remote_gdb.cc revision 72
1/* 2 * Copyright (c) 2003 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29/* 30 * Copyright (c) 1990, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This software was developed by the Computer Systems Engineering group 34 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 35 * contributed to Berkeley. 36 * 37 * All advertising materials mentioning features or use of this software 38 * must display the following acknowledgement: 39 * This product includes software developed by the University of 40 * California, Lawrence Berkeley Laboratories. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)kgdb_stub.c 8.4 (Berkeley) 1/12/94 71 */ 72 73/*- 74 * Copyright (c) 2001 The NetBSD Foundation, Inc. 75 * All rights reserved. 76 * 77 * This code is derived from software contributed to The NetBSD Foundation 78 * by Jason R. Thorpe. 79 * 80 * Redistribution and use in source and binary forms, with or without 81 * modification, are permitted provided that the following conditions 82 * are met: 83 * 1. Redistributions of source code must retain the above copyright 84 * notice, this list of conditions and the following disclaimer. 85 * 2. Redistributions in binary form must reproduce the above copyright 86 * notice, this list of conditions and the following disclaimer in the 87 * documentation and/or other materials provided with the distribution. 88 * 3. All advertising materials mentioning features or use of this software 89 * must display the following acknowledgement: 90 * This product includes software developed by the NetBSD 91 * Foundation, Inc. and its contributors. 92 * 4. Neither the name of The NetBSD Foundation nor the names of its 93 * contributors may be used to endorse or promote products derived 94 * from this software without specific prior written permission. 95 * 96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 106 * POSSIBILITY OF SUCH DAMAGE. 107 */ 108 109/* 110 * $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $ 111 * 112 * Taken from NetBSD 113 * 114 * "Stub" to allow remote cpu to debug over a serial line using gdb. 115 */ 116 117#include <sys/signal.h> 118 119#include <unistd.h> 120 121#include <cstdio> 122#include <string> 123 124#include "cpu/exec_context.hh" 125#include "base/intmath.hh" 126#include "base/kgdb.h" 127 128#include "mem/functional_mem/physical_memory.hh" 129#include "base/remote_gdb.hh" 130#include "base/socket.hh" 131#include "base/trace.hh" 132#include "targetarch/vtophys.hh" 133#include "sim/system.hh" 134#include "cpu/static_inst.hh" 135 136using namespace std; 137 138#ifdef DEBUG 139RemoteGDB *theDebugger = NULL; 140 141void 142debugger() 143{ 144 if (theDebugger) 145 theDebugger->trap(ALPHA_KENTRY_IF); 146} 147#endif 148 149/////////////////////////////////////////////////////////// 150// 151// 152// 153 154GDBListener::Event::Event(GDBListener *l, int fd, int e) 155 : PollEvent(fd, e), listener(l) 156{} 157 158void 159GDBListener::Event::process(int revent) 160{ 161 listener->accept(); 162} 163 164GDBListener::GDBListener(RemoteGDB *g, int p) 165 : event(NULL), gdb(g), port(p) 166{} 167 168GDBListener::~GDBListener() 169{ 170 if (event) 171 delete event; 172} 173 174void 175GDBListener::listen() 176{ 177 