
150     * Visitor entry for outputing statistics data
151     */
152    virtual void visit(Visit &visitor) = 0;
153
154    /**
155     * Checks if the first stat's name is alphabetically less than the second.
156     * This function breaks names up at periods and considers each subname
157     * separately.
158     * @param stat1 The first stat.
159     * @param stat2 The second stat.
160     * @return stat1's name is alphabetically before stat2's
161     */
162    static bool less(Info *stat1, Info *stat2);
163};
164
165template <class Stat, class Base>
166class InfoWrap : public Base
167{
168  protected:
169    Stat &s;
170
171  public:
172    InfoWrap(Stat &stat) : s(stat) {}
173
174    bool check() const { return s.check(); }
175    void prepare() { s.prepare(); }
176    void reset() { s.reset(); }
177    void
178    visit(Visit &visitor)
179    {
180        visitor.visit(*static_cast<Base *>(this));
181    }
182    bool zero() const { return s.zero(); }
183};
184
185class ScalarInfoBase : public Info
186{
187  public:
188    virtual Counter value() const = 0;
189    virtual Result result() const = 0;
190    virtual Result total() const = 0;
191};
192
193template <class Stat>
194class ScalarInfo : public InfoWrap<Stat, ScalarInfoBase>
195{
196  public:
197    ScalarInfo(Stat &stat) : InfoWrap<Stat, ScalarInfoBase>(stat) {}
198
199    Counter value() const { return this->s.value(); }
200    Result result() const { return this->s.result(); }
201    Result total() const { return this->s.total(); }
202};
203
204class VectorInfoBase : public Info
205{
206  public:
207    /** Names and descriptions of subfields. */
208    std::vector<std::string> subnames;
209    std::vector<std::string> subdescs;
210
211  public:
212    void enable();
213
214  public:
215    virtual size_type size() const = 0;
216    virtual const VCounter &value() const = 0;
217    virtual const VResult &result() const = 0;
218    virtual Result total() const = 0;
219};
220
221template <class Stat>
222class VectorInfo : public InfoWrap<Stat, VectorInfoBase>
223{
224  protected:
225    mutable VCounter cvec;
226    mutable VResult rvec;
227
228  public:
229    VectorInfo(Stat &stat) : InfoWrap<Stat, VectorInfoBase>(stat) {}
230
231    size_type size() const { return this->s.size(); }
232
233    VCounter &
234    value() const
235    {
236        this->s.value(cvec);
237        return cvec;
238    }
239
240    const VResult &
241    result() const
242    {
243        this->s.result(rvec);
244        return rvec;
245    }
246
247    Result total() const { return this->s.total(); }
248};
249
250struct DistData
251{
252    Counter min_val;
253    Counter max_val;
254    Counter underflow;
255    Counter overflow;
256    VCounter cvec;
257    Counter sum;
258    Counter squares;
259    Counter samples;
260};
261
262class DistInfoBase : public Info
263{
264  public:
265    /** Local storage for the entry values, used for printing. */
266    DistData data;
267};
268
269template <class Stat>
270class DistInfo : public InfoWrap<Stat, DistInfoBase>
271{
272  public:
273    DistInfo(Stat &stat) : InfoWrap<Stat, DistInfoBase>(stat) {}
274};
275
276class VectorDistInfoBase : public Info
277{
278  public:
279    std::vector<DistData> data;
280
281    /** Names and descriptions of subfields. */
282    std::vector<std::string> subnames;
283    std::vector<std::string> subdescs;
284    void enable();
285
286  protected:
287    /** Local storage for the entry values, used for printing. */
288    mutable VResult rvec;
289
290  public:
291    virtual size_type size() const = 0;
292};
293
294template <class Stat>
295class VectorDistInfo : public InfoWrap<Stat, VectorDistInfoBase>
296{
297  public:
298    VectorDistInfo(Stat &stat) : InfoWrap<Stat, VectorDistInfoBase>(stat) {}
299
300    size_type size() const { return this->s.size(); }
301};
302
303class Vector2dInfoBase : public Info
304{
305  public:
306    /** Names and descriptions of subfields. */
307    std::vector<std::string> subnames;
308    std::vector<std::string> subdescs;
309    std::vector<std::string> y_subnames;
310
311    size_type x;
312    size_type y;
313
314    /** Local storage for the entry values, used for printing. */
315    mutable VCounter cvec;
316
317    void enable();
318};
319
320template <class Stat>
321class Vector2dInfo : public InfoWrap<Stat, Vector2dInfoBase>
322{
323  public:
324    Vector2dInfo(Stat &stat) : InfoWrap<Stat, Vector2dInfoBase>(stat) {}
325};
326
327class InfoAccess
328{
329  protected:
330    /** Set up an info class for this statistic */
331    void setInfo(Info *info);
332    /** Save Storage class parameters if any */
333    void setParams(const StorageParams *params);
334    /** Save Storage class parameters if any */
335    void setInit();
336
337    /** Grab the information class for this statistic */
338    Info *info();
339    /** Grab the information class for this statistic */
340    const Info *info() const;
341
342  public:
343    /**
344     * Reset the stat to the default state.
345     */
346    void reset() { }
347
348    /**
349     * @return true if this stat has a value and satisfies its
350     * requirement as a prereq
351     */
352    bool zero() const { return true; }
353
354    /**
355     * Check that this stat has been set up properly and is ready for
356     * use
357     * @return true for success
358     */
359    bool check() const { return true; }
360};
361
362template <class Derived, template <class> class InfoType>
363class DataWrap : public InfoAccess
364{
365  public:
366    typedef InfoType<Derived> Info;
367
368  protected:
369    Derived &self() { return *static_cast<Derived *>(this); }
370
371  protected:
372    Info *
373    info()
374    {
375        return safe_cast<Info *>(InfoAccess::info());
376    }
377
378  public:
379    const Info *
380    info() const
381    {
382        return safe_cast<const Info *>(InfoAccess::info());
383    }
384
385  protected:
386    /**
387     * Copy constructor, copies are not allowed.
388     */
389    DataWrap(const DataWrap &stat);
390
391    /**
392     * Can't copy stats.
393     */
394    void operator=(const DataWrap &);
395
396  public:
397    DataWrap()
398    {
399        this->setInfo(new Info(self()));
400    }
401
402    /**
403     * Set the name and marks this stat to print at the end of simulation.
404     * @param name The new name.
405     * @return A reference to this stat.
406     */
407    Derived &
408    name(const std::string &name)
409    {
410        Info *info = this->info();
411        info->setName(name);
412        info->flags |= print;
413        return this->self();
414    }
415    const std::string &name() const { return this->info()->name; }
416
417    /**
418     * Set the description and marks this stat to print at the end of
419     * simulation.
420     * @param desc The new description.
421     * @return A reference to this stat.
422     */
423    Derived &
424    desc(const std::string &_desc)
425    {
426        this->info()->desc = _desc;
427        return this->self();
428    }
429
430    /**
431     * Set the precision and marks this stat to print at the end of simulation.
432     * @param _precision The new precision
433     * @return A reference to this stat.
434     */
435    Derived &
436    precision(int _precision)
437    {
438        this->info()->precision = _precision;
439        return this->self();
440    }
441
442    /**
443     * Set the flags and marks this stat to print at the end of simulation.
444     * @param f The new flags.
445     * @return A reference to this stat.
446     */
447    Derived &
448    flags(StatFlags _flags)
449    {
450        this->info()->flags |= _flags;
451        return this->self();
452    }
453
454    /**
455     * Set the prerequisite stat and marks this stat to print at the end of
456     * simulation.
457     * @param prereq The prerequisite stat.
458     * @return A reference to this stat.
459     */
460    template <class Stat>
461    Derived &
462    prereq(const Stat &prereq)
463    {
464        this->info()->prereq = prereq.info();
465        return this->self();
466    }
467};
468
469template <class Derived, template <class> class InfoType>
470class DataWrapVec : public DataWrap<Derived, InfoType>
471{
472  public:
473    typedef InfoType<Derived> Info;
474
475    // The following functions are specific to vectors.  If you use them
476    // in a non vector context, you will get a nice compiler error!
477
478    /**
479     * Set the subfield name for the given index, and marks this stat to print
480     * at the end of simulation.
481     * @param index The subfield index.
482     * @param name The new name of the subfield.
483     * @return A reference to this stat.
484     */
485    Derived &
486    subname(off_type index, const std::string &name)
487    {
488        Derived &self = this->self();
489        Info *info = self.info();
490
491        std::vector<std::string> &subn = info->subnames;
492        if (subn.size() <= index)
493            subn.resize(index + 1);
494        subn[index] = name;
495        return self;
496    }
497
498    // The following functions are specific to 2d vectors.  If you use
499    // them in a non vector context, you will get a nice compiler
500    // error because info doesn't have the right variables.
