utility.cc revision 9921
1/* 2 * Copyright (c) 2007 The Hewlett-Packard Development Company 3 * Copyright (c) 2011 Advanced Micro Devices, Inc. 4 * All rights reserved. 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions are 17 * met: redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer; 19 * redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution; 22 * neither the name of the copyright holders nor the names of its 23 * contributors may be used to endorse or promote products derived from 24 * this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 29 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 30 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 31 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 32 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 33 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 34 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 36 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37 * 38 * Authors: Gabe Black 39 */ 40 41#include "arch/x86/interrupts.hh" 42#include "arch/x86/registers.hh" 43#include "arch/x86/tlb.hh" 44#include "arch/x86/utility.hh" 45#include "arch/x86/x86_traits.hh" 46#include "cpu/base.hh" 47#include "fputils/fp80.h" 48#include "sim/system.hh" 49 50namespace X86ISA { 51 52uint64_t 53getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp) 54{ 55 if (!FullSystem) { 56 panic("getArgument() only implemented for full system mode.\n"); 57 } else if (fp) { 58 panic("getArgument(): Floating point arguments not implemented\n"); 59 } else if (size != 8) { 60 panic("getArgument(): Can only handle 64-bit arguments.\n"); 61 } 62 63 // The first 6 integer arguments are passed in registers, the rest 64 // are passed on the stack. 65 const int int_reg_map[] = { 66 INTREG_RDI, INTREG_RSI, INTREG_RDX, 67 INTREG_RCX, INTREG_R8, INTREG_R9 68 }; 69 if (number < sizeof(int_reg_map) / sizeof(*int_reg_map)) { 70 return tc->readIntReg(int_reg_map[number]); 71 } else { 72 panic("getArgument(): Don't know how to handle stack arguments.\n"); 73 } 74} 75 76void initCPU(ThreadContext *tc, int cpuId) 77{ 78 // This function is essentially performing a reset. The actual INIT 79 // interrupt does a subset of this, so we'll piggyback on some of its 80 // functionality. 81 InitInterrupt init(0); 82 init.invoke(tc); 83 84 PCState pc = tc->pcState(); 85 pc.upc(0); 86 pc.nupc(1); 87 tc->pcState(pc); 88 89 // These next two loops zero internal microcode and implicit registers. 90 // They aren't specified by the ISA but are used internally by M5's 91 // implementation. 92 for (int index = 0; index < NumMicroIntRegs; index++) { 93 tc->setIntReg(INTREG_MICRO(index), 0); 94 } 95 96 for (int index = 0; index < NumImplicitIntRegs; index++) { 97 tc->setIntReg(INTREG_IMPLICIT(index), 0); 98 } 99 100 // Set integer register EAX to 0 to indicate that the optional BIST 101 // passed. No BIST actually runs, but software may still check this 102 // register for errors. 103 tc->setIntReg(INTREG_RAX, 0); 104 105 tc->setMiscReg(MISCREG_CR0, 0x0000000060000010ULL); 106 tc->setMiscReg(MISCREG_CR8, 0); 107 108 // TODO initialize x87, 64 bit, and 128 bit media state 109 110 tc->setMiscReg(MISCREG_MTRRCAP, 0x0508); 111 for (int i = 0; i < 8; i++) { 112 tc->setMiscReg(MISCREG_MTRR_PHYS_BASE(i), 0); 113 tc->setMiscReg(MISCREG_MTRR_PHYS_MASK(i), 0); 114 } 115 tc->setMiscReg(MISCREG_MTRR_FIX_64K_00000, 0); 116 tc->setMiscReg(MISCREG_MTRR_FIX_16K_80000, 0); 117 tc->setMiscReg(MISCREG_MTRR_FIX_16K_A0000, 0); 118 tc->setMiscReg(MISCREG_MTRR_FIX_4K_C0000, 0); 119 tc->setMiscReg(MISCREG_MTRR_FIX_4K_C8000, 0); 120 tc->setMiscReg(MISCREG_MTRR_FIX_4K_D0000, 0); 121 tc->setMiscReg(MISCREG_MTRR_FIX_4K_D8000, 0); 122 tc->setMiscReg(MISCREG_MTRR_FIX_4K_E0000, 