while (!listener.listen(port, true)) { 178 DPRINTF(RGDB, "GDBListener(listen): Can't bind port %d\n", port); 179 port++; 180 } 181 182 cerr << "Listening for remote gdb connection on port " << port << endl; 183 event = new Event(this, listener.getfd(), POLLIN); 184 pollQueue.schedule(event); 185} 186 187void 188GDBListener::accept() 189{ 190 if (!listener.islistening()) 191 panic("GDBListener(accept): cannot accept a connection if we're not listening!"); 192 193 int sfd = listener.accept(true); 194 195 if (sfd != -1) { 196 if (gdb->isattached()) 197 close(sfd); 198 else 199 gdb->attach(sfd); 200 } 201} 202 203/////////////////////////////////////////////////////////// 204// 205// 206// 207int digit2i(char); 208char i2digit(int); 209void mem2hex(void *, const void *, int); 210const char *hex2mem(void *, const char *, int); 211Addr hex2i(const char **); 212 213RemoteGDB::Event::Event(RemoteGDB *g, int fd, int e) 214 : PollEvent(fd, e), gdb(g) 215{} 216 217void 218RemoteGDB::Event::process(int revent) 219{ gdb->trap(ALPHA_KENTRY_IF); } 220 221RemoteGDB::RemoteGDB(System *_system, ExecContext *c) 222 : event(NULL), fd(-1), active(false), attached(false), 223 system(_system), pmem(_system->physmem), context(c) 224{ 225#ifdef DEBUG 226 theDebugger = this; 227#endif 228 memset(gdbregs, 0, sizeof(gdbregs)); 229} 230 231RemoteGDB::~RemoteGDB() 232{ 233 if (event) 234 delete event; 235} 236 237bool 238RemoteGDB::isattached() 239{ return attached; } 240 241void 242RemoteGDB::attach(int f) 243{ 244 fd = f; 245 246 event = new Event(this, fd, POLLIN); 247 pollQueue.schedule(event); 248 249 attached = true; 250 DPRINTFN("remote gdb attached\n"); 251} 252 253void 254RemoteGDB::detach() 255{ 256 attached = false; 257 close(fd); 258 fd = -1; 259 260 pollQueue.remove(event); 261 DPRINTFN("remote gdb detached\n"); 262} 263 264const char * 265gdb_command(char cmd) 266{ 267 switch (cmd) { 268 case KGDB_SIGNAL: return "KGDB_SIGNAL"; 269 case KGDB_SET_BAUD: return "KGDB_SET_BAUD"; 270 case KGDB_SET_BREAK: return "KGDB_SET_BREAK"; 271 case KGDB_CONT: return "KGDB_CONT"; 272 case KGDB_ASYNC_CONT: return "KGDB_ASYNC_CONT"; 273 case KGDB_DEBUG: return "KGDB_DEBUG"; 274 case KGDB_DETACH: return "KGDB_DETACH"; 275 case KGDB_REG_R: return "KGDB_REG_R"; 276 case KGDB_REG_W: return "KGDB_REG_W"; 277 case KGDB_SET_THREAD: return "KGDB_SET_THREAD"; 278 case KGDB_CYCLE_STEP: return "KGDB_CYCLE_STEP"; 279 case KGDB_SIG_CYCLE_STEP: return "KGDB_SIG_CYCLE_STEP"; 280 case KGDB_KILL: return "KGDB_KILL"; 281 case KGDB_MEM_W: return "KGDB_MEM_W"; 282 case KGDB_MEM_R: return "KGDB_MEM_R"; 283 case KGDB_SET_REG: return "KGDB_SET_REG"; 284 case KGDB_READ_REG: return "KGDB_READ_REG"; 285 case KGDB_QUERY_VAR: return "KGDB_QUERY_VAR"; 286 case KGDB_SET_VAR: return "KGDB_SET_VAR"; 287 case KGDB_RESET: return "KGDB_RESET"; 288 case KGDB_STEP: return "KGDB_STEP"; 289 case KGDB_ASYNC_STEP: return "KGDB_ASYNC_STEP"; 290 case KGDB_THREAD_ALIVE: return "KGDB_THREAD_ALIVE"; 291 case KGDB_TARGET_EXIT: return "KGDB_TARGET_EXIT"; 292 case KGDB_BINARY_DLOAD: return "KGDB_BINARY_DLOAD"; 293 case KGDB_CLR_HW_BKPT: return "KGDB_CLR_HW_BKPT"; 294 case KGDB_SET_HW_BKPT: return "KGDB_SET_HW_BKPT"; 295 case KGDB_START: return "KGDB_START"; 296 case KGDB_END: return "KGDB_END"; 297 case KGDB_GOODP: return "KGDB_GOODP"; 298 case KGDB_BADP: return "KGDB_BADP"; 299 default: return "KGDB_UNKNOWN"; 300 } 301} 302 303/////////////////////////////////////////////////////////// 304// RemoteGDB::acc 305// 306// Determine if the mapping at va..