501
502    /**
503     * Set the subfield description for the given index and marks this stat to
504     * print at the end of simulation.
505     * @param index The subfield index.
506     * @param desc The new description of the subfield
507     * @return A reference to this stat.
508     */
509    Derived &
510    subdesc(off_type index, const std::string &desc)
511    {
512        Info *info = this->info();
513
514        std::vector<std::string> &subd = info->subdescs;
515        if (subd.size() <= index)
516            subd.resize(index + 1);
517        subd[index] = desc;
518
519        return this->self();
520    }
521
522    void
523    prepare()
524    {
525        Derived &self = this->self();
526        Info *info = this->info();
527
528        size_t size = self.size();
529        for (off_type i = 0; i < size; ++i)
530            self.data(i)->prepare(info);
531    }
532
533    void
534    reset()
535    {
536        Derived &self = this->self();
537        Info *info = this->info();
538
539        size_t size = self.size();
540        for (off_type i = 0; i < size; ++i)
541            self.data(i)->reset(info);
542    }
543};
544
545template <class Derived, template <class> class InfoType>
546class DataWrapVec2d : public DataWrapVec<Derived, InfoType>
547{
548  public:
549    typedef InfoType<Derived> Info;
550
551    /**
552     * @warning This makes the assumption that if you're gonna subnames a 2d
553     * vector, you're subnaming across all y
554     */
555    Derived &
556    ysubnames(const char **names)
557    {
558        Derived &self = this->self();
559        Info *info = this->info();
560
561        info->y_subnames.resize(self.y);
562        for (off_type i = 0; i < self.y; ++i)
563            info->y_subnames[i] = names[i];
564        return self;
565    }
566
567    Derived &
568    ysubname(off_type index, const std::string subname)
569    {
570        Derived &self = this->self();
571        Info *info = this->info();
572
573        assert(index < self.y);
574        info->y_subnames.resize(self.y);
575        info->y_subnames[index] = subname.c_str();
576        return self;
577    }
578};
579
580//////////////////////////////////////////////////////////////////////
581//
582// Simple Statistics
583//
584//////////////////////////////////////////////////////////////////////
585
586/**
587 * Templatized storage and interface for a simple scalar stat.
588 */
589class StatStor
590{
591  private:
592    /** The statistic value. */
593    Counter data;
594
595  public:
596    struct Params : public StorageParams {};
597
598  public:
599    /**
600     * Builds this storage element and calls the base constructor of the
601     * datatype.
602     */
603    StatStor(Info *info)
604        : data(Counter())
605    { }
606
607    /**
608     * The the stat to the given value.
609     * @param val The new value.
610     */
611    void set(Counter val) { data = val; }
612    /**
613     * Increment the stat by the given value.
614     * @param val The new value.
615     */
616    void inc(Counter val) { data += val; }
617    /**
618     * Decrement the stat by the given value.
619     * @param val The new value.
620     */
621    void dec(Counter val) { data -= val; }
622    /**
623     * Return the value of this stat as its base type.
624     * @return The value of this stat.
625     */
626    Counter value() const { return data; }
627    /**
628     * Return the value of this stat as a result type.
629     * @return The value of this stat.
630     */
631    Result result() const { return (Result)data; }
632    /**
633     * Prepare stat data for dumping or serialization
634     */
635    void prepare(Info *info) { }
636    /**
637     * Reset stat value to default
638     */
639    void reset(Info *info) { data = Counter(); }
640
641    /**
642     * @return true if zero value
643     */
644    bool zero() const { return data == Counter(); }
645};
646
647/**
648 * Templatized storage and interface to a per-tick average stat. This keeps
649 * a current count and updates a total (count * ticks) when this count
650 * changes. This allows the quick calculation of a per tick count of the item
651 * being watched. This is good for keeping track of residencies in structures
652 * among other things.
653 */
654class AvgStor
655{
656  private:
657    /** The current count. */
658    Counter current;
659    /** The total count for all tick. */
660    mutable Result total;
661    /** The tick that current last changed. */
662    mutable Tick last;
663
664  public:
665    struct Params : public StorageParams {};
666
667  public:
668    /**
669     * Build and initializes this stat storage.
670     */
671    AvgStor(Info *info)
672        : current(0), total(0), last(0)
673    { }
674
675    /**
676     * Set the current count to the one provided, update the total and last
677     * set values.
678     * @param val The new count.
679     */
680    void
681    set(Counter val)
682    {
683        total += current * (curTick - last);
684        last = curTick;
685        current = val;
686    }
687
688    /**
689     * Increment the current count by the provided value, calls set.
690     * @param val The amount to increment.
691     */
692    void inc(Counter val) { set(current + val); }
693
694    /**
695     * Deccrement the current count by the provided value, calls set.
696     * @param val The amount to decrement.
697     */
698    void dec(Counter val) { set(current - val); }
699
700    /**
701     * Return the current count.
702     * @return The current count.
703     */
704    Counter value() const { return current; }
705
706    /**
707     * Return the current average.
708     * @return The current average.
709     */
710    Result
711    result() const
712    {
713        assert(last == curTick);
714        return (Result)(total + current) / (Result)(curTick + 1);
715    }
716
717    /**
718     * @return true if zero value
719     */
720    bool zero() const { return total == 0.0; }
721
722    /**
723     * Prepare stat data for dumping or serialization
724     */
725    void
726    prepare(Info *info)
727    {
728        total += current * (curTick - last);
729        last = curTick;
730    }
731
732    /**
733     * Reset stat value to default
734     */
735    void
736    reset(Info *info)
737    {
738        total = 0.0;
739        last = curTick;
740    }
741
742};
743
744/**
745 * Implementation of a scalar stat. The type of stat is determined by the
746 * Storage template.
747 */
748template <class Derived, class Stor>
749class ScalarBase : public DataWrap<Derived, ScalarInfo>
750{
751  public:
752    typedef Stor Storage;
753    typedef typename Stor::Params Params;
754
755  protected:
756    /** The storage of this stat. */
757    char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
758
759  protected:
760    /**
761     * Retrieve the storage.
762     * @param index The vector index to access.
763     * @return The storage object at the given index.
764     */
765    Storage *
766    data()
767    {
768        return reinterpret_cast<Storage *>(storage);
769    }
770
771    /**
772     * Retrieve a const pointer to the storage.
773     * for the given index.
774     * @param index The vector index to access.
775     * @return A const pointer to the storage object at the given index.
776     */
777    const Storage *
778    data() const
779    {
780        return reinterpret_cast<const Storage *>(storage);
781    }
782
783    void
784    doInit()
785    {
786        new (storage) Storage(this->info());
787        this->setInit();
788    }
789
790  public:
791    /**
792     * Return the current value of this stat as its base type.
793     * @return The current value.
794     */
795    Counter value() const { return data()->value(); }
796
797  public:
798    ScalarBase()
799    {
800        this->doInit();
801    }
802
803  public:
804    // Common operators for stats
805    /**
806     * Increment the stat by 1. This calls the associated storage object inc
807     * function.
808     */
809    void operator++() { data()->inc(1); }
810    /**
811     * Decrement the stat by 1. This calls the associated storage object dec
812     * function.
813     */
814    void operator--() { data()->dec(1); }
815
816    /** Increment the stat by 1. */
817    void operator++(int) { ++*this; }
818    /** Decrement the stat by 1. */
819    void operator--(int) { --*this; }
820
821    /**
822     * Set the data value to the given value. This calls the associated storage
823     * object set function.
824     * @param v The new value.
825     */
826    template <typename U>
827    void operator=(const U &v) { data()->set(v); }
828
829    /**
830     * Increment the stat by the given value. This calls the associated
831     * storage object inc function.
832     * @param v The value to add.
833     */
834    template <typename U>
835    void operator+=(const U &v) { data()->inc(v); }
836
837    /**
838     * Decrement the stat by the given value. This calls the associated
839     * storage object dec function.
840     * @param v The value to substract.
841     */
842    template <typename U>
843    void operator-=(const U &v) { data()->dec(v); }
844
845    /**
846     * Return the number of elements, always 1 for a scalar.
847     * @return 1.
