remote_gdb.cc revision 2521
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * This software was developed by the Computer Systems Engineering group
34 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
35 * contributed to Berkeley.
36 *
37 * All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 *	This product includes software developed by the University of
40 *	California, Lawrence Berkeley Laboratories.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)kgdb_stub.c	8.4 (Berkeley) 1/12/94
71 */
72
73/*-
74 * Copyright (c) 2001 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Jason R. Thorpe.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 *    notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 *    notice, this list of conditions and the following disclaimer in the
87 *    documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 *    must display the following acknowledgement:
90 *	This product includes software developed by the NetBSD
91 *	Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 *    contributors may be used to endorse or promote products derived
94 *    from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109/*
110 * $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $
111 *
112 * Taken from NetBSD
113 *
114 * "Stub" to allow remote cpu to debug over a serial line using gdb.
115 */
116
117#include <sys/signal.h>
118
119#include <cstdio>
120#include <string>
121#include <unistd.h>
122
123#include "arch/vtophys.hh"
124#include "base/intmath.hh"
125#include "base/kgdb.h"
126#include "base/remote_gdb.hh"
127#include "base/socket.hh"
128#include "base/trace.hh"
129#include "config/full_system.hh"
130#include "cpu/exec_context.hh"
131#include "cpu/static_inst.hh"
132#include "mem/physical.hh"
133#include "mem/port.hh"
134#include "sim/system.hh"
135
136using namespace std;
137using namespace TheISA;
138
139#ifndef NDEBUG
140vector<RemoteGDB *> debuggers;
141int current_debugger = -1;
142
143void
144debugger()
145{
146    if (current_debugger >= 0 && current_debugger < debuggers.size()) {
147        RemoteGDB *gdb = debuggers[current_debugger];
148        if (!gdb->isattached())
149            gdb->listener->accept();
150        if (gdb->isattached())
151            gdb->trap(ALPHA_KENTRY_IF);
152    }
153}
154#endif
155
156///////////////////////////////////////////////////////////
157//
158//
159//
160
161GDBListener::Event::Event(GDBListener *l, int fd, int e)
162    : PollEvent(fd, e), listener(l)
163{}
164
165void
166GDBListener::Event::process(int revent)
167{
168    listener->accept();
169}
170
171GDBListener::GDBListener(RemoteGDB *g, int p)
172    : event(NULL), gdb(g), port(p)
173{
174    assert(!gdb->listener);
175    gdb->listener = this;
176}
177
178GDBListener::~GDBListener()
179{
180    if (event)
181        delete event;
182}
183
184string
185GDBListener::name()
186{
187    return gdb->name() + ".listener";
188}
189
190void
191GDBListener::listen()
192{
193    while (!listener.listen(port, true)) {
194        DPRINTF(GDBMisc, "Can't bind port %d\n", port);
195        port++;
196    }
197
198    event = new Event(this, listener.getfd(), POLLIN);
199    pollQueue.schedule(event);
200
201#ifndef NDEBUG
202    gdb->number = debuggers.size();
203    debuggers.push_back(gdb);
204#endif
205
206#ifndef NDEBUG
207    ccprintf(cerr, "%d: %s: listening for remote gdb #%d on port %d\n",
208             curTick, name(), gdb->number, port);
209#else
210    ccprintf(cerr, "%d: %s: listening for remote gdb on port %d\n",
211             curTick, name(), port);
212#endif
213}
214
215void
216GDBListener::accept()
217{