(va+len) is valid. 307// 308bool 309RemoteGDB::acc(Addr va, size_t len) 310{ 311 Addr last_va; 312 Addr pte; 313 314 va = alpha_trunc_page(va); 315 last_va = alpha_round_page(va + len); 316 317 do { 318 if (va < ALPHA_K0SEG_BASE) { 319 DPRINTF(RGDB, "RGDB(acc): Mapping is invalid %#x < K0SEG\n", va); 320 return false; 321 } 322 323 if (va < ALPHA_K1SEG_BASE) { 324 if (va < (ALPHA_K0SEG_BASE + pmem->getSize())) { 325 DPRINTF(RGDB, "RGDB(acc): Mapping is valid K0SEG <= " 326 "%#x < K0SEG + size\n", va); 327 return true; 328 } else { 329 DPRINTF(RGDB, "RGDB(acc): Mapping is invalid %#x < K0SEG\n", 330 va); 331 return false; 332 } 333 } 334 335 Addr ptbr = context->regs.ipr[AlphaISA::IPR_PALtemp20]; 336 pte = kernel_pte_lookup(pmem, ptbr, va); 337 if (!pte || !entry_valid(pmem->phys_read_qword(pte))) { 338 DPRINTF(RGDB, "RGDB(acc): %#x pte is invalid\n", va); 339 return false; 340 } 341 va += ALPHA_PGBYTES; 342 } while (va < last_va); 343 344 DPRINTF(RGDB, "RGDB(acc): %#x mapping is valid\n", va); 345 return true; 346} 347 348/////////////////////////////////////////////////////////// 349// RemoteGDB::signal 350// 351// Translate a trap number into a Unix-compatible signal number. 352// (GDB only understands Unix signal numbers.) 353// 354int 355RemoteGDB::signal(int type) 356{ 357 switch (type) { 358 case ALPHA_KENTRY_UNA: 359 return (SIGBUS); 360 361 case ALPHA_KENTRY_ARITH: 362 return (SIGFPE); 363 364 case ALPHA_KENTRY_IF: 365 return (SIGILL); 366 367 case ALPHA_KENTRY_MM: 368 return (SIGSEGV); 369 370 default: 371 panic("unknown signal type"); 372 return 0; 373 } 374} 375 376/////////////////////////////////////////////////////////// 377// RemoteGDB::getregs 378// 379// Translate the kernel debugger register format into 380// the GDB register format. 381void 382RemoteGDB::getregs() 383{ 384 memset(gdbregs, 0, sizeof(gdbregs)); 385 memcpy(&gdbregs[KGDB_REG_V0], context->regs.intRegFile, 32 * sizeof(uint64_t)); 386#ifdef KGDB_FP_REGS 387 memcpy(&gdbregs[KGDB_REG_F0], context->regs.floatRegFile.q, 388 32 * sizeof(uint64_t)); 389#endif 390 gdbregs[KGDB_REG_PC] = context->regs.pc; 391} 392 393/////////////////////////////////////////////////////////// 394// RemoteGDB::setregs 395// 396// Translate the GDB register format into the kernel 397// debugger register format. 398// 399void 400RemoteGDB::setregs() 401{ 402 memcpy(context->regs.intRegFile, &gdbregs[KGDB_REG_V0], 32 * sizeof(uint64_t)); 403#ifdef KGDB_FP_REGS 404 memcpy(context->regs.floatRegFile.q, &gdbregs[KGDB_REG_F0], 405 32 * sizeof(uint64_t)); 406#endif 407 context->regs.pc = gdbregs[KGDB_REG_PC]; 408} 409 410void 411RemoteGDB::setTempBreakpoint(TempBreakpoint &bkpt, Addr addr) 412{ 413 DPRINTF(RGDB, "RGDB(setTempBreakpoint): addr=%#x\n", addr); 414 415 bkpt.address = addr; 416 insertHardBreak(addr, 4); 417} 418 419void 420RemoteGDB::clearTempBreakpoint(TempBreakpoint &bkpt) 421{ 422 DPRINTF(RGDB, "RGDB(setTempBreakpoint): addr=%#x\n", 423 bkpt.address); 424 425 426 