848     */
849    size_type size() const { return 1; }
850
851    Counter value() { return data()->value(); }
852
853    Result result() { return data()->result(); }
854
855    Result total() { return result(); }
856
857    bool zero() { return result() == 0.0; }
858
859    void reset() { data()->reset(this->info()); }
860    void prepare() { data()->prepare(this->info()); }
861};
862
863class ProxyInfo : public ScalarInfoBase
864{
865  public:
866    std::string str() const { return to_string(value()); }
867    size_type size() const { return 1; }
868    bool check() const { return true; }
869    void prepare() { }
870    void reset() { }
871    bool zero() const { return value() == 0; }
872
873    void visit(Visit &visitor) { visitor.visit(*this); }
874};
875
876template <class T>
877class ValueProxy : public ProxyInfo
878{
879  private:
880    T *scalar;
881
882  public:
883    ValueProxy(T &val) : scalar(&val) {}
884    Counter value() const { return *scalar; }
885    Result result() const { return *scalar; }
886    Result total() const { return *scalar; }
887};
888
889template <class T>
890class FunctorProxy : public ProxyInfo
891{
892  private:
893    T *functor;
894
895  public:
896    FunctorProxy(T &func) : functor(&func) {}
897    Counter value() const { return (*functor)(); }
898    Result result() const { return (*functor)(); }
899    Result total() const { return (*functor)(); }
900};
901
902template <class Derived>
903class ValueBase : public DataWrap<Derived, ScalarInfo>
904{
905  private:
906    ProxyInfo *proxy;
907
908  public:
909    ValueBase() : proxy(NULL) { }
910    ~ValueBase() { if (proxy) delete proxy; }
911
912    template <class T>
913    Derived &
914    scalar(T &value)
915    {
916        proxy = new ValueProxy<T>(value);
917        this->setInit();
918        return this->self();
919    }
920
921    template <class T>
922    Derived &
923    functor(T &func)
924    {
925        proxy = new FunctorProxy<T>(func);
926        this->setInit();
927        return this->self();
928    }
929
930    Counter value() { return proxy->value(); }
931    Result result() const { return proxy->result(); }
932    Result total() const { return proxy->total(); };
933    size_type size() const { return proxy->size(); }
934
935    std::string str() const { return proxy->str(); }
936    bool zero() const { return proxy->zero(); }
937    bool check() const { return proxy != NULL; }
938    void prepare() { }
939    void reset() { }
940};
941
942//////////////////////////////////////////////////////////////////////
943//
944// Vector Statistics
945//
946//////////////////////////////////////////////////////////////////////
947
948/**
949 * A proxy class to access the stat at a given index in a VectorBase stat.
950 * Behaves like a ScalarBase.
951 */
952template <class Stat>
953class ScalarProxy
954{
955  private:
956    /** Pointer to the parent Vector. */
957    Stat &stat;
958
959    /** The index to access in the parent VectorBase. */
960    off_type index;
961
962  public:
963    /**
964     * Return the current value of this stat as its base type.
965     * @return The current value.
966     */
967    Counter value() const { return stat.data(index)->value(); }
968
969    /**
970     * Return the current value of this statas a result type.
971     * @return The current value.
972     */
973    Result result() const { return stat.data(index)->result(); }
974
975  public:
976    /**
977     * Create and initialize this proxy, do not register it with the database.
978     * @param i The index to access.
979     */
980    ScalarProxy(Stat &s, off_type i)
981        : stat(s), index(i)
982    {
983    }
984
985    /**
986     * Create a copy of the provided ScalarProxy.
987     * @param sp The proxy to copy.
988     */
989    ScalarProxy(const ScalarProxy &sp)
990        : stat(sp.stat), index(sp.index)
991    {}
992
993    /**
994     * Set this proxy equal to the provided one.
995     * @param sp The proxy to copy.
996     * @return A reference to this proxy.
997     */
998    const ScalarProxy &
999    operator=(const ScalarProxy &sp)
1000    {
1001        stat = sp.stat;
1002        index = sp.index;
1003        return *this;
1004    }
1005
1006  public:
1007    // Common operators for stats
1008    /**
1009     * Increment the stat by 1. This calls the associated storage object inc
1010     * function.
1011     */
1012    void operator++() { stat.data(index)->inc(1); }
1013    /**
1014     * Decrement the stat by 1. This calls the associated storage object dec
1015     * function.
1016     */
1017    void operator--() { stat.data(index)->dec(1); }
1018
1019    /** Increment the stat by 1. */
1020    void operator++(int) { ++*this; }
1021    /** Decrement the stat by 1. */
1022    void operator--(int) { --*this; }
1023
1024    /**
1025     * Set the data value to the given value. This calls the associated storage
1026     * object set function.
1027     * @param v The new value.
1028     */
1029    template <typename U>
1030    void
1031    operator=(const U &v)
1032    {
1033        stat.data(index)->set(v);
1034    }
1035
1036    /**
1037     * Increment the stat by the given value. This calls the associated
1038     * storage object inc function.
1039     * @param v The value to add.
1040     */
1041    template <typename U>
1042    void
1043    operator+=(const U &v)
1044    {
1045        stat.data(index)->inc(v);
1046    }
1047
1048    /**
1049     * Decrement the stat by the given value. This calls the associated
1050     * storage object dec function.
1051     * @param v The value to substract.
1052     */
1053    template <typename U>
1054    void
1055    operator-=(const U &v)
1056    {
1057        stat.data(index)->dec(v);
1058    }
1059
1060    /**
1061     * Return the number of elements, always 1 for a scalar.
1062     * @return 1.
1063     */
1064    size_type size() const { return 1; }
1065
1066  public:
1067    std::string
1068    str() const
1069    {
1070        return csprintf("%s[%d]", stat.info()->name, index);
1071    }
1072};
1073
1074/**
1075 * Implementation of a vector of stats. The type of stat is determined by the
1076 * Storage class. @sa ScalarBase
1077 */
1078template <class Derived, class Stor>
1079class VectorBase : public DataWrapVec<Derived, VectorInfo>
1080{
1081  public:
1082    typedef Stor Storage;
1083    typedef typename Stor::Params Params;
1084
1085    /** Proxy type */
1086    typedef ScalarProxy<Derived> Proxy;
1087    friend class ScalarProxy<Derived>;
1088    friend class DataWrapVec<Derived, VectorInfo>;
1089
1090  protected:
1091    /** The storage of this stat. */
1092    Storage *storage;
1093    size_type _size;
1094
1095  protected:
1096    /**
1097     * Retrieve the storage.
1098     * @param index The vector index to access.
1099     * @return The storage object at the given index.
1100     */
1101    Storage *data(off_type index) { return &storage[index]; }
1102
1103    /**
1104     * Retrieve a const pointer to the storage.
1105     * @param index The vector index to access.
1106     * @return A const pointer to the storage object at the given index.
1107     */
1108    const Storage *data(off_type index) const { return &storage[index]; }
1109
1110    void
1111    doInit(size_type s)
1112    {
1113        assert(s > 0 && "size must be positive!");
1114        assert(!storage && "already initialized");
1115        _size = s;
1116
1117        char *ptr = new char[_size * sizeof(Storage)];
1118        storage = reinterpret_cast<Storage *>(ptr);
1119
1120        for (off_type i = 0; i < _size; ++i)
1121            new (&storage[i]) Storage(this->info());
1122
1123        this->setInit();
1124    }
1125
1126  public:
1127    void
1128    value(VCounter &vec) const
1129    {
1130        vec.resize(size());
1131        for (off_type i = 0; i < size(); ++i)
1132            vec[i] = data(i)->value();
1133    }
1134
1135    /**
1136     * Copy the values to a local vector and return a reference to it.
1137     * @return A reference to a vector of the stat values.
1138     */
1139    void
1140    result(VResult &vec) const
1141    {
1142        vec.resize(size());
1143        for (off_type i = 0; i < size(); ++i)
1144            vec[i] = data(i)->result();
1145    }
1146
1147    /**
1148     * Return a total of all entries in this vector.
1149     * @return The total of all vector entries.
1150     */
1151    Result
1152    total() const
1153    {
1154        Result total = 0.0;
1155        for (off_type i = 0; i < size(); ++i)
1156            total += data(i)->result();
1157        return total;
1158    }
1159
1160    /**
1161     * @return the number of elements in this vector.
1162     */
1163    size_type size() const { return _size; }
1164
1165    bool
1166    zero() const
1167    {
1168        for (off_type i = 0; i < size(); ++i)
1169            if (data(i)->zero())
1170                return false;
1171        return true;
1172    }
1173
1174    bool
1175    check() const
1176    {
1177        return storage != NULL;
1178    }
1179
1180  public:
1181    VectorBase()
1182        : storage(NULL)
1183    {}
1184
1185    ~VectorBase()
1186    {
1187        if (!storage)
1188            return;
1189
1190        for (off_type i = 0; i < _size; ++i)
1191            data(i)->~Storage();
1192        delete [] reinterpret_cast<char *>(storage);
1193    }
1194
1195    /**
1196     * Set this vector to have the given size.
1197     * @param size The new size.
1198     * @return A reference to this stat.
1199     */
1200    Derived &
1201    init(size_type size)
1202    {
1203        Derived &self = this->self();
1204        self.doInit(size);
1205        return self;
1206    }
1207
1208    /**
1209     * Return a reference (ScalarProxy) to the stat at the given index.