218    if (!listener.islistening())
219        panic("GDBListener::accept(): cannot accept if we're not listening!");
220
221    int sfd = listener.accept(true);
222
223    if (sfd != -1) {
224        if (gdb->isattached())
225            close(sfd);
226        else
227            gdb->attach(sfd);
228    }
229}
230
231///////////////////////////////////////////////////////////
232//
233//
234//
235int digit2i(char);
236char i2digit(int);
237void mem2hex(void *, const void *, int);
238const char *hex2mem(void *, const char *, int);
239Addr hex2i(const char **);
240
241RemoteGDB::Event::Event(RemoteGDB *g, int fd, int e)
242    : PollEvent(fd, e), gdb(g)
243{}
244
245void
246RemoteGDB::Event::process(int revent)
247{
248    if (revent & POLLIN)
249        gdb->trap(ALPHA_KENTRY_IF);
250    else if (revent & POLLNVAL)
251        gdb->detach();
252}
253
254RemoteGDB::RemoteGDB(System *_system, ExecContext *c)
255    : event(NULL), listener(NULL), number(-1), fd(-1),
256      active(false), attached(false),
257      system(_system), pmem(_system->physmem), context(c)
258{
259    memset(gdbregs, 0, sizeof(gdbregs));
260}
261
262RemoteGDB::~RemoteGDB()
263{
264    if (event)
265        delete event;
266}
267
268string
269RemoteGDB::name()
270{
271    return system->name() + ".remote_gdb";
272}
273
274bool
275RemoteGDB::isattached()
276{ return attached; }
277
278void
279RemoteGDB::attach(int f)
280{
281    fd = f;
282
283    event = new Event(this, fd, POLLIN);
284    pollQueue.schedule(event);
285
286    attached = true;
287    DPRINTFN("remote gdb attached\n");
288}
289
290void
291RemoteGDB::detach()
292{
293    attached = false;
294    close(fd);
295    fd = -1;
296
297    pollQueue.remove(event);
298    DPRINTFN("remote gdb detached\n");
299}
300
301const char *
302gdb_command(char cmd)
303{
304    switch (cmd) {
305      case KGDB_SIGNAL: return "KGDB_SIGNAL";
306      case KGDB_SET_BAUD: return "KGDB_SET_BAUD";
307      case KGDB_SET_BREAK: return "KGDB_SET_BREAK";
308      case KGDB_CONT: return "KGDB_CONT";
309      case KGDB_ASYNC_CONT: return "KGDB_ASYNC_CONT";
310      case KGDB_DEBUG: return "KGDB_DEBUG";
311      case KGDB_DETACH: return "KGDB_DETACH";
312      case KGDB_REG_R: return "KGDB_REG_R";
313      case KGDB_REG_W: return "KGDB_REG_W";
314      case KGDB_SET_THREAD: return "KGDB_SET_THREAD";
315      case KGDB_CYCLE_STEP: return "KGDB_CYCLE_STEP";
316      case KGDB_SIG_CYCLE_STEP: return "KGDB_SIG_CYCLE_STEP";
317      case KGDB_KILL: return "KGDB_KILL";
318      case KGDB_MEM_W: return "KGDB_MEM_W";
319      case KGDB_MEM_R: return "KGDB_MEM_R";
320      case KGDB_SET_REG: return "KGDB_SET_REG";
321      case KGDB_READ_REG: return "KGDB_READ_REG";
322      case KGDB_QUERY_VAR: return "KGDB_QUERY_VAR";
323      case KGDB_SET_VAR: return "KGDB_SET_VAR";
324      case KGDB_RESET: return "KGDB_RESET";
325      case KGDB_STEP: return "KGDB_STEP";
326      case KGDB_ASYNC_STEP: return "KGDB_ASYNC_STEP";
327      case KGDB_THREAD_ALIVE: return "KGDB_THREAD_ALIVE";
328      case KGDB_TARGET_EXIT: return "KGDB_TARGET_EXIT";
329      case KGDB_BINARY_DLOAD: return "KGDB_BINARY_DLOAD";
330      case KGDB_CLR_HW_BKPT: return "KGDB_CLR_HW_BKPT";
331      case KGDB_SET_HW_BKPT: return "KGDB_SET_HW_BKPT";
332      case KGDB_START: return "KGDB_START";
333      case KGDB_END: return "KGDB_END";
334      case KGDB_GOODP: return "KGDB_GOODP";
335      case KGDB_BADP: return "KGDB_BADP";
336      default: return "KGDB_UNKNOWN";
337    }
338}
339
340///////////////////////////////////////////////////////////
341// RemoteGDB::acc
342//
343//	Determine if the mapping at va..(va+len) is valid.