removeHardBreak(bkpt.address, 4); 427 bkpt.address = 0; 428} 429 430void 431RemoteGDB::clearSingleStep() 432{ 433 DPRINTF(RGDB, "clearSingleStep bt_addr=%#x nt_addr=%#x\n", 434 takenBkpt.address, notTakenBkpt.address); 435 436 if (takenBkpt.address != 0) 437 clearTempBreakpoint(takenBkpt); 438 439 if (notTakenBkpt.address != 0) 440 clearTempBreakpoint(notTakenBkpt); 441} 442 443void 444RemoteGDB::setSingleStep() 445{ 446 Addr pc = context->regs.pc; 447 Addr npc, bpc; 448 bool set_bt = false; 449 450 npc = pc + sizeof(MachInst); 451 452 // User was stopped at pc, e.g. the instruction at pc was not 453 // executed. 454 MachInst inst = read<MachInst>(pc); 455 StaticInstPtr<TheISA> si(inst); 456 if (si->hasBranchTarget(pc, context, bpc)) { 457 // Don't bother setting a breakpoint on the taken branch if it 458 // is the same as the next pc 459 if (bpc != npc) 460 set_bt = true; 461 } 462 463 DPRINTF(RGDB, "setSingleStep bt_addr=%#x nt_addr=%#x\n", 464 takenBkpt.address, notTakenBkpt.address); 465 466 setTempBreakpoint(notTakenBkpt, npc); 467 468 if (set_bt) 469 setTempBreakpoint(takenBkpt, bpc); 470} 471 472///////////////////////// 473// 474// 475 476uint8_t 477RemoteGDB::getbyte() 478{ 479 uint8_t b; 480 ::read(fd, &b, 1); 481 return b; 482} 483 484void 485RemoteGDB::putbyte(uint8_t b) 486{ 487 ::write(fd, &b, 1); 488} 489 490// Send a packet to gdb 491void 492RemoteGDB::send(const char *bp) 493{ 494 const char *p; 495 uint8_t csum, c; 496 497// DPRINTF(RGDB, "RGDB(send): %s\n", bp); 498 499 do { 500 p = bp; 501 putbyte(KGDB_START); 502 for (csum = 0; (c = *p); p++) { 503 putbyte(c); 504 csum += c; 505 } 506 putbyte(KGDB_END); 507 putbyte(i2digit(csum >> 4)); 508 putbyte(i2digit(csum)); 509 } while ((c = getbyte() & 0x7f) == KGDB_BADP); 510} 511 512// Receive a packet from gdb 513int 514RemoteGDB::recv(char *bp, int maxlen) 515{ 516 char *p; 517 int c, csum; 518 int len; 519 520 do { 521 p = bp; 522 csum = len = 0; 523 while ((c = getbyte()) != KGDB_START) 524 ; 525 526 while ((c = getbyte()) != KGDB_END && len < maxlen) { 527 c &= 0x7f; 528 csum += c; 529 *p++ = c; 530 len++; 531 } 532 csum &= 0xff; 533 *p = '\0'; 534 535 if (len >= maxlen) { 536 putbyte(KGDB_BADP); 537 continue; 538 } 539 540 csum -= digit2i(getbyte()) * 16; 541 csum -= digit2i(getbyte()); 542 543 if (csum == 0) { 544 putbyte(KGDB_GOODP); 545 // Sequence present? 546 if (bp[2] == ':') { 547 putbyte(bp[0]); 548 putbyte(bp[1]); 549 len -= 3; 550 bcopy(bp + 3, bp, len); 551 } 552 break; 553 } 554 putbyte(KGDB_BADP); 555 } while (1); 556 557// DPRINTF(RGDB, "RGDB(recv): %s: %s\n", gdb_command(*bp), bp); 558 559 return (len); 560} 561 562// Read bytes from kernel address space for debugger. 563bool 564RemoteGDB::read(Addr vaddr, size_t size, char *data) 565{ 566 static Addr lastaddr = 0; 567 static size_t lastsize = 0; 568 569 uint8_t *maddr; 570 571 if (vaddr < 10) { 572 DPRINTF(RGDB, "\nRGDB(read): reading memory location zero!