utility.cc revision 9880
12SN/A/*
21762SN/A * Copyright (c) 2007 The Hewlett-Packard Development Company
32SN/A * Copyright (c) 2011 Advanced Micro Devices, Inc.
42SN/A * All rights reserved.
52SN/A *
62SN/A * The license below extends only to copyright in the software and shall
72SN/A * not be construed as granting a license to any other intellectual
82SN/A * property including but not limited to intellectual property relating
92SN/A * to a hardware implementation of the functionality of the software
102SN/A * licensed hereunder.  You may use the software subject to the license
112SN/A * terms below provided that you ensure that this notice is replicated
122SN/A * unmodified and in its entirety in all distributions of the software,
132SN/A * modified or unmodified, in source code or in binary form.
142SN/A *
152SN/A * Redistribution and use in source and binary forms, with or without
162SN/A * modification, are permitted provided that the following conditions are
172SN/A * met: redistributions of source code must retain the above copyright
182SN/A * notice, this list of conditions and the following disclaimer;
192SN/A * redistributions in binary form must reproduce the above copyright
202SN/A * notice, this list of conditions and the following disclaimer in the
212SN/A * documentation and/or other materials provided with the distribution;
222SN/A * neither the name of the copyright holders nor the names of its
232SN/A * contributors may be used to endorse or promote products derived from
242SN/A * this software without specific prior written permission.
252SN/A *
262SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
272665Ssaidi@eecs.umich.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
282760Sbinkertn@umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
292760Sbinkertn@umich.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
302665Ssaidi@eecs.umich.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
312SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
322SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
332SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34363SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35363SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
361354SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
372SN/A *
382SN/A * Authors: Gabe Black
392SN/A */
402SN/A
412SN/A#include "arch/x86/interrupts.hh"
422SN/A#include "arch/x86/registers.hh"
43363SN/A#include "arch/x86/tlb.hh"
4456SN/A#include "arch/x86/utility.hh"
451388SN/A#include "arch/x86/x86_traits.hh"
46217SN/A#include "cpu/base.hh"
47363SN/A#include "sim/system.hh"
4856SN/A
4956SN/Anamespace X86ISA {
5056SN/A
511638SN/Auint64_t
5256SN/AgetArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
532SN/A{
542356SN/A    panic("getArgument() not implemented for x86!\n");
552356SN/A    M5_DUMMY_RETURN
562356SN/A}
572SN/A
582SN/Avoid initCPU(ThreadContext *tc, int cpuId)
594000Ssaidi@eecs.umich.edu{
604000Ssaidi@eecs.umich.edu    // This function is essentially performing a reset. The actual INIT
614762Snate@binkert.org    // interrupt does a subset of this, so we'll piggyback on some of its
624762Snate@binkert.org    // functionality.
634762Snate@binkert.org    InitInterrupt init(0);
644762Snate@binkert.org    init.invoke(tc);
654762Snate@binkert.org
664762Snate@binkert.org    PCState pc = tc->pcState();
674762Snate@binkert.org    pc.upc(0);
684762Snate@binkert.org    pc.nupc(1);
694762Snate@binkert.org    tc->pcState(pc);
704762Snate@binkert.org
714762Snate@binkert.org    // These next two loops zero internal microcode and implicit registers.
724762Snate@binkert.org    // They aren't specified by the ISA but are used internally by M5's
734762Snate@binkert.org    // implementation.
744762Snate@binkert.org    for (int index = 0; index < NumMicroIntRegs; index++) {
754762Snate@binkert.org        tc->setIntReg(INTREG_MICRO(index), 0);
764762Snate@binkert.org    }
774762Snate@binkert.org
784762Snate@binkert.org    for (int index = 0; index < NumImplicitIntRegs; index++) {
794762Snate@binkert.org        tc->setIntReg(INTREG_IMPLICIT(index), 0);
804762Snate@binkert.org    }
814762Snate@binkert.org
824762Snate@binkert.org    // Set integer register EAX to 0 to indicate that the optional BIST
834762Snate@binkert.org    // passed. No BIST actually runs, but software may still check this
844762Snate@binkert.org    // register for errors.
854762Snate@binkert.org    tc->setIntReg(INTREG_RAX, 0);
864762Snate@binkert.org
874762Snate@binkert.org    tc->setMiscReg(MISCREG_CR0, 0x0000000060000010ULL);
884762Snate@binkert.org    tc->setMiscReg(MISCREG_CR8, 0);
894762Snate@binkert.org
904762Snate@binkert.org    // TODO initialize x87, 64 bit, and 128 bit media state
914762Snate@binkert.org
924762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRRCAP, 0x0508);
934762Snate@binkert.org    for (int i = 0; i < 8; i++) {
944762Snate@binkert.org        tc->setMiscReg(MISCREG_MTRR_PHYS_BASE(i), 0);
954762Snate@binkert.org        tc->setMiscReg(MISCREG_MTRR_PHYS_MASK(i), 0);
964762Snate@binkert.org    }
974762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_64K_00000, 0);
984762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_16K_80000, 0);
994762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_16K_A0000, 0);
1004762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_C0000, 0);
1014762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_C8000, 0);
1024762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_D0000, 0);
1034762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_D8000, 0);
1044762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_E0000, 0);
1054762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_E8000, 0);
1064762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_F0000, 0);
1074762Snate@binkert.org    tc->setMiscReg(MISCREG_MTRR_FIX_4K_F8000, 0);
1084762Snate@binkert.org
1094762Snate@binkert.org    tc->setMiscReg(MISCREG_DEF_TYPE, 0);
1104762Snate@binkert.org
1114762Snate@binkert.org    tc->setMiscReg(MISCREG_MCG_CAP, 0x104);
1124762Snate@binkert.org    tc->setMiscReg(MISCREG_MCG_STATUS, 0);
1134762Snate@binkert.org    tc->setMiscReg(MISCREG_MCG_CTL, 0);
1144762Snate@binkert.org
1154762Snate@binkert.org    for (int i = 0; i < 5; i++) {
1164762Snate@binkert.org        tc->setMiscReg(MISCREG_MC_CTL(i), 0);
1174762Snate@binkert.org        tc->setMiscReg(MISCREG_MC_STATUS(i), 0);
1184762Snate@binkert.org        tc->setMiscReg(MISCREG_MC_ADDR(i), 0);
1194762Snate@binkert.org        tc->setMiscReg(MISCREG_MC_MISC(i), 0);
1204762Snate@binkert.org    }
1214762Snate@binkert.org
1224762Snate@binkert.org    tc->setMiscReg(MISCREG_TSC, 0);
1234762Snate@binkert.org    tc->setMiscReg(MISCREG_TSC_AUX, 0);
1244762Snate@binkert.org
1254762Snate@binkert.org    for (int i = 0; i < 4; i++) {
1264762Snate@binkert.org        tc->setMiscReg(MISCREG_PERF_EVT_SEL(i), 0);
1274762Snate@binkert.org        tc->setMiscReg(MISCREG_PERF_EVT_CTR(i), 0);
1284762Snate@binkert.org    }
1294762Snate@binkert.org
1304762Snate@binkert.org    tc->setMiscReg(MISCREG_STAR, 0);
1314762Snate@binkert.org    tc->setMiscReg(MISCREG_LSTAR, 0);
1324762Snate@binkert.org    tc->setMiscReg(MISCREG_CSTAR, 0);
1334762Snate@binkert.org
1344762Snate@binkert.org    tc->setMiscReg(MISCREG_SF_MASK, 0);
1354762Snate@binkert.org
1364762Snate@binkert.org    tc->setMiscReg(MISCREG_KERNEL_GS_BASE, 0);
1374762Snate@binkert.org
1384762Snate@binkert.org    tc->setMiscReg(MISCREG_SYSENTER_CS, 0);
1394762Snate@binkert.org    tc->setMiscReg(MISCREG_SYSENTER_ESP, 0);
1404762Snate@binkert.org    tc->setMiscReg(MISCREG_SYSENTER_EIP, 0);
1414762Snate@binkert.org
1424762Snate@binkert.org    tc->setMiscReg(MISCREG_PAT, 0x0007040600070406ULL);
1434762Snate@binkert.org
1444762Snate@binkert.org    tc->setMiscReg(MISCREG_SYSCFG, 0x20601);
1454762Snate@binkert.org
1464762Snate@binkert.org    tc->setMiscReg(MISCREG_IORR_BASE0, 0);
1474762Snate@binkert.org    tc->setMiscReg(MISCREG_IORR_BASE1, 0);
1484762Snate@binkert.org
1494762Snate@binkert.org    tc->setMiscReg(MISCREG_IORR_MASK0, 0);
1504762Snate@binkert.org    tc->setMiscReg(MISCREG_IORR_MASK1, 0);
1514762Snate@binkert.org
1524762Snate@binkert.org    tc->setMiscReg(MISCREG_TOP_MEM, 0x4000000);
1534762Snate@binkert.org    tc->setMiscReg(MISCREG_TOP_MEM2, 0x0);
1544762Snate@binkert.org
1554762Snate@binkert.org    tc->setMiscReg(MISCREG_DEBUG_CTL_MSR, 0);
1562287SN/A    tc->setMiscReg(MISCREG_LAST_BRANCH_FROM_IP, 0);
1572287SN/A    tc->setMiscReg(MISCREG_LAST_BRANCH_TO_IP, 0);
1582287SN/A    tc->setMiscReg(MISCREG_LAST_EXCEPTION_FROM_IP, 0);
1591637SN/A    tc->setMiscReg(MISCREG_LAST_EXCEPTION_TO_IP, 0);
1602SN/A
161395SN/A    // Invalidate the caches (this should already be done for us)
1622SN/A
163217SN/A    LocalApicBase lApicBase = 0;
1642SN/A    lApicBase.base = 0xFEE00000 >> 12;
1652SN/A    lApicBase.enable = 1;
1662SN/A    lApicBase.bsp = (cpuId == 0);
167395SN/A    tc->setMiscReg(MISCREG_APIC_BASE, lApicBase);
1682SN/A
169217SN/A    Interrupts * interrupts = dynamic_cast<Interrupts *>(
1702SN/A            tc->getCpuPtr()->getInterruptController());
1712SN/A    assert(interrupts);
172217SN/A
1732SN/A    interrupts->setRegNoEffect(APIC_ID, cpuId << 24);
174502SN/A
1752SN/A    interrupts->setRegNoEffect(APIC_VERSION, (5 << 16) | 0x14);
176217SN/A
177217SN/A    // TODO Set the SMRAM base address (SMBASE) to 0x00030000
178217SN/A
1792SN/A    tc->setMiscReg(MISCREG_VM_CR, 0);
1802SN/A    tc->setMiscReg(MISCREG_IGNNE, 0);
181217SN/A    tc->setMiscReg(MISCREG_SMM_CTL, 0);
182217SN/A    tc->setMiscReg(MISCREG_VM_HSAVE_PA, 0);
183217SN/A}
184237SN/A
185502SN/Avoid startupCPU(ThreadContext *tc, int cpuId)
1862SN/A{
187217SN/A    if (cpuId == 0 || !FullSystem) {
188237SN/A        tc->activate(Cycles(0));
189217SN/A    } else {
190217SN/A        // This is an application processor (AP). It should be initialized to
1912SN/A        // look like only the BIOS POST has run on it and put then put it into
1922SN/A        // a halted state.
193217SN/A        tc->suspend(Cycles(0));
194217SN/A    }
195217SN/A}
196217SN/A
197217SN/Avoid
198217SN/AcopyMiscRegs(ThreadContext *src, ThreadContext *dest)
199217SN/A{
200217SN/A    // This function assumes no side effects other than TLB invalidation
201217SN/A    // need to be considered while copying state. That will likely not be
202217SN/A    // true in the future.
203217SN/A    for (int i = 0; i < NUM_MISCREGS; ++i) {
204217SN/A        if ( ( i != MISCREG_CR1 &&
205217SN/A             !(i > MISCREG_CR4 && i < MISCREG_CR8) &&
206217SN/A             !(i > MISCREG_CR8 && i <= MISCREG_CR15) ) == false) {
207217SN/A             continue;
208217SN/A        }
209217SN/A        dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
210217SN/A    }
211217SN