344//
345bool
346RemoteGDB::acc(Addr va, size_t len)
347{
348    Addr last_va;
349
350    va = TheISA::TruncPage(va);
351    last_va = TheISA::RoundPage(va + len);
352
353    do  {
354        if (TheISA::IsK0Seg(va)) {
355            if (va < (TheISA::K0SegBase + pmem->size())) {
356                DPRINTF(GDBAcc, "acc:   Mapping is valid  K0SEG <= "
357                        "%#x < K0SEG + size\n", va);
358                return true;
359            } else {
360                DPRINTF(GDBAcc, "acc:   Mapping invalid %#x > K0SEG + size\n",
361                        va);
362                return false;
363            }
364        }
365
366    /**
367     * This code says that all accesses to palcode (instruction and data)
368     * are valid since there isn't a va->pa mapping because palcode is
369     * accessed physically. At some point this should probably be cleaned up
370     * but there is no easy way to do it.
371     */
372
373        if (AlphaISA::PcPAL(va) || va < 0x10000)
374            return true;
375
376        Addr ptbr = context->readMiscReg(AlphaISA::IPR_PALtemp20);
377        TheISA::PageTableEntry pte = TheISA::kernel_pte_lookup(context->getPhysPort(), ptbr, va);
378        if (!pte.valid()) {
379            DPRINTF(GDBAcc, "acc:   %#x pte is invalid\n", va);
380            return false;
381        }
382        va += TheISA::PageBytes;
383    } while (va < last_va);
384
385    DPRINTF(GDBAcc, "acc:   %#x mapping is valid\n", va);
386    return true;
387}
388
389///////////////////////////////////////////////////////////
390// RemoteGDB::signal
391//
392//	Translate a trap number into a Unix-compatible signal number.
393//	(GDB only understands Unix signal numbers.)
394//
395int
396RemoteGDB::signal(int type)
397{
398    switch (type) {
399      case ALPHA_KENTRY_INT:
400        return (SIGTRAP);
401
402      case ALPHA_KENTRY_UNA:
403        return (SIGBUS);
404
405      case ALPHA_KENTRY_ARITH:
406        return (SIGFPE);
407
408      case ALPHA_KENTRY_IF:
409        return (SIGILL);
410
411      case ALPHA_KENTRY_MM:
412        return (SIGSEGV);
413
414      default:
415        panic("unknown signal type");
416        return 0;
417    }
418}
419
420///////////////////////////////////////////////////////////
421// RemoteGDB::getregs
422//
423//	Translate the kernel debugger register format into
424//	the GDB register format.
425void
426RemoteGDB::getregs()
427{
428    memset(gdbregs, 0, sizeof(gdbregs));
429
430    gdbregs[KGDB_REG_PC] = context->readPC();
431
432    // @todo: Currently this is very Alpha specific.
433    if (AlphaISA::PcPAL(gdbregs[KGDB_REG_PC])) {
434        for (int i = 0; i < TheISA::NumIntArchRegs; ++i) {
435            gdbregs[i] = context->readIntReg(AlphaISA::reg_redir[i]);
436        }
437    } else {
438        for (int i = 0; i < TheISA::NumIntArchRegs; ++i) {
439            gdbregs[i] = context->readIntReg(i);
440        }
441    }
442
443#ifdef KGDB_FP_REGS
444    for (int i = 0; i < TheISA::NumFloatArchRegs; ++i) {
445        gdbregs[i + KGDB_REG_F0] = context->readFloatRegBits(i);
446    }
447#endif
448}
449
450///////////////////////////////////////////////////////////
451// RemoteGDB::setregs
452//
453//	Translate the GDB register format into the kernel
454//	debugger register format.
455//
456void
457RemoteGDB::setregs()
458{
459    // @todo: Currently this is very Alpha specific.