\n"); 573 vaddr = lastaddr + lastsize; 574 } 575 576 DPRINTF(RGDB, "RGDB(read): addr=%#x, size=%d", vaddr, size); 577#if TRACING_ON 578 char *d = data; 579 size_t s = size; 580#endif 581 582 lastaddr = vaddr; 583 lastsize = size; 584 585 size_t count = min((Addr)size, 586 VMPageSize - (vaddr & (VMPageSize - 1))); 587 588 maddr = vtomem(context, vaddr, count); 589 memcpy(data, maddr, count); 590 591 vaddr += count; 592 data += count; 593 size -= count; 594 595 while (size >= VMPageSize) { 596 maddr = vtomem(context, vaddr, count); 597 memcpy(data, maddr, VMPageSize); 598 599 vaddr += VMPageSize; 600 data += VMPageSize; 601 size -= VMPageSize; 602 } 603 604 if (size > 0) { 605 maddr = vtomem(context, vaddr, count); 606 memcpy(data, maddr, size); 607 } 608 609#if TRACING_ON 610 if (DTRACE(RGDB)) { 611 char buf[1024]; 612 mem2hex(buf, d, s); 613 cprintf(": %s\n", buf); 614 } 615#endif 616 617 return true; 618} 619 620// Write bytes to kernel address space for debugger. 621bool 622RemoteGDB::write(Addr vaddr, size_t size, const char *data) 623{ 624 static Addr lastaddr = 0; 625 static size_t lastsize = 0; 626 627 uint8_t *maddr; 628 629 if (vaddr < 10) { 630 DPRINTF(RGDB, "RGDB(write): writing memory location zero!\n"); 631 vaddr = lastaddr + lastsize; 632 } 633 634 if (DTRACE(RGDB)) { 635 char buf[1024]; 636 mem2hex(buf, data, size); 637 cprintf("RGDB(write): addr=%#x, size=%d: %s\n", vaddr, size, buf); 638 } 639 640 lastaddr = vaddr; 641 lastsize = size; 642 643 size_t count = min((Addr)size, 644 VMPageSize - (vaddr & (VMPageSize - 1))); 645 646 maddr = vtomem(context, vaddr, count); 647 memcpy(maddr, data, count); 648 649 vaddr += count; 650 data += count; 651 size -= count; 652 653 while (size >= VMPageSize) { 654 maddr = vtomem(context, vaddr, count); 655 memcpy(maddr, data, VMPageSize); 656 657 vaddr += VMPageSize; 658 data += VMPageSize; 659 size -= VMPageSize; 660 } 661 662 if (size > 0) { 663 maddr = vtomem(context, vaddr, count); 664 memcpy(maddr, data, size); 665 } 666 667#ifdef IMB 668 alpha_pal_imb(); 669#endif 670 671 return true; 672} 673 674 675PCEventQueue *RemoteGDB::getPcEventQueue() 676{ 677 return &system->pcEventQueue; 678} 679 680 681RemoteGDB::HardBreakpoint::HardBreakpoint(RemoteGDB *_gdb, Addr pc) 682 : PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc), 683 gdb(_gdb), refcount(0) 684{ 685 DPRINTF(RGDB, "creating hardware breakpoint at %#x\n", evpc); 686 schedule(); 687} 688 689void 690RemoteGDB::HardBreakpoint::process(ExecContext *xc) 691{ 692 DPRINTF(RGDB, "handling hardware breakpoint at %#x\n", pc()); 693 694 if (xc == gdb->context) 695 gdb->trap(ALPHA_KENTRY_IF); 696} 697 698bool 699RemoteGDB::insertSoftBreak(Addr addr, size_t len) 700{ 701 if (len != sizeof(MachInst)) 702 panic("invalid length\n"); 703 704 return insertHardBreak(addr, len); 705} 706 707bool 708RemoteGDB::removeSoftBreak(Addr addr, size_t len) 709{ 710 if (len != sizeof(MachInst)) 711 panic("invalid length\n"); 712 713 return removeHardBreak(addr, len); 714} 715 716bool 717RemoteGDB::insertHardBreak(Addr addr, size_t len) 718{ 719 if (len != sizeof(MachInst)) 720 panic("invalid length\n"); 721 722 DPRINTF(RGDB, "inserting hardware breakpoint at %#x\n", addr); 723 724 HardBreakpoint *&bkpt = hardBreakMap[addr]; 725 if (bkpt == 0) 726 bkpt = new HardBreakpoint(this, addr); 727 728 bkpt->refcount++; 729 730 return true; 731 732#if 0 733 break_iter_t i = hardBreakMap.find(addr); 734 if (i == hardBreakMap.end()) { 735 HardBreakpoint *bkpt = new HardBreakpoint(this, addr); 736 hardBreakMap[addr] = bkpt; 737 i = hardBreakMap.insert(make_pair(addr, bkpt)); 738 if (i == hardBreakMap.end()) 739 return false; 740 } 741 742 (*i).second->refcount++; 743#endif 744} 745 746bool 747RemoteGDB::removeHardBreak(Addr addr, size_t len) 748{ 749 if (len != sizeof(MachInst)) 750 panic("invalid length\n"); 751 752 DPRINTF(RGDB, "removing hardware breakpoint at %#x\n", addr); 753 754 break_iter_t i = hardBreakMap.find(addr); 755 if (i == hardBreakMap.end()) 756 return false; 757 758 HardBreakpoint *hbp = (*i).second; 759 if (--hbp->refcount == 0) { 760 delete hbp; 761 hardBreakMap.erase(i); 762 } 763 764 return true; 765} 766 767const char * 768break_type(char c) 769{ 770 switch(c) { 771 case '0': return "software breakpoint"; 772 case '1': return "hardware breakpoint"; 773 case '2': return "write watchpoint"; 774 case '3': return "read watchpoint"; 775 case '4': return "access watchpoint"; 776 default: return "unknown breakpoint/watchpoint"; 777 } 778} 779 780// This function does all command processing for interfacing to a 781// remote gdb. Note that the error codes are ignored by gdb at 782// present, but might eventually become meaningful. (XXX) It might 783// makes sense to use POSIX errno values, because that is what the 784// gdb/remote.c functions want to return. 785bool 786RemoteGDB::trap(int type) 787{ 788 uint64_t val; 789 size_t datalen, len; 790 char data[KGDB_BUFLEN + 1]; 791 char buffer[sizeof(gdbregs) * 2 + 256]; 792 char temp[KGDB_BUFLEN]; 793 const char *p; 794 char command, subcmd; 795 string var; 796 bool ret; 797 798 if (!attached) 799 return false; 800 801 DPRINTF(RGDB, "RGDB(trap): PC=%#x NPC=%#x\n", 802 context->regs.pc, context->regs.npc); 803 804 clearSingleStep(); 805 806 /* 807 * The first entry to this function is normally through 808 * a breakpoint trap in kgdb_connect(), in which case we 809 * must advance past the breakpoint because gdb will not. 810 * 811 * On the first entry here, we expect that gdb is not yet 812 * listening to us, so just enter the interaction loop. 813 * After the debugger is "active" (connected) it will be 814 * waiting for a "signaled" message from us. 815 */ 816 if (!active) { 817 if (!IS_BREAKPOINT_TRAP(type, 0)) { 818 // No debugger active -- let trap handle this. 819 return false; 820 } 821 active = true; 822 } else { 823 // Tell remote host that an exception has occurred. 824 sprintf((char *)buffer, "S%02x", signal(type)); 825 send(buffer); 826 } 827 828 // Stick frame regs into our reg cache. 829 getregs(); 830 831 for (;;) { 832 datalen = recv(data, sizeof(data)); 833 data[sizeof(data) - 1] = 0; // Sentinel 834 command = data[0]; 835 subcmd = 0; 836 p = data + 1; 837 switch (command) { 838 839 case KGDB_SIGNAL: 840 // if this command came from a running gdb, answer it -- 841 // the other guy has no way of knowing if we're in or out 842 // of this loop when he issues a "remote-signal". 