1210     * @param index The vector index to access.
1211     * @return A reference of the stat.
1212     */
1213    Proxy
1214    operator[](off_type index)
1215    {
1216        assert (index >= 0 && index < size());
1217        return Proxy(this->self(), index);
1218    }
1219};
1220
1221template <class Stat>
1222class VectorProxy
1223{
1224  private:
1225    Stat &stat;
1226    off_type offset;
1227    size_type len;
1228
1229  private:
1230    mutable VResult vec;
1231
1232    typename Stat::Storage *
1233    data(off_type index)
1234    {
1235        assert(index < len);
1236        return stat.data(offset + index);
1237    }
1238
1239    const typename Stat::Storage *
1240    data(off_type index) const
1241    {
1242        assert(index < len);
1243        return stat.data(offset + index);
1244    }
1245
1246  public:
1247    const VResult &
1248    result() const
1249    {
1250        vec.resize(size());
1251
1252        for (off_type i = 0; i < size(); ++i)
1253            vec[i] = data(i)->result();
1254
1255        return vec;
1256    }
1257
1258    Result
1259    total() const
1260    {
1261        Result total = 0.0;
1262        for (off_type i = 0; i < size(); ++i)
1263            total += data(i)->result();
1264        return total;
1265    }
1266
1267  public:
1268    VectorProxy(Stat &s, off_type o, size_type l)
1269        : stat(s), offset(o), len(l)
1270    {
1271    }
1272
1273    VectorProxy(const VectorProxy &sp)
1274        : stat(sp.stat), offset(sp.offset), len(sp.len)
1275    {
1276    }
1277
1278    const VectorProxy &
1279    operator=(const VectorProxy &sp)
1280    {
1281        stat = sp.stat;
1282        offset = sp.offset;
1283        len = sp.len;
1284        return *this;
1285    }
1286
1287    ScalarProxy<Stat>
1288    operator[](off_type index)
1289    {
1290        assert (index >= 0 && index < size());
1291        return ScalarProxy<Stat>(stat, offset + index);
1292    }
1293
1294    size_type size() const { return len; }
1295};
1296
1297template <class Derived, class Stor>
1298class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfo>
1299{
1300  public:
1301    typedef Vector2dInfo<Derived> Info;
1302    typedef Stor Storage;
1303    typedef typename Stor::Params Params;
1304    typedef VectorProxy<Derived> Proxy;
1305    friend class ScalarProxy<Derived>;
1306    friend class VectorProxy<Derived>;
1307    friend class DataWrapVec<Derived, Vector2dInfo>;
1308    friend class DataWrapVec2d<Derived, Vector2dInfo>;
1309
1310  protected:
1311    size_type x;
1312    size_type y;
1313    size_type _size;
1314    Storage *storage;
1315
1316  protected:
1317    Storage *data(off_type index) { return &storage[index]; }
1318    const Storage *data(off_type index) const { return &storage[index]; }
1319
1320  public:
1321    Vector2dBase()
1322        : storage(NULL)
1323    {}
1324
1325    ~Vector2dBase()
1326    {
1327        if (!storage)
1328            return;
1329
1330        for (off_type i = 0; i < _size; ++i)
1331            data(i)->~Storage();
1332        delete [] reinterpret_cast<char *>(storage);
1333    }
1334
1335    Derived &
1336    init(size_type _x, size_type _y)
1337    {
1338        assert(_x > 0 && _y > 0 && "sizes must be positive!");
1339        assert(!storage && "already initialized");
1340
1341        Derived &self = this->self();
1342        Info *info = this->info();
1343
1344        x = _x;
1345        y = _y;
1346        info->x = _x;
1347        info->y = _y;
1348        _size = x * y;
1349
1350        char *ptr = new char[_size * sizeof(Storage)];
1351        storage = reinterpret_cast<Storage *>(ptr);
1352
1353        for (off_type i = 0; i < _size; ++i)
1354            new (&storage[i]) Storage(info);
1355
1356        this->setInit();
1357
1358        return self;
1359    }
1360
1361    std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1362
1363    Proxy
1364    operator[](off_type index)
1365    {
1366        off_type offset = index * y;
1367        assert (index >= 0 && offset + index < size());
1368        return Proxy(this->self(), offset, y);
1369    }
1370
1371
1372    size_type
1373    size() const
1374    {
1375        return _size;
1376    }
1377
1378    bool
1379    zero() const
1380    {
1381        return data(0)->zero();
1382#if 0
1383        for (off_type i = 0; i < size(); ++i)
1384            if (!data(i)->zero())
1385                return false;
1386        return true;
1387#endif
1388    }
1389
1390    void
1391    prepare()
1392    {
1393        Info *info = this->info();
1394        size_type size = this->size();
1395
1396        for (off_type i = 0; i < size; ++i)
1397            data(i)->prepare(info);
1398
1399        info->cvec.resize(size);
1400        for (off_type i = 0; i < size; ++i)
1401            info->cvec[i] = data(i)->value();
1402    }
1403
1404    /**
1405     * Reset stat value to default
1406     */
1407    void
1408    reset()
1409    {
1410        Info *info = this->info();
1411        size_type size = this->size();
1412        for (off_type i = 0; i < size; ++i)
1413            data(i)->reset(info);
1414    }
1415
1416    bool
1417    check() const
1418    {
1419        return storage != NULL;
1420    }
1421};
1422
1423//////////////////////////////////////////////////////////////////////
1424//
1425// Non formula statistics
1426//
1427//////////////////////////////////////////////////////////////////////
1428
1429struct DistParams : public StorageParams
1430{
1431    const bool fancy;
1432
1433    /** The minimum value to track. */
1434    Counter min;
1435    /** The maximum value to track. */
1436    Counter max;
1437    /** The number of entries in each bucket. */
1438    Counter bucket_size;
1439    /** The number of buckets. Equal to (max-min)/bucket_size. */
1440    size_type buckets;
1441
1442    explicit DistParams(bool f) : fancy(f) {}
1443};
1444
1445/**
1446 * Templatized storage and interface for a distrbution stat.
1447 */
1448class DistStor
1449{
1450  public:
1451    /** The parameters for a distribution stat. */
1452    struct Params : public DistParams
1453    {
1454        Params() : DistParams(false) {}
1455    };
1456
1457  private:
1458    /** The minimum value to track. */
1459    Counter min_track;
1460    /** The maximum value to track. */
1461    Counter max_track;
1462    /** The number of entries in each bucket. */
1463    Counter bucket_size;
1464    /** The number of buckets. Equal to (max-min)/bucket_size. */
1465    size_type buckets;
1466
1467    /** The smallest value sampled. */
1468    Counter min_val;
1469    /** The largest value sampled. */
1470    Counter max_val;
1471    /** The number of values sampled less than min. */
1472    Counter underflow;
1473    /** The number of values sampled more than max. */
1474    Counter overflow;
1475    /** The current sum. */
1476    Counter sum;
1477    /** The sum of squares. */
1478    Counter squares;
1479    /** The number of samples. */
1480    Counter samples;
1481    /** Counter for each bucket. */
1482    VCounter cvec;
1483
1484  public:
1485    DistStor(Info *info)
1486        : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1487    {
1488        reset(info);
1489    }
1490
1491    /**
1492     * Add a value to the distribution for the given number of times.
1493     * @param val The value to add.
1494     * @param number The number of times to add the value.
1495     */
1496    void
1497    sample(Counter val, int number)
1498    {
1499        if (val < min_track)
1500            underflow += number;
1501        else if (val > max_track)
1502            overflow += number;
1503        else {
1504            size_type index =
1505                (size_type)std::floor((val - min_track) / bucket_size);
1506            assert(index < size());
1507            cvec[index] += number;
1508        }
1509
1510        if (val < min_val)
1511            min_val = val;
1512
1513        if (val > max_val)
1514            max_val = val;
1515
1516        Counter sample = val * number;
1517        sum += sample;
1518        squares += sample * sample;
1519        samples += number;
1520    }
1521
1522    /**
1523     * Return the number of buckets in this distribution.
1524     * @return the number of buckets.
1525     */
1526    size_type size() const { return cvec.size(); }
1527
1528    /**
1529     * Returns true if any calls to sample have been made.
1530     * @return True if any values have been sampled.