460    if (AlphaISA::PcPAL(gdbregs[KGDB_REG_PC])) {
461        for (int i = 0; i < TheISA::NumIntArchRegs; ++i) {
462            context->setIntReg(AlphaISA::reg_redir[i], gdbregs[i]);
463        }
464    } else {
465        for (int i = 0; i < TheISA::NumIntArchRegs; ++i) {
466            context->setIntReg(i, gdbregs[i]);
467        }
468    }
469
470#ifdef KGDB_FP_REGS
471    for (int i = 0; i < TheISA::NumFloatArchRegs; ++i) {
472        context->setFloatRegBits(i, gdbregs[i + KGDB_REG_F0]);
473    }
474#endif
475    context->setPC(gdbregs[KGDB_REG_PC]);
476}
477
478void
479RemoteGDB::setTempBreakpoint(TempBreakpoint &bkpt, Addr addr)
480{
481    DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n", addr);
482
483    bkpt.address = addr;
484    insertHardBreak(addr, 4);
485}
486
487void
488RemoteGDB::clearTempBreakpoint(TempBreakpoint &bkpt)
489{
490    DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n",
491            bkpt.address);
492
493
494    removeHardBreak(bkpt.address, 4);
495    bkpt.address = 0;
496}
497
498void
499RemoteGDB::clearSingleStep()
500{
501    DPRINTF(GDBMisc, "clearSingleStep bt_addr=%#x nt_addr=%#x\n",
502            takenBkpt.address, notTakenBkpt.address);
503
504    if (takenBkpt.address != 0)
505        clearTempBreakpoint(takenBkpt);
506
507    if (notTakenBkpt.address != 0)
508        clearTempBreakpoint(notTakenBkpt);
509}
510
511void
512RemoteGDB::setSingleStep()
513{
514    Addr pc = context->readPC();
515    Addr npc, bpc;
516    bool set_bt = false;
517
518    npc = pc + sizeof(MachInst);
519
520    // User was stopped at pc, e.g. the instruction at pc was not
521    // executed.
522    MachInst inst = read<MachInst>(pc);
523    StaticInstPtr si(inst);
524    if (si->hasBranchTarget(pc, context, bpc)) {
525        // Don't bother setting a breakpoint on the taken branch if it
526        // is the same as the next pc
527        if (bpc != npc)
528            set_bt = true;
529    }
530
531    DPRINTF(GDBMisc, "setSingleStep bt_addr=%#x nt_addr=%#x\n",
532            takenBkpt.address, notTakenBkpt.address);
533
534    setTempBreakpoint(notTakenBkpt, npc);
535
536    if (set_bt)
537        setTempBreakpoint(takenBkpt, bpc);
538}
539
540/////////////////////////
541//
542//
543
544uint8_t
545RemoteGDB::getbyte()
546{
547    uint8_t b;
548    ::read(fd, &b, 1);
549    return b;
550}
551
552void
553RemoteGDB::putbyte(uint8_t b)
554{
555    ::write(fd, &b, 1);
556}
557
558// Send a packet to gdb
559void
560RemoteGDB::send(const char *bp)
561{
562    const char *p;
563    uint8_t csum, c;
564
565    DPRINTF(GDBSend, "send:  %s\n", bp);
566
567    do {
568        p = bp;
569        putbyte(KGDB_START);
570        for (csum = 0; (c = *p); p++) {
571            putbyte(c);
572            csum += c;
573        }
574        putbyte(KGDB_END);
575        putbyte(i2digit(csum >> 4));
576        putbyte(i2digit(csum));
577    } while ((c = getbyte() & 0x7f) == KGDB_BADP);
578}
579
580// Receive a packet from gdb
581int
582RemoteGDB::recv(char *bp, int maxlen)
583{
584    char *p;
585    int c, csum;
586    int len;
587
588    do {
589        p = bp;
590        csum = len = 0;
591        while ((c = getbyte()) != KGDB_START)
592            ;
593
594        while ((c = getbyte()) != KGDB_END && len < maxlen) {
595            c &= 0x7f;
596            csum += c;
597            *p++ = c;
598            len++;
599        }
600        csum &= 0xff;
601        *p = '\0';
602
603        if (len >= maxlen) {
604            putbyte(KGDB_BADP);
605            continue;
606        }
607
608        csum -= digit2i(getbyte()) * 16;
609        csum -= digit2i(getbyte());
610
611        if (csum == 0) {
612            putbyte(KGDB_GOODP);
613            // Sequence present?