0); 123 tc->setMiscReg(MISCREG_MTRR_FIX_4K_E8000, 0); 124 tc->setMiscReg(MISCREG_MTRR_FIX_4K_F0000, 0); 125 tc->setMiscReg(MISCREG_MTRR_FIX_4K_F8000, 0); 126 127 tc->setMiscReg(MISCREG_DEF_TYPE, 0); 128 129 tc->setMiscReg(MISCREG_MCG_CAP, 0x104); 130 tc->setMiscReg(MISCREG_MCG_STATUS, 0); 131 tc->setMiscReg(MISCREG_MCG_CTL, 0); 132 133 for (int i = 0; i < 5; i++) { 134 tc->setMiscReg(MISCREG_MC_CTL(i), 0); 135 tc->setMiscReg(MISCREG_MC_STATUS(i), 0); 136 tc->setMiscReg(MISCREG_MC_ADDR(i), 0); 137 tc->setMiscReg(MISCREG_MC_MISC(i), 0); 138 } 139 140 tc->setMiscReg(MISCREG_TSC, 0); 141 tc->setMiscReg(MISCREG_TSC_AUX, 0); 142 143 for (int i = 0; i < 4; i++) { 144 tc->setMiscReg(MISCREG_PERF_EVT_SEL(i), 0); 145 tc->setMiscReg(MISCREG_PERF_EVT_CTR(i), 0); 146 } 147 148 tc->setMiscReg(MISCREG_STAR, 0); 149 tc->setMiscReg(MISCREG_LSTAR, 0); 150 tc->setMiscReg(MISCREG_CSTAR, 0); 151 152 tc->setMiscReg(MISCREG_SF_MASK, 0); 153 154 tc->setMiscReg(MISCREG_KERNEL_GS_BASE, 0); 155 156 tc->setMiscReg(MISCREG_SYSENTER_CS, 0); 157 tc->setMiscReg(MISCREG_SYSENTER_ESP, 0); 158 tc->setMiscReg(MISCREG_SYSENTER_EIP, 0); 159 160 tc->setMiscReg(MISCREG_PAT, 0x0007040600070406ULL); 161 162 tc->setMiscReg(MISCREG_SYSCFG, 0x20601); 163 164 tc->setMiscReg(MISCREG_IORR_BASE0, 0); 165 tc->setMiscReg(MISCREG_IORR_BASE1, 0); 166 167 tc->setMiscReg(MISCREG_IORR_MASK0, 0); 168 tc->setMiscReg(MISCREG_IORR_MASK1, 0); 169 170 tc->setMiscReg(MISCREG_TOP_MEM, 0x4000000); 171 tc->setMiscReg(MISCREG_TOP_MEM2, 0x0); 172 173 tc->setMiscReg(MISCREG_DEBUG_CTL_MSR, 0); 174 tc->setMiscReg(MISCREG_LAST_BRANCH_FROM_IP, 0); 175 tc->setMiscReg(MISCREG_LAST_BRANCH_TO_IP, 0); 176 tc->setMiscReg(MISCREG_LAST_EXCEPTION_FROM_IP, 0); 177 tc->setMiscReg(MISCREG_LAST_EXCEPTION_TO_IP, 0); 178 179 // Invalidate the caches (this should already be done for us) 180 181 LocalApicBase lApicBase = 0; 182 lApicBase.base = 0xFEE00000 >> 12; 183 lApicBase.enable = 1; 184 lApicBase.bsp = (cpuId == 0); 185 tc->setMiscReg(MISCREG_APIC_BASE, lApicBase); 186 187 Interrupts * interrupts = dynamic_cast<Interrupts *>( 188 tc->getCpuPtr()->getInterruptController()); 189 assert(interrupts); 190 191 interrupts->setRegNoEffect(APIC_ID, cpuId << 24); 192 193 interrupts->setRegNoEffect(APIC_VERSION, (5 << 16) | 0x14); 194 195 // TODO Set the SMRAM base address (SMBASE) to 0x00030000 196 197 tc->setMiscReg(MISCREG_VM_CR, 0); 198 tc->setMiscReg(MISCREG_IGNNE, 0); 199 tc->setMiscReg(MISCREG_SMM_CTL, 0); 200 tc->setMiscReg(MISCREG_VM_HSAVE_PA, 0); 201} 202 203void startupCPU(ThreadContext *tc, int cpuId) 204{ 205 if (cpuId == 0 || !FullSystem) { 206 tc->activate(Cycles(0)); 207 } else { 208 // This is an application processor (AP). It should be initialized to 209 // look like only the BIOS POST has run on it and put then put it into 210 // a halted state. 211 tc->suspend(Cycles(0)); 212 } 213} 214 215void 216copyMiscRegs(ThreadContext *src, ThreadContext *dest) 217{ 218 // This function assumes no side effects other than TLB invalidation 219 // need to be considered while copying state. That will likely not be 220 // true in the future. 221 for (int i = 0; i < NUM_MISCREGS; ++i) { 222 if ( ( i != MISCREG_CR1 && 223 !(i > MISCREG_CR4 && i < MISCREG_CR8) && 224 !(i > MISCREG_CR8 && i <= MISCREG_CR15) ) == false) { 225 continue; 226 } 227 dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i)); 228 } 229 230 // The TSC has to be updated with side-effects if the CPUs in a 231 // CPU switch have different frequencies. 