1531     */
1532    bool
1533    zero() const
1534    {
1535        return samples == Counter();
1536    }
1537
1538    void
1539    prepare(Info *info, DistData &data)
1540    {
1541        const Params *params = safe_cast<const Params *>(info->storageParams);
1542
1543        data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1544        data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1545        data.underflow = underflow;
1546        data.overflow = overflow;
1547
1548        int buckets = params->buckets;
1549        data.cvec.resize(buckets);
1550        for (off_type i = 0; i < buckets; ++i)
1551            data.cvec[i] = cvec[i];
1552
1553        data.sum = sum;
1554        data.squares = squares;
1555        data.samples = samples;
1556    }
1557
1558    /**
1559     * Reset stat value to default
1560     */
1561    void
1562    reset(Info *info)
1563    {
1564        const Params *params = safe_cast<const Params *>(info->storageParams);
1565        min_track = params->min;
1566        max_track = params->max;
1567        bucket_size = params->bucket_size;
1568
1569        min_val = CounterLimits::max();
1570        max_val = CounterLimits::min();
1571        underflow = 0;
1572        overflow = 0;
1573
1574        size_type size = cvec.size();
1575        for (off_type i = 0; i < size; ++i)
1576            cvec[i] = Counter();
1577
1578        sum = Counter();
1579        squares = Counter();
1580        samples = Counter();
1581    }
1582};
1583
1584/**
1585 * Templatized storage and interface for a distribution that calculates mean
1586 * and variance.
1587 */
1588class FancyStor
1589{
1590  public:
1591    struct Params : public DistParams
1592    {
1593        Params() : DistParams(true) {}
1594    };
1595
1596  private:
1597    /** The current sum. */
1598    Counter sum;
1599    /** The sum of squares. */
1600    Counter squares;
1601    /** The number of samples. */
1602    Counter samples;
1603
1604  public:
1605    /**
1606     * Create and initialize this storage.
1607     */
1608    FancyStor(Info *info)
1609        : sum(Counter()), squares(Counter()), samples(Counter())
1610    { }
1611
1612    /**
1613     * Add a value the given number of times to this running average.
1614     * Update the running sum and sum of squares, increment the number of
1615     * values seen by the given number.
1616     * @param val The value to add.
1617     * @param number The number of times to add the value.
1618     */
1619    void
1620    sample(Counter val, int number)
1621    {
1622        Counter value = val * number;
1623        sum += value;
1624        squares += value * value;
1625        samples += number;
1626    }
1627
1628    /**
1629     * Return the number of entries in this stat, 1
1630     * @return 1.
1631     */
1632    size_type size() const { return 1; }
1633
1634    /**
1635     * Return true if no samples have been added.
1636     * @return True if no samples have been added.
1637     */
1638    bool zero() const { return samples == Counter(); }
1639
1640    void
1641    prepare(Info *info, DistData &data)
1642    {
1643        data.sum = sum;
1644        data.squares = squares;
1645        data.samples = samples;
1646    }
1647
1648    /**
1649     * Reset stat value to default
1650     */
1651    void
1652    reset(Info *info)
1653    {
1654        sum = Counter();
1655        squares = Counter();
1656        samples = Counter();
1657    }
1658};
1659
1660/**
1661 * Templatized storage for distribution that calculates per tick mean and
1662 * variance.
1663 */
1664class AvgFancy
1665{
1666  public:
1667    struct Params : public DistParams
1668    {
1669        Params() : DistParams(true) {}
1670    };
1671
1672  private:
1673    /** Current total. */
1674    Counter sum;
1675    /** Current sum of squares. */
1676    Counter squares;
1677
1678  public:
1679    /**
1680     * Create and initialize this storage.
1681     */
1682    AvgFancy(Info *info)
1683        : sum(Counter()), squares(Counter())
1684    {}
1685
1686    /**
1687     * Add a value to the distribution for the given number of times.
1688     * Update the running sum and sum of squares.
1689     * @param val The value to add.
1690     * @param number The number of times to add the value.
1691     */
1692    void
1693    sample(Counter val, int number)
1694    {
1695        Counter value = val * number;
1696        sum += value;
1697        squares += value * value;
1698    }
1699
1700    /**
1701     * Return the number of entries, in this case 1.
1702     * @return 1.
1703     */
1704    size_type size() const { return 1; }
1705
1706    /**
1707     * Return true if no samples have been added.
1708     * @return True if the sum is zero.
1709     */
1710    bool zero() const { return sum == Counter(); }
1711
1712    void
1713    prepare(Info *info, DistData &data)
1714    {
1715        data.sum = sum;
1716        data.squares = squares;
1717        data.samples = curTick;
1718    }
1719
1720    /**
1721     * Reset stat value to default
1722     */
1723    void
1724    reset(Info *info)
1725    {
1726        sum = Counter();
1727        squares = Counter();
1728    }
1729};
1730
1731/**
1732 * Implementation of a distribution stat. The type of distribution is
1733 * determined by the Storage template. @sa ScalarBase
1734 */
1735template <class Derived, class Stor>
1736class DistBase : public DataWrap<Derived, DistInfo>
1737{
1738  public:
1739    typedef DistInfo<Derived> Info;
1740    typedef Stor Storage;
1741    typedef typename Stor::Params Params;
1742
1743  protected:
1744    /** The storage for this stat. */
1745    char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1746
1747  protected:
1748    /**
1749     * Retrieve the storage.
1750     * @return The storage object for this stat.
1751     */
1752    Storage *
1753    data()
1754    {
1755        return reinterpret_cast<Storage *>(storage);
1756    }
1757
1758    /**
1759     * Retrieve a const pointer to the storage.
1760     * @return A const pointer to the storage object for this stat.
1761     */
1762    const Storage *
1763    data() const
1764    {
1765        return reinterpret_cast<const Storage *>(storage);
1766    }
1767
1768    void
1769    doInit()
1770    {
1771        new (storage) Storage(this->info());
1772        this->setInit();
1773    }
1774
1775  public:
1776    DistBase() { }
1777
1778    /**
1779     * Add a value to the distribtion n times. Calls sample on the storage
1780     * class.
1781     * @param v The value to add.
1782     * @param n The number of times to add it, defaults to 1.
1783     */
1784    template <typename U>
1785    void sample(const U &v, int n = 1) { data()->sample(v, n); }
1786
1787    /**
1788     * Return the number of entries in this stat.
1789     * @return The number of entries.
1790     */
1791    size_type size() const { return data()->size(); }
1792    /**
1793     * Return true if no samples have been added.
1794     * @return True if there haven't been any samples.
1795     */
1796    bool zero() const { return data()->zero(); }
1797
1798    void
1799    prepare()
1800    {
1801        Info *info = this->info();
1802        data()->prepare(info, info->data);
1803    }
1804
1805    /**
1806     * Reset stat value to default
1807     */
1808    void
1809    reset()
1810    {
1811        data()->reset(this->info());
1812    }
1813};
1814
1815template <class Stat>
1816class DistProxy;
1817
1818template <class Derived, class Stor>
1819class VectorDistBase : public DataWrapVec<Derived, VectorDistInfo>
1820{
1821  public:
1822    typedef VectorDistInfo<Derived> Info;
1823    typedef Stor Storage;
1824    typedef typename Stor::Params Params;
1825    typedef DistProxy<Derived> Proxy;
1826    friend class DistProxy<Derived>;
1827    friend class DataWrapVec<Derived, VectorDistInfo>;
1828
1829  protected:
1830    Storage *storage;
1831    size_type _size;
1832
1833  protected:
1834    Storage *
1835    data(off_type index)
1836    {
1837        return &storage[index];
1838    }
1839
1840    const Storage *
1841    data(off_type index) const
1842    {
1843        return &storage[index];
1844    }
1845
1846    void
1847    doInit(size_type s)
1848    {
1849        assert(s > 0 && "size must be positive!");
1850        assert(!storage && "already initialized");
1851        _size = s;
1852
1853        char *ptr = new char[_size * sizeof(Storage)];
1854        storage = reinterpret_cast<Storage *>(ptr);
1855
1856        Info *info = this->info();
1857        for (off_type i = 0; i < _size; ++i)
1858            new (&storage[i]) Storage(info);
1859
1860        this->setInit();
1861    }
1862
1863  public:
1864    VectorDistBase()
1865        : storage(NULL)
1866    {}
1867
1868    ~VectorDistBase()
1869    {
1870        if (!storage)
1871            return ;
1872
1873        for (off_type i = 0; i < _size; ++i)
1874            data(i)->~Storage();
1875        delete [] reinterpret_cast<char *>(storage);
1876    }
1877
1878    Proxy operator[](off_type index);
1879
1880    size_type
1881    size() const
1882    {
1883        return _size;
1884    }
1885
1886    bool
1887    zero() const
1888    {
1889        return false;
1890#if 0
1891        for (off_type i = 0; i < size(); ++i)
1892            if (!data(i)->zero())
1893                return false;
1894        return true;
1895#endif
1896    }
1897
1898    void
1899    prepare()
1900    {
1901        Info *info = this->info();
1902        size_type size = this->size();
1903        info->data.resize(size);
1904        for (off_type i = 0; i < size; ++i)
1905            data(i)->prepare(info, info->data[i]);
1906    }
1907
1908    bool
1909    check() const
1910    {
1911        return storage != NULL;
1912    }
1913};
1914
1915template <class Stat>
1916class DistProxy
1917{
1918  private:
1919    Stat *stat;
1920    off_type index;
1921
1922  protected:
1923    typename Stat::Storage *data() { return stat->data(index); }
1924    const typename Stat::Storage *data() const { return stat->data(index); }
1925
1926  public:
1927    DistProxy(Stat *s, off_type i)
1928        : stat(s), index(i)
1929    {}
1930
1931    DistProxy(const DistProxy &sp)
1932        : stat(sp.stat), index(sp.index)
1933    {}
1934
1935    const DistProxy &
1936    operator=(const DistProxy &sp)
1937    {
1938        stat = sp.stat;
1939        index = sp.index;
1940        return *this;
1941    }
1942
1943  public:
1944    template <typename U>
1945    void
1946    sample(const U &v, int n = 1)
1947    {
1948        data()->sample(v, n);
1949    }
1950
1951    size_type
1952    size() const
1953    {
1954        return 1;
1955    }
1956
1957    bool
1958    zero() const
1959    {
1960        return data()->zero();
1961    }
1962
1963    /**
1964     * Proxy has no state.  Nothing to reset.