614            if (bp[2] == ':') {
615                putbyte(bp[0]);
616                putbyte(bp[1]);
617                len -= 3;
618                bcopy(bp + 3, bp, len);
619            }
620            break;
621        }
622        putbyte(KGDB_BADP);
623    } while (1);
624
625    DPRINTF(GDBRecv, "recv:  %s: %s\n", gdb_command(*bp), bp);
626
627    return (len);
628}
629
630// Read bytes from kernel address space for debugger.
631bool
632RemoteGDB::read(Addr vaddr, size_t size, char *data)
633{
634    static Addr lastaddr = 0;
635    static size_t lastsize = 0;
636
637    if (vaddr < 10) {
638      DPRINTF(GDBRead, "read:  reading memory location zero!\n");
639      vaddr = lastaddr + lastsize;
640    }
641
642    DPRINTF(GDBRead, "read:  addr=%#x, size=%d", vaddr, size);
643
644    context->getVirtPort(context)->readBlob(vaddr, (uint8_t*)data, size);
645
646#if TRACING_ON
647    if (DTRACE(GDBRead)) {
648        if (DTRACE(GDBExtra)) {
649            char buf[1024];
650            mem2hex(buf, data, size);
651            DPRINTFNR(": %s\n", buf);
652        } else
653            DPRINTFNR("\n");
654    }
655#endif
656
657    return true;
658}
659
660// Write bytes to kernel address space for debugger.
661bool
662RemoteGDB::write(Addr vaddr, size_t size, const char *data)
663{
664    static Addr lastaddr = 0;
665    static size_t lastsize = 0;
666
667    if (vaddr < 10) {
668      DPRINTF(GDBWrite, "write: writing memory location zero!\n");
669      vaddr = lastaddr + lastsize;
670    }
671
672    if (DTRACE(GDBWrite)) {
673        DPRINTFN("write: addr=%#x, size=%d", vaddr, size);
674        if (DTRACE(GDBExtra)) {
675            char buf[1024];
676            mem2hex(buf, data, size);
677            DPRINTFNR(": %s\n", buf);
678        } else
679            DPRINTFNR("\n");
680    }
681
682    context->getVirtPort(context)->writeBlob(vaddr, (uint8_t*)data, size);
683
684#ifdef IMB
685    alpha_pal_imb();
686#endif
687
688    return true;
689}
690
691
692PCEventQueue *RemoteGDB::getPcEventQueue()
693{
694    return &system->pcEventQueue;
695}
696
697
698RemoteGDB::HardBreakpoint::HardBreakpoint(RemoteGDB *_gdb, Addr pc)
699    : PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc),
700      gdb(_gdb), refcount(0)
701{
702    DPRINTF(GDBMisc, "creating hardware breakpoint at %#x\n", evpc);
703}
704
705void
706RemoteGDB::HardBreakpoint::process(ExecContext *xc)
707{
708    DPRINTF(GDBMisc, "handling hardware breakpoint at %#x\n", pc());
709
710    if (xc == gdb->context)
711        gdb->trap(ALPHA_KENTRY_INT);
712}
713
714bool
715RemoteGDB::insertSoftBreak(Addr addr, size_t len)
716{
717    if (len != sizeof(MachInst))
718        panic("invalid length\n");
719
720    return insertHardBreak(addr, len);
721}
722
723bool
724RemoteGDB::removeSoftBreak(Addr addr, size_t len)
725{
726    if (len != sizeof(MachInst))
727        panic("invalid length\n");
728
729    return removeHardBreak(addr, len);
730}
731
732bool
733RemoteGDB::insertHardBreak(Addr addr, size_t len)
734{
735    if (len != sizeof(MachInst))
736        panic("invalid length\n");
737