232 dest->setMiscReg(MISCREG_TSC, src->readMiscReg(MISCREG_TSC)); 233 234 dest->getITBPtr()->flushAll(); 235 dest->getDTBPtr()->flushAll(); 236} 237 238void 239copyRegs(ThreadContext *src, ThreadContext *dest) 240{ 241 //copy int regs 242 for (int i = 0; i < NumIntRegs; ++i) 243 dest->setIntReg(i, src->readIntReg(i)); 244 //copy float regs 245 for (int i = 0; i < NumFloatRegs; ++i) 246 dest->setFloatRegBits(i, src->readFloatRegBits(i)); 247 //copy condition-code regs 248 for (int i = 0; i < NumCCRegs; ++i) 249 dest->setCCReg(i, src->readCCReg(i)); 250 copyMiscRegs(src, dest); 251 dest->pcState(src->pcState()); 252} 253 254void 255skipFunction(ThreadContext *tc) 256{ 257 panic("Not implemented for x86\n"); 258} 259 260uint64_t 261getRFlags(ThreadContext *tc) 262{ 263 const uint64_t ncc_flags(tc->readMiscRegNoEffect(MISCREG_RFLAGS)); 264 const uint64_t cc_flags(tc->readIntReg(X86ISA::CCREG_ZAPS)); 265 const uint64_t cfof_bits(tc->readIntReg(X86ISA::CCREG_CFOF)); 266 const uint64_t df_bit(tc->readIntReg(X86ISA::CCREG_DF)); 267 // ecf (PSEUDO(3)) & ezf (PSEUDO(4)) are only visible to 268 // microcode, so we can safely ignore them. 269 270 // Reconstruct the real rflags state, mask out internal flags, and 271 // make sure reserved bits have the expected values. 272 return ((ncc_flags | cc_flags | cfof_bits | df_bit) & 0x3F7FD5) 273 | 0x2; 274} 275 276void 277setRFlags(ThreadContext *tc, uint64_t val) 278{ 279 tc->setIntReg(X86ISA::CCREG_ZAPS, val & ccFlagMask); 280 tc->setIntReg(X86ISA::CCREG_CFOF, val & cfofMask); 281 tc->setIntReg(X86ISA::CCREG_DF, val & DFBit); 282 283 // Internal microcode registers (ECF & EZF) 284 tc->setIntReg(X86ISA::CCREG_ECF, 0); 285 tc->setIntReg(X86ISA::CCREG_EZF, 0); 286 287 // Update the RFLAGS misc reg with whatever didn't go into the 288 // magic registers. 289 tc->setMiscReg(MISCREG_RFLAGS, val & ~(ccFlagMask | cfofMask | DFBit)); 290} 291 292uint8_t 293convX87TagsToXTags(uint16_t ftw) 294{ 295 uint8_t ftwx(0); 296 for (int i = 0; i < 8; ++i) { 297 // Extract the tag for the current element on the FP stack 298 const unsigned tag((ftw >> (2 * i)) & 0x3); 299 300 /* 301 * Check the type of the current FP element. Valid values are: 302 * 0 == Valid 303 * 1 == Zero 304 * 2 == Special (Nan, unsupported, infinity, denormal) 305 * 3 == Empty 306 */ 307 // The xsave version of the tag word only keeps track of 308 // whether the element is empty or not. Set the corresponding 309 // bit in the ftwx if it's not empty, 310 if (tag != 0x3) 311 ftwx |= 1 << i; 312 } 313 314 return ftwx; 315} 316 317uint16_t 318convX87XTagsToTags(uint8_t ftwx) 319{ 320 uint16_t ftw(0); 321 for (int i = 0; i < 8; ++i) { 322 const unsigned xtag(((ftwx >> i) & 0x1)); 323 324 // The xtag for an x87 stack position is 0 for empty stack positions. 325 if (!xtag) { 326 // Set the tag word to 3 (empty) for the current element. 327 ftw |= 0x3 << (2 * i); 328 } else { 329 // TODO: We currently assume that non-empty elements are 330 // valid (0x0), but we should ideally reconstruct the full 331 // state (valid/zero/special). 332 } 333 } 334 335 return ftw; 336} 337 338uint16_t 339genX87Tags(uint16_t ftw, uint8_t top, int8_t spm) 340{ 341 const uint8_t new_top((top + spm + 8) % 8); 342 343 if (spm > 0) { 344 // Removing elements from the stack. Flag the elements as empty. 345 for (int i = top; i != new_top; i = (i + 1 + 8) % 8) 346 ftw |= 0x3 << (2 * i); 347 } else if (spm < 0) { 348 // Adding elements to the stack. Flag the new elements as 349 // valid. We should ideally decode them and "do the right 350 // thing". 351 for (int i = new_top; i != top; i = (i + 1 + 8) % 8) 352 ftw &= ~(0x3 << (2 * i)); 353 } 354 355 return ftw; 356} 357 358double 359loadFloat80(const void *_mem) 360{ 361 const fp80_t *fp80((const fp80_t *)_mem); 362 363 return fp80_cvtd(*fp80); 364} 365 366void 367storeFloat80(void *_mem, double value) 368{ 369 fp80_t *fp80((fp80_t *)_mem); 370 371 *fp80 = fp80_cvfd(value); 372} 373 374} // namespace X86_ISA 375