1965     */
1966    void reset() { }
1967};
1968
1969template <class Derived, class Stor>
1970inline typename VectorDistBase<Derived, Stor>::Proxy
1971VectorDistBase<Derived, Stor>::operator[](off_type index)
1972{
1973    assert (index >= 0 && index < size());
1974    typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1975    return Proxy(this, index);
1976}
1977
1978#if 0
1979template <class Storage>
1980Result
1981VectorDistBase<Storage>::total(off_type index) const
1982{
1983    Result total = 0.0;
1984    for (off_type i = 0; i < x_size(); ++i)
1985        total += data(i)->result();
1986}
1987#endif
1988
1989//////////////////////////////////////////////////////////////////////
1990//
1991//  Formula Details
1992//
1993//////////////////////////////////////////////////////////////////////
1994
1995/**
1996 * Base class for formula statistic node. These nodes are used to build a tree
1997 * that represents the formula.
1998 */
1999class Node : public RefCounted
2000{
2001  public:
2002    /**
2003     * Return the number of nodes in the subtree starting at this node.
2004     * @return the number of nodes in this subtree.
2005     */
2006    virtual size_type size() const = 0;
2007    /**
2008     * Return the result vector of this subtree.
2009     * @return The result vector of this subtree.
2010     */
2011    virtual const VResult &result() const = 0;
2012    /**
2013     * Return the total of the result vector.
2014     * @return The total of the result vector.
2015     */
2016    virtual Result total() const = 0;
2017
2018    /**
2019     *
2020     */
2021    virtual std::string str() const = 0;
2022};
2023
2024/** Reference counting pointer to a function Node. */
2025typedef RefCountingPtr<Node> NodePtr;
2026
2027class ScalarStatNode : public Node
2028{
2029  private:
2030    const ScalarInfoBase *data;
2031    mutable VResult vresult;
2032
2033  public:
2034    ScalarStatNode(const ScalarInfoBase *d) : data(d), vresult(1) {}
2035
2036    const VResult &
2037    result() const
2038    {
2039        vresult[0] = data->result();
2040        return vresult;
2041    }
2042
2043    Result total() const { return data->result(); };
2044
2045    size_type size() const { return 1; }
2046
2047    /**
2048     *
2049     */
2050    std::string str() const { return data->name; }
2051};
2052
2053template <class Stat>
2054class ScalarProxyNode : public Node
2055{
2056  private:
2057    const ScalarProxy<Stat> proxy;
2058    mutable VResult vresult;
2059
2060  public:
2061    ScalarProxyNode(const ScalarProxy<Stat> &p)
2062        : proxy(p), vresult(1)
2063    { }
2064
2065    const VResult &
2066    result() const
2067    {
2068        vresult[0] = proxy.result();
2069        return vresult;
2070    }
2071
2072    Result
2073    total() const
2074    {
2075        return proxy.result();
2076    }
2077
2078    size_type
2079    size() const
2080    {
2081        return 1;
2082    }
2083
2084    /**
2085     *
2086     */
2087    std::string
2088    str() const
2089    {
2090        return proxy.str();
2091    }
2092};
2093
2094class VectorStatNode : public Node
2095{
2096  private:
2097    const VectorInfoBase *data;
2098
2099  public:
2100    VectorStatNode(const VectorInfoBase *d) : data(d) { }
2101    const VResult &result() const { return data->result(); }
2102    Result total() const { return data->total(); };
2103
2104    size_type size() const { return data->size(); }
2105
2106    std::string str() const { return data->name; }
2107};
2108
2109template <class T>
2110class ConstNode : public Node
2111{
2112  private:
2113    VResult vresult;
2114
2115  public:
2116    ConstNode(T s) : vresult(1, (Result)s) {}
2117    const VResult &result() const { return vresult; }
2118    Result total() const { return vresult[0]; };
2119    size_type size() const { return 1; }
2120    std::string str() const { return to_string(vresult[0]); }
2121};
2122
2123template <class T>
2124class ConstVectorNode : public Node
2125{
2126  private:
2127    VResult vresult;
2128
2129  public:
2130    ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
2131    const VResult &result() const { return vresult; }
2132
2133    Result
2134    total() const
2135    {
2136        size_type size = this->size();
2137        Result tmp = 0;
2138        for (off_type i = 0; i < size; i++)
2139            tmp += vresult[i];
2140        return tmp;
2141    }
2142
2143    size_type size() const { return vresult.size(); }
2144    std::string
2145    str() const
2146    {
2147        size_type size = this->size();
2148        std::string tmp = "(";
2149        for (off_type i = 0; i < size; i++)
2150            tmp += csprintf("%s ",to_string(vresult[i]));
2151        tmp += ")";
2152        return tmp;
2153    }
2154};
2155
2156template <class Op>
2157struct OpString;
2158
2159template<>
2160struct OpString<std::plus<Result> >
2161{
2162    static std::string str() { return "+"; }
2163};
2164
2165template<>
2166struct OpString<std::minus<Result> >
2167{
2168    static std::string str() { return "-"; }
2169};
2170
2171template<>
2172struct OpString<std::multiplies<Result> >
2173{
2174    static std::string str() { return "*"; }
2175};
2176
2177template<>
2178struct OpString<std::divides<Result> >
2179{
2180    static std::string str() { return "/"; }
2181};
2182
2183template<>
2184struct OpString<std::modulus<Result> >
2185{
2186    static std::string str() { return "%"; }
2187};
2188
2189template<>
2190struct OpString<std::negate<Result> >
2191{
2192    static std::string str() { return "-"; }
2193};
2194
2195template <class Op>
2196class UnaryNode : public Node
2197{
2198  public:
2199    NodePtr l;
2200    mutable VResult vresult;
2201
2202  public:
2203    UnaryNode(NodePtr &p) : l(p) {}
2204
2205    const VResult &
2206    result() const
2207    {
2208        const VResult &lvec = l->result();
2209        size_type size = lvec.size();
2210
2211        assert(size > 0);
2212
2213        vresult.resize(size);
2214        Op op;
2215        for (off_type i = 0; i < size; ++i)
2216            vresult[i] = op(lvec[i]);
2217
2218        return vresult;
2219    }
2220
2221    Result
2222    total() const
2223    {
2224        const VResult &vec = this->result();
2225        Result total = 0.0;
2226        for (off_type i = 0; i < size(); i++)
2227            total += vec[i];
2228        return total;
2229    }
2230
2231    size_type size() const { return l->size(); }
2232
2233    std::string
2234    str() const
2235    {
2236        return OpString<Op>::str() + l->str();
2237    }
2238};
2239
2240template <class Op>
2241class BinaryNode : public Node
2242{
2243  public:
2244    NodePtr l;
2245    NodePtr r;
2246    mutable VResult vresult;
2247
2248  public:
2249    BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2250
2251    const VResult &
2252    result() const
2253    {
2254        Op op;
2255        const VResult &lvec = l->result();
2256        const VResult &rvec = r->result();
2257
2258        assert(lvec.size() > 0 && rvec.size() > 0);
2259
2260        if (lvec.size() == 1 && rvec.size() == 1) {
2261            vresult.resize(1);
2262            vresult[0] = op(lvec[0], rvec[0]);
2263        } else if (lvec.size() == 1) {
2264            size_type size = rvec.size();
2265            vresult.resize(size);
2266            for (off_type i = 0; i < size; ++i)
2267                vresult[i] = op(lvec[0], rvec[i]);
2268        } else if (rvec.size() == 1) {
2269            size_type size = lvec.size();
2270            vresult.resize(size);
2271            for (off_type i = 0; i < size; ++i)
2272                vresult[i] = op(lvec[i], rvec[0]);
2273        } else if (rvec.size() == lvec.size()) {
2274            size_type size = rvec.size();
2275            vresult.resize(size);
2276            for (off_type i = 0; i < size; ++i)
2277                vresult[i] = op(lvec[i], rvec[i]);
2278        }
2279
2280        return vresult;
2281    }
2282
2283    Result
2284    total() const
2285    {
2286        const VResult &vec = this->result();
2287        Result total = 0.0;
2288        for (off_type i = 0; i < size(); i++)
2289            total += vec[i];
2290        return total;
2291    }
2292
2293    size_type