738    DPRINTF(GDBMisc, "inserting hardware breakpoint at %#x\n", addr);
739
740    HardBreakpoint *&bkpt = hardBreakMap[addr];
741    if (bkpt == 0)
742        bkpt = new HardBreakpoint(this, addr);
743
744    bkpt->refcount++;
745
746    return true;
747}
748
749bool
750RemoteGDB::removeHardBreak(Addr addr, size_t len)
751{
752    if (len != sizeof(MachInst))
753        panic("invalid length\n");
754
755    DPRINTF(GDBMisc, "removing hardware breakpoint at %#x\n", addr);
756
757    break_iter_t i = hardBreakMap.find(addr);
758    if (i == hardBreakMap.end())
759        return false;
760
761    HardBreakpoint *hbp = (*i).second;
762    if (--hbp->refcount == 0) {
763        delete hbp;
764        hardBreakMap.erase(i);
765    }
766
767    return true;
768}
769
770const char *
771break_type(char c)
772{
773    switch(c) {
774      case '0': return "software breakpoint";
775      case '1': return "hardware breakpoint";
776      case '2': return "write watchpoint";
777      case '3': return "read watchpoint";
778      case '4': return "access watchpoint";
779      default: return "unknown breakpoint/watchpoint";
780    }
781}
782
783// This function does all command processing for interfacing to a
784// remote gdb.  Note that the error codes are ignored by gdb at
785// present, but might eventually become meaningful. (XXX) It might
786// makes sense to use POSIX errno values, because that is what the
787// gdb/remote.c functions want to return.
788bool
789RemoteGDB::trap(int type)
790{
791    uint64_t val;
792    size_t datalen, len;
793    char data[KGDB_BUFLEN + 1];
794    char buffer[sizeof(gdbregs) * 2 + 256];
795    char temp[KGDB_BUFLEN];
796    const char *p;
797    char command, subcmd;
798    string var;
799    bool ret;
800
801    if (!attached)
802        return false;
803
804    DPRINTF(GDBMisc, "trap: PC=%#x NPC=%#x\n",
805            context->readPC(), context->readNextPC());
806
807    clearSingleStep();
808
809    /*
810     * The first entry to this function is normally through
811     * a breakpoint trap in kgdb_connect(), in which case we
812     * must advance past the breakpoint because gdb will not.
813     *
814     * On the first entry here, we expect that gdb is not yet
815     * listening to us, so just enter the interaction loop.
816     * After the debugger is "active" (connected) it will be
817     * waiting for a "signaled" message from us.
818     */
819    if (!active)
820        active = true;
821    else
822        // Tell remote host that an exception has occurred.
823        snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
824        send(buffer);
825
826    // Stick frame regs into our reg cache.
827    getregs();
828
829    for (;;) {
830        datalen = recv(data, sizeof(data));
831        data[sizeof(data) - 1] = 0; // Sentinel
832        command = data[0];
833        subcmd = 0;
834        p = data + 1;
835        switch (command) {
836
837          case KGDB_SIGNAL:
838            // if this command came from a running gdb, answer it --
839            // the other guy has no way of knowing if we're in or out
840            // of this loop when he issues a "remote-signal".