843 sprintf((char *)buffer, "S%02x", signal(type)); 844 send(buffer); 845 continue; 846 847 case KGDB_REG_R: 848 if (2 * sizeof(gdbregs) > sizeof(buffer)) 849 panic("buffer too small"); 850 851 mem2hex(buffer, gdbregs, sizeof(gdbregs)); 852 send(buffer); 853 continue; 854 855 case KGDB_REG_W: 856 p = hex2mem(gdbregs, p, sizeof(gdbregs)); 857 if (p == NULL || *p != '\0') 858 send("E01"); 859 else { 860 setregs(); 861 send("OK"); 862 } 863 continue; 864 865#if 0 866 case KGDB_SET_REG: 867 val = hex2i(&p); 868 if (*p++ != '=') { 869 send("E01"); 870 continue; 871 } 872 if (val < 0 && val >= KGDB_NUMREGS) { 873 send("E01"); 874 continue; 875 } 876 877 gdbregs[val] = hex2i(&p); 878 setregs(); 879 send("OK"); 880 881 continue; 882#endif 883 884 case KGDB_MEM_R: 885 val = hex2i(&p); 886 if (*p++ != ',') { 887 send("E02"); 888 continue; 889 } 890 len = hex2i(&p); 891 if (*p != '\0') { 892 send("E03"); 893 continue; 894 } 895 if (len > sizeof(buffer)) { 896 send("E04"); 897 continue; 898 } 899 if (!acc(val, len)) { 900 send("E05"); 901 continue; 902 } 903 904 if (read(val, (size_t)len, (char *)buffer)) { 905 mem2hex(temp, buffer, len); 906 send(temp); 907 } else { 908 send("E05"); 909 } 910 continue; 911 912 case KGDB_MEM_W: 913 val = hex2i(&p); 914 if (*p++ != ',') { 915 send("E06"); 916 continue; 917 } 918 len = hex2i(&p); 919 if (*p++ != ':') { 920 send("E07"); 921 continue; 922 } 923 if (len > datalen - (p - data)) { 924 send("E08"); 925 continue; 926 } 927 p = hex2mem(buffer, p, sizeof(buffer)); 928 if (p == NULL) { 929 send("E09"); 930 continue; 931 } 932 if (!acc(val, len)) { 933 send("E0A"); 934 continue; 935 } 936 if (write(val, (size_t)len, (char *)buffer)) 937 send("OK"); 938 else 939 send("E0B"); 940 continue; 941 942 case KGDB_SET_THREAD: 943 subcmd = *p++; 944 val = hex2i(&p); 945 if (val == 0) 946 send("OK"); 947 else 948 send("E01"); 949 continue; 950 951 case KGDB_DETACH: 952 case KGDB_KILL: 953 active = false; 954 clearSingleStep(); 955 detach(); 956 goto out; 957 958 case KGDB_ASYNC_CONT: 959 subcmd = hex2i(&p); 960 if (*p++ == ';') { 961 val = hex2i(&p); 962 context->regs.pc = val; 963 context->regs.npc = val + sizeof(MachInst); 964 } 965 clearSingleStep(); 966 goto out; 967 968 case KGDB_CONT: 969 if (p - data < datalen) { 970 val = hex2i(&p); 971 context->regs.pc = val; 972 context->regs.npc = val + sizeof(MachInst); 973 } 974 clearSingleStep(); 975 goto out; 976 977 case KGDB_ASYNC_STEP: 978 subcmd = hex2i(&p); 979 if (*p++ == ';') { 980 val = hex2i(&p); 981 context->regs.pc = val; 982 context->regs.npc = val + sizeof(MachInst); 983 } 984 setSingleStep(); 985 goto out; 986 987 case KGDB_STEP: 988 if (p - data < datalen) { 989 val = hex2i(&p); 990 context->regs.pc = val; 991 context->regs.npc = val + sizeof(MachInst); 992 } 993 setSingleStep(); 994 goto out; 995 996 case KGDB_CLR_HW_BKPT: 997 subcmd = *p++; 998 if (*p++ != ',') send("E0D"); 999 val = hex2i(&p); 1000 if (*p++ != ',') send("E0D"); 1001 len = hex2i(&p); 1002 1003 DPRINTF(RGDB, "kgdb: clear %s, addr=%#x, len=%d\n", 1004 break_type(subcmd), val, len); 1005 1006 ret = false; 1007 1008 switch (subcmd) { 1009 case '0': // software breakpoint 1010 ret = removeSoftBreak(val, len); 1011 break; 1012 1013 case '1': // hardware breakpoint 1014 ret = removeHardBreak(val, len); 1015 break; 1016 1017 case '2': // write watchpoint 1018 case '3': // read watchpoint 1019 case '4': // access watchpoint 1020 default: // unknown 1021 send(""); 1022 break; 1023 } 1024 1025 send(ret ? "OK" : "E0C"); 1026 continue; 1027 1028 case KGDB_SET_HW_BKPT: 1029 subcmd = *p++; 1030 if (*p++ != ',') send("E0D"); 1031 val = hex2i(&p); 