2294    size() const
2295    {
2296        size_type ls = l->size();
2297        size_type rs = r->size();
2298        if (ls == 1) {
2299            return rs;
2300        } else if (rs == 1) {
2301            return ls;
2302        } else {
2303            assert(ls == rs && "Node vector sizes are not equal");
2304            return ls;
2305        }
2306    }
2307
2308    std::string
2309    str() const
2310    {
2311        return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2312    }
2313};
2314
2315template <class Op>
2316class SumNode : public Node
2317{
2318  public:
2319    NodePtr l;
2320    mutable VResult vresult;
2321
2322  public:
2323    SumNode(NodePtr &p) : l(p), vresult(1) {}
2324
2325    const VResult &
2326    result() const
2327    {
2328        const VResult &lvec = l->result();
2329        size_type size = lvec.size();
2330        assert(size > 0);
2331
2332        vresult[0] = 0.0;
2333
2334        Op op;
2335        for (off_type i = 0; i < size; ++i)
2336            vresult[0] = op(vresult[0], lvec[i]);
2337
2338        return vresult;
2339    }
2340
2341    Result
2342    total() const
2343    {
2344        const VResult &lvec = l->result();
2345        size_type size = lvec.size();
2346        assert(size > 0);
2347
2348        Result vresult = 0.0;
2349
2350        Op op;
2351        for (off_type i = 0; i < size; ++i)
2352            vresult = op(vresult, lvec[i]);
2353
2354        return vresult;
2355    }
2356
2357    size_type size() const { return 1; }
2358
2359    std::string
2360    str() const
2361    {
2362        return csprintf("total(%s)", l->str());
2363    }
2364};
2365
2366
2367//////////////////////////////////////////////////////////////////////
2368//
2369// Visible Statistics Types
2370//
2371//////////////////////////////////////////////////////////////////////
2372/**
2373 * @defgroup VisibleStats "Statistic Types"
2374 * These are the statistics that are used in the simulator.
2375 * @{
2376 */
2377
2378/**
2379 * This is a simple scalar statistic, like a counter.
2380 * @sa Stat, ScalarBase, StatStor
2381 */
2382class Scalar : public ScalarBase<Scalar, StatStor>
2383{
2384  public:
2385    using ScalarBase<Scalar, StatStor>::operator=;
2386};
2387
2388/**
2389 * A stat that calculates the per tick average of a value.
2390 * @sa Stat, ScalarBase, AvgStor
2391 */
2392class Average : public ScalarBase<Average, AvgStor>
2393{
2394  public:
2395    using ScalarBase<Average, AvgStor>::operator=;
2396};
2397
2398class Value : public ValueBase<Value>
2399{
2400};
2401
2402/**
2403 * A vector of scalar stats.
2404 * @sa Stat, VectorBase, StatStor
2405 */
2406class Vector : public VectorBase<Vector, StatStor>
2407{
2408};
2409
2410/**
2411 * A vector of Average stats.
2412 * @sa Stat, VectorBase, AvgStor
2413 */
2414class AverageVector : public VectorBase<AverageVector, AvgStor>
2415{
2416};
2417
2418/**
2419 * A 2-Dimensional vecto of scalar stats.
2420 * @sa Stat, Vector2dBase, StatStor
2421 */
2422class Vector2d : public Vector2dBase<Vector2d, StatStor>
2423{
2424};
2425
2426/**
2427 * A simple distribution stat.
2428 * @sa Stat, DistBase, DistStor
2429 */
2430class Distribution : public DistBase<Distribution, DistStor>
2431{
2432  public:
2433    /**
2434     * Set the parameters of this distribution. @sa DistStor::Params
2435     * @param min The minimum value of the distribution.
2436     * @param max The maximum value of the distribution.
2437     * @param bkt The number of values in each bucket.
2438     * @return A reference to this distribution.
2439     */
2440    Distribution &
2441    init(Counter min, Counter max, Counter bkt)
2442    {
2443        DistStor::Params *params = new DistStor::Params;
2444        params->min = min;
2445        params->max = max;
2446        params->bucket_size = bkt;
2447        params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2448        this->setParams(params);
2449        this->doInit();
2450        return this->self();
2451    }
2452};
2453
2454/**
2455 * Calculates the mean and variance of all the samples.
2456 * @sa Stat, DistBase, FancyStor
2457 */
2458class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2459{
2460  public:
2461    /**
2462     * Construct and initialize this distribution.
2463     */
2464    StandardDeviation()
2465    {
2466        this->doInit();
2467    }
2468};
2469
2470/**
2471 * Calculates the per tick mean and variance of the samples.
2472 * @sa Stat, DistBase, AvgFancy
2473 */
2474class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2475{
2476  public:
2477    /**
2478     * Construct and initialize this distribution.
2479     */
2480    AverageDeviation()
2481    {
2482        this->doInit();
2483    }
2484};
2485
2486/**
2487 * A vector of distributions.
2488 * @sa Stat, VectorDistBase, DistStor
2489 */
2490class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2491{
2492  public:
2493    /**
2494     * Initialize storage and parameters for this distribution.
2495     * @param size The size of the vector (the number of distributions).
2496     * @param min The minimum value of the distribution.
2497     * @param max The maximum value of the distribution.
2498     * @param bkt The number of values in each bucket.
2499     * @return A reference to this distribution.
2500     */
2501    VectorDistribution &
2502    init(size_type size, Counter min, Counter max, Counter bkt)
2503    {
2504        DistStor::Params *params = new DistStor::Params;
2505        params->min = min;
2506        params->max = max;
2507        params->bucket_size = bkt;
2508        params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2509        this->setParams(params);
2510        this->doInit(size);
2511        return this->self();
2512    }
2513};
2514
2515/**
2516 * This is a vector of StandardDeviation stats.
2517 * @sa Stat, VectorDistBase, FancyStor
2518 */
2519class VectorStandardDeviation
2520    : public VectorDistBase<VectorStandardDeviation, FancyStor>
2521{
2522  public:
2523    /**
2524     * Initialize storage for this distribution.
2525     * @param size The size of the vector.
2526     * @return A reference to this distribution.
2527     */
2528    VectorStandardDeviation &
2529    init(size_type size)
2530    {
2531        this->doInit(size);
2532        return this->self();
2533    }
2534};
2535
2536/**
2537 * This is a vector of AverageDeviation stats.
2538 * @sa Stat, VectorDistBase, AvgFancy
2539 */
2540class VectorAverageDeviation
2541    : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2542{
2543  public:
2544    /**
2545     * Initialize storage for this distribution.
2546     * @param size The size of the vector.
2547     * @return A reference to this distribution.
2548     */
2549    VectorAverageDeviation &
2550    init(size_type size)
2551    {
2552        this->doInit(size);
2553        return this->self();
2554    }
2555};
2556
2557class FormulaInfoBase : public VectorInfoBase
2558{
2559  public:
2560    virtual std::string str() const = 0;
2561};
2562
2563template <class Stat>
2564class FormulaInfo : public InfoWrap<Stat, FormulaInfoBase>
2565{
2566  protected:
2567    mutable VResult vec;
2568    mutable VCounter cvec;
2569
2570  public:
2571    FormulaInfo(Stat &stat) : InfoWrap<Stat, FormulaInfoBase>(stat) {}
2572
2573    size_type size() const { return this->s.size(); }
2574
2575    const VResult &
2576    result() const
2577    {
2578        this->s.result(vec);
2579        return vec;
2580    }
2581    Result total() const { return this->s.total(); }
2582    VCounter &value() const { return cvec; }
2583
2584    std::string str() const { return this->s.str(); }
2585};
2586
2587class Temp;
2588/**
2589 * A formula for statistics that is calculated when printed. A formula is
2590 * stored as a tree of Nodes that represent the equation to calculate.
2591 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2592 */
2593class Formula : public DataWrapVec<Formula, FormulaInfo>
2594{
2595  protected:
2596    /** The root of the tree which represents the Formula */
2597    NodePtr root;
2598    friend class Temp;
2599
2600  public:
2601    /**
2602     * Create and initialize thie formula, and register it with the database.