841            snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
842            send(buffer);
843            continue;
844
845          case KGDB_REG_R:
846            if (2 * sizeof(gdbregs) > sizeof(buffer))
847                panic("buffer too small");
848
849            mem2hex(buffer, gdbregs, sizeof(gdbregs));
850            send(buffer);
851            continue;
852
853          case KGDB_REG_W:
854            p = hex2mem(gdbregs, p, sizeof(gdbregs));
855            if (p == NULL || *p != '\0')
856                send("E01");
857            else {
858                setregs();
859                send("OK");
860            }
861            continue;
862
863#if 0
864          case KGDB_SET_REG:
865            val = hex2i(&p);
866            if (*p++ != '=') {
867                send("E01");
868                continue;
869            }
870            if (val < 0 && val >= KGDB_NUMREGS) {
871                send("E01");
872                continue;
873            }
874
875            gdbregs[val] = hex2i(&p);
876            setregs();
877            send("OK");
878
879            continue;
880#endif
881
882          case KGDB_MEM_R:
883            val = hex2i(&p);
884            if (*p++ != ',') {
885                send("E02");
886                continue;
887            }
888            len = hex2i(&p);
889            if (*p != '\0') {
890                send("E03");
891                continue;
892            }
893            if (len > sizeof(buffer)) {
894                send("E04");
895                continue;
896            }
897            if (!acc(val, len)) {
898                send("E05");
899                continue;
900            }
901
902            if (read(val, (size_t)len, (char *)buffer)) {
903              mem2hex(temp, buffer, len);
904              send(temp);
905            } else {
906              send("E05");
907            }
908            continue;
909
910          case KGDB_MEM_W:
911            val = hex2i(&p);
912            if (*p++ != ',') {
913                send("E06");
914                continue;
915            }
916            len = hex2i(&p);
917            if (*p++ != ':') {
918                send("E07");
919                continue;
920            }
921            if (len > datalen - (p - data)) {
922                send("E08");
923                continue;
924            }
925            p = hex2mem(buffer, p, sizeof(buffer));
926            if (p == NULL) {
927                send("E09");
928                continue;
929            }
930            if (!acc(val, len)) {
931                send("E0A");
932                continue;
933            }
934            if (write(val, (size_t)len, (char *)buffer))
935              send("OK");
936            else
937              send("E0B");
938            continue;
939
940          case KGDB_SET_THREAD:
941            subcmd = *p++;
942            val = hex2i(&p);
943            if (val == 0)
944                send("OK");
945            else
946                send("E01");
947            continue;
948
949          case KGDB_DETACH:
950          case KGDB_KILL:
951            active = false;
952            clearSingleStep();
953            detach();
954            goto out;
955
956          case KGDB_ASYNC_CONT:
957            subcmd = hex2i(&p);
958            if (*p++ == ';') {
959                val = hex2i(&p);
960                context->setPC(val);
961                context->setNextPC(val + sizeof(MachInst));
962            }
963            clearSingleStep();
964            goto out;
965
966          case KGDB_CONT:
967            if (p - data < datalen) {
968                val = hex2i(&p);
969                context->setPC(val);
970                context->setNextPC(val + sizeof(MachInst));
971            }
972            clearSingleStep();
973            goto out;
974
975          case KGDB_ASYNC_STEP:
976            subcmd = hex2i(&p);
977            if (*p++ == ';') {
978                val = hex2i(&p);
979                context->setPC(val);
980                context->setNextPC(val + sizeof(MachInst));
981            }
982            setSingleStep();
983            goto out;
984
985          case KGDB_STEP:
986            if (p - data < datalen) {
987                val = hex2i(&p);
988                context->setPC(val);
989                context->setNextPC(val + sizeof(MachInst));
990            }
991            setSingleStep();
992            goto out;
993
994          case KGDB_CLR_HW_BKPT:
995            subcmd = *p++;
996            if (*p++ != ',') send("E0D");
997            val = hex2i(&p);
998            if (*p++ != ',') send("E0D");
999            len = hex2i(&p);
1000
1001            DPRINTF(GDBMisc, "clear %s, addr=%#x, len=%d\n",
1002                    break_type(subcmd), val, len);
1003
1004            ret = false;
1005