1032 if (*p++ != ',') send("E0D"); 1033 len = hex2i(&p); 1034 1035 DPRINTF(RGDB, "kgdb: set %s, addr=%#x, len=%d\n", 1036 break_type(subcmd), val, len); 1037 1038 ret = false; 1039 1040 switch (subcmd) { 1041 case '0': // software breakpoint 1042 ret = insertSoftBreak(val, len); 1043 break; 1044 1045 case '1': // hardware breakpoint 1046 ret = insertHardBreak(val, len); 1047 break; 1048 1049 case '2': // write watchpoint 1050 case '3': // read watchpoint 1051 case '4': // access watchpoint 1052 default: // unknown 1053 send(""); 1054 break; 1055 } 1056 1057 send(ret ? "OK" : "E0C"); 1058 continue; 1059 1060 case KGDB_QUERY_VAR: 1061 var = string(p, datalen - 1); 1062 if (var == "C") 1063 send("QC0"); 1064 else 1065 send(""); 1066 continue; 1067 1068 case KGDB_SET_BAUD: 1069 case KGDB_SET_BREAK: 1070 case KGDB_DEBUG: 1071 case KGDB_CYCLE_STEP: 1072 case KGDB_SIG_CYCLE_STEP: 1073 case KGDB_READ_REG: 1074 case KGDB_SET_VAR: 1075 case KGDB_RESET: 1076 case KGDB_THREAD_ALIVE: 1077 case KGDB_TARGET_EXIT: 1078 case KGDB_BINARY_DLOAD: 1079 // Unsupported command 1080 DPRINTF(RGDB, "kgdb: Unsupported command: %s\n", 1081 gdb_command(command)); 1082 DDUMP(RGDB, (uint8_t *)data, datalen); 1083 send(""); 1084 continue; 1085 1086 default: 1087 // Unknown command. 1088 DPRINTF(RGDB, "kgdb: Unknown command: %c(%#x)\n", 1089 command, command); 1090 send(""); 1091 continue; 1092 1093 1094 } 1095 } 1096 1097 out: 1098 return true; 1099} 1100 1101// Convert a hex digit into an integer. 1102// This returns -1 if the argument passed is no valid hex digit. 1103int 1104digit2i(char c) 1105{ 1106 if (c >= '0' && c <= '9') 1107 return (c - '0'); 1108 else if (c >= 'a' && c <= 'f') 1109 return (c - 'a' + 10); 1110 else if (c >= 'A' && c <= 'F') 1111 1112 return (c - 'A' + 10); 1113 else 1114 return (-1); 1115} 1116 1117// Convert the low 4 bits of an integer into an hex digit. 1118char 1119i2digit(int n) 1120{ 1121 return ("0123456789abcdef"[n & 0x0f]); 1122} 1123 1124// Convert a byte array into an hex string. 1125void 1126mem2hex(void *vdst, const void *vsrc, int len) 1127{ 1128 char *dst = (char *)vdst; 1129 const char *src = (const char *)vsrc; 1130 1131 while (len--) { 1132 *dst++ = i2digit(*src >> 4); 1133 *dst++ = i2digit(*src++); 1134 } 1135 *dst = '\0'; 1136} 1137 1138// Convert an hex string into a byte array. 1139// This returns a pointer to the character following the last valid 1140// hex digit. If the string ends in the middle of a byte, NULL is 1141// returned. 1142const char * 1143hex2mem(void *vdst, const char *src, int maxlen) 1144{ 1145 char *dst = (char *)vdst; 1146 int msb, lsb; 1147 1148 while (*src && maxlen--) { 1149 msb = digit2i(*src++); 1150 if (msb < 0) 1151 return (src - 1); 1152 lsb = digit2i(*src++); 1153 if (lsb < 0) 1154 return (NULL); 1155 *dst++ = (msb << 4) | lsb; 1156 } 1157 return (src); 1158} 1159 1160// Convert an hex string into an integer. 1161// This returns a pointer to the character following the last valid 1162// hex digit. 1163Addr 1164hex2i(const char **srcp) 1165{ 1166 const char *src = *srcp; 1167 Addr r = 0; 1168 int nibble; 1169 1170 while ((nibble = digit2i(*src)) >= 0) { 1171 r *= 16; 1172 r += nibble; 1173 src++; 1174 } 1175 *srcp = src; 1176 return (r); 1177} 1178 1179