2603     */
2604    Formula();
2605
2606    /**
2607     * Create a formula with the given root node, register it with the
2608     * database.
2609     * @param r The root of the expression tree.
2610     */
2611    Formula(Temp r);
2612
2613    /**
2614     * Set an unitialized Formula to the given root.
2615     * @param r The root of the expression tree.
2616     * @return a reference to this formula.
2617     */
2618    const Formula &operator=(Temp r);
2619
2620    /**
2621     * Add the given tree to the existing one.
2622     * @param r The root of the expression tree.
2623     * @return a reference to this formula.
2624     */
2625    const Formula &operator+=(Temp r);
2626    /**
2627     * Return the result of the Fomula in a vector.  If there were no Vector
2628     * components to the Formula, then the vector is size 1.  If there were,
2629     * like x/y with x being a vector of size 3, then the result returned will
2630     * be x[0]/y, x[1]/y, x[2]/y, respectively.
2631     * @return The result vector.
2632     */
2633    void result(VResult &vec) const;
2634
2635    /**
2636     * Return the total Formula result.  If there is a Vector
2637     * component to this Formula, then this is the result of the
2638     * Formula if the formula is applied after summing all the
2639     * components of the Vector.  For example, if Formula is x/y where
2640     * x is size 3, then total() will return (x[1]+x[2]+x[3])/y.  If
2641     * there is no Vector component, total() returns the same value as
2642     * the first entry in the VResult val() returns.
2643     * @return The total of the result vector.
2644     */
2645    Result total() const;
2646
2647    /**
2648     * Return the number of elements in the tree.
2649     */
2650    size_type size() const;
2651
2652    void prepare() { }
2653
2654    /**
2655     * Formulas don't need to be reset
2656     */
2657    void reset();
2658
2659    /**
2660     *
2661     */
2662    bool zero() const;
2663
2664    std::string str() const;
2665};
2666
2667class FormulaNode : public Node
2668{
2669  private:
2670    const Formula &formula;
2671    mutable VResult vec;
2672
2673  public:
2674    FormulaNode(const Formula &f) : formula(f) {}
2675
2676    size_type size() const { return formula.size(); }
2677    const VResult &result() const { formula.result(vec); return vec; }
2678    Result total() const { return formula.total(); }
2679
2680    std::string str() const { return formula.str(); }
2681};
2682
2683/**
2684 * Helper class to construct formula node trees.
2685 */
2686class Temp
2687{
2688  protected:
2689    /**
2690     * Pointer to a Node object.
2691     */
2692    NodePtr node;
2693
2694  public:
2695    /**
2696     * Copy the given pointer to this class.
2697     * @param n A pointer to a Node object to copy.
2698     */
2699    Temp(NodePtr n) : node(n) { }
2700
2701    /**
2702     * Return the node pointer.
2703     * @return the node pointer.
2704     */
2705    operator NodePtr&() { return node; }
2706
2707  public:
2708    /**
2709     * Create a new ScalarStatNode.
2710     * @param s The ScalarStat to place in a node.
2711     */
2712    Temp(const Scalar &s)
2713        : node(new ScalarStatNode(s.info()))
2714    { }
2715
2716    /**
2717     * Create a new ScalarStatNode.
2718     * @param s The ScalarStat to place in a node.
2719     */
2720    Temp(const Value &s)
2721        : node(new ScalarStatNode(s.info()))
2722    { }
2723
2724    /**
2725     * Create a new ScalarStatNode.
2726     * @param s The ScalarStat to place in a node.
2727     */
2728    Temp(const Average &s)
2729        : node(new ScalarStatNode(s.info()))
2730    { }
2731
2732    /**
2733     * Create a new VectorStatNode.
2734     * @param s The VectorStat to place in a node.
2735     */
2736    Temp(const Vector &s)
2737        : node(new VectorStatNode(s.info()))
2738    { }
2739
2740    /**
2741     *
2742     */
2743    Temp(const Formula &f)
2744        : node(new FormulaNode(f))
2745    { }
2746
2747    /**
2748     * Create a new ScalarProxyNode.
2749     * @param p The ScalarProxy to place in a node.
2750     */
2751    template <class Stat>
2752    Temp(const ScalarProxy<Stat> &p)
2753        : node(new ScalarProxyNode<Stat>(p))
2754    { }
2755
2756    /**
2757     * Create a ConstNode
2758     * @param value The value of the const node.
2759     */
2760    Temp(signed char value)
2761        : node(new ConstNode<signed char>(value))
2762    { }
2763
2764    /**
2765     * Create a ConstNode
2766     * @param value The value of the const node.
2767     */
2768    Temp(unsigned char value)
2769        : node(new ConstNode<unsigned char>(value))
2770    { }
2771
2772    /**
2773     * Create a ConstNode
2774     * @param value The value of the const node.
2775     */
2776    Temp(signed short value)
2777        : node(new ConstNode<signed short>(value))
2778    { }
2779
2780    /**
2781     * Create a ConstNode
2782     * @param value The value of the const node.
2783     */
2784    Temp(unsigned short value)
2785        : node(new ConstNode<unsigned short>(value))
2786    { }
2787
2788    /**
2789     * Create a ConstNode
2790     * @param value The value of the const node.
2791     */
2792    Temp(signed int value)
2793        : node(new ConstNode<signed int>(value))
2794    { }
2795
2796    /**
2797     * Create a ConstNode
2798     * @param value The value of the const node.
2799     */
2800    Temp(unsigned int value)
2801        : node(new ConstNode<unsigned int>(value))
2802    { }
2803
2804    /**
2805     * Create a ConstNode
2806     * @param value The value of the const node.
2807     */
2808    Temp(signed long value)
2809        : node(new ConstNode<signed long>(value))
2810    { }
2811
2812    /**
2813     * Create a ConstNode
2814     * @param value The value of the const node.
2815     */
2816    Temp(unsigned long value)
2817        : node(new ConstNode<unsigned long>(value))
2818    { }
2819
2820    /**
2821     * Create a ConstNode
2822     * @param value The value of the const node.
2823     */
2824    Temp(signed long long value)
2825        : node(new ConstNode<signed long long>(value))
2826    { }
2827
2828    /**
2829     * Create a ConstNode
2830     * @param value The value of the const node.
2831     */
2832    Temp(unsigned long long value)
2833        : node(new ConstNode<unsigned long long>(value))
2834    { }
2835
2836    /**
2837     * Create a ConstNode
2838     * @param value The value of the const node.
2839     */
2840    Temp(float value)
2841        : node(new ConstNode<float>(value))
2842    { }
2843
2844    /**
2845     * Create a ConstNode
2846     * @param value The value of the const node.
2847     */
2848    Temp(double value)
2849        : node(new ConstNode<double>(value))
2850    { }
2851};
2852
2853
2854/**
2855 * @}
2856 */
2857
2858inline Temp
2859operator+(Temp l, Temp r)
2860{
2861    return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2862}
2863
2864inline Temp
2865operator-(Temp l, Temp r)
2866{
2867    return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2868}
2869
2870inline Temp
2871operator*(Temp l, Temp r)
2872{
2873    return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2874}
2875
2876inline Temp
2877operator/(Temp l, Temp r)
2878{
2879    return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2880}
2881
2882inline Temp
2883operator-(Temp l)
2884{
2885    return NodePtr(new UnaryNode<std::negate<Result> >(l));
2886}
2887
2888template <typename T>
2889inline Temp
2890constant(T val)
2891{
2892    return NodePtr(new ConstNode<T>(val));
2893}
2894
2895template <typename T>
2896inline Temp
2897constantVector(T val)
2898{
2899    return NodePtr(new ConstVectorNode<T>(val));
2900}
2901
2902inline Temp
2903sum(Temp val)
2904{
2905    return NodePtr(new SumNode<std::plus<Result> >(val));
2906}
2907
2908/**
2909 * Enable the statistics package.  Before the statistics package is
2910 * enabled, all statistics must be created and initialized and once
2911 * the package is enabled, no more statistics can be created.
2912 */
2913void enable();
2914
2915/**
2916 * Prepare all stats for data access.  This must be done before
2917 * dumping and serialization.
2918 */
2919void prepare();
2920
2921/**
2922 * Dump all statistics data to the registered outputs
2923 */
2924void dump();
2925
2926/**
2927 * Reset all statistics to the base state
2928 */
2929void reset();
2930/**
2931 * Register a callback that should be called whenever statistics are
2932 * reset
2933 */
2934void registerResetCallback(Callback *cb);
2935
2936std::list<Info *> &statsList();
2937
2938/* namespace Stats */ }
2939
2940#endif // __BASE_STATISTICS_HH__
2941