1006            switch (subcmd) {
1007              case '0': // software breakpoint
1008                ret = removeSoftBreak(val, len);
1009                break;
1010
1011              case '1': // hardware breakpoint
1012                ret = removeHardBreak(val, len);
1013                break;
1014
1015              case '2': // write watchpoint
1016              case '3': // read watchpoint
1017              case '4': // access watchpoint
1018              default: // unknown
1019                send("");
1020                break;
1021            }
1022
1023            send(ret ? "OK" : "E0C");
1024            continue;
1025
1026          case KGDB_SET_HW_BKPT:
1027            subcmd = *p++;
1028            if (*p++ != ',') send("E0D");
1029            val = hex2i(&p);
1030            if (*p++ != ',') send("E0D");
1031            len = hex2i(&p);
1032
1033            DPRINTF(GDBMisc, "set %s, addr=%#x, len=%d\n",
1034                    break_type(subcmd), val, len);
1035
1036            ret = false;
1037
1038            switch (subcmd) {
1039              case '0': // software breakpoint
1040                ret = insertSoftBreak(val, len);
1041                break;
1042
1043              case '1': // hardware breakpoint
1044                ret = insertHardBreak(val, len);
1045                break;
1046
1047              case '2': // write watchpoint
1048              case '3': // read watchpoint
1049              case '4': // access watchpoint
1050              default: // unknown
1051                send("");
1052                break;
1053            }
1054
1055            send(ret ? "OK" : "E0C");
1056            continue;
1057
1058          case KGDB_QUERY_VAR:
1059            var = string(p, datalen - 1);
1060            if (var == "C")
1061                send("QC0");
1062            else
1063                send("");
1064            continue;
1065
1066          case KGDB_SET_BAUD:
1067          case KGDB_SET_BREAK:
1068          case KGDB_DEBUG:
1069          case KGDB_CYCLE_STEP:
1070          case KGDB_SIG_CYCLE_STEP:
1071          case KGDB_READ_REG:
1072          case KGDB_SET_VAR:
1073          case KGDB_RESET:
1074          case KGDB_THREAD_ALIVE:
1075          case KGDB_TARGET_EXIT:
1076          case KGDB_BINARY_DLOAD:
1077            // Unsupported command
1078            DPRINTF(GDBMisc, "Unsupported command: %s\n",
1079                    gdb_command(command));
1080            DDUMP(GDBMisc, (uint8_t *)data, datalen);
1081            send("");
1082            continue;
1083
1084          default:
1085            // Unknown command.
1086            DPRINTF(GDBMisc, "Unknown command: %c(%#x)\n",
1087                    command, command);
1088            send("");
1089            continue;
1090
1091
1092        }
1093    }
1094
1095  out:
1096    return true;
1097}
1098
1099// Convert a hex digit into an integer.
1100// This returns -1 if the argument passed is no valid hex digit.
1101int
1102digit2i(char c)
1103{
1104    if (c >= '0' && c <= '9')
1105        return (c - '0');
1106    else if (c >= 'a' && c <= 'f')
1107        return (c - 'a' + 10);
1108    else if (c >= 'A' && c <= 'F')
1109
1110        return (c - 'A' + 10);
1111    else
1112        return (-1);
1113}
1114
1115// Convert the low 4 bits of an integer into an hex digit.
1116char
1117i2digit(int n)
1118{
1119    return ("0123456789abcdef"[n & 0x0f]);
1120}
1121
1122// Convert a byte array into an hex string.
1123void
1124mem2hex(void *vdst, const void *vsrc, int len)
1125{
1126    char *dst = (char *)vdst;
1127    const char *src = (const char *)vsrc;
1128
1129    while (len--) {
1130        *dst++ = i2digit(*src >> 4);
1131        *dst++ = i2digit(*src++);
1132    }
1133    *dst = '\0';
1134}
1135
1136// Convert an hex string into a byte array.
1137// This returns a pointer to the character following the last valid
1138// hex digit. If the string ends in the middle of a byte, NULL is
1139// returned.
1140const char *
1141hex2mem(void *vdst, const char *src, int maxlen)
1142{
1143    char *dst = (char *)vdst;
1144    int msb, lsb;
1145
1146    while (*src && maxlen--) {
1147        msb = digit2i(*src++);
1148        if (msb < 0)
1149            return (src - 1);
1150        lsb = digit2i(*src++);
1151        if (lsb < 0)
1152            return (NULL);
1153        *dst++ = (msb << 4) | lsb;
1154    }
1155    return (src);
1156}
1157
1158// Convert an hex string into an integer.
1159// This returns a pointer to the character following the last valid
1160// hex digit.
1161Addr
1162hex2i(const char **srcp)
1163{
1164    const char *src = *srcp;
1165    Addr r = 0;
1166    int nibble;
1167
1168    while ((nibble = digit2i(*src)) >= 0) {
1169        r *= 16;
1170        r += nibble;
1171        src++;
1172    }
1173    *srcp = src;
1174    return (r);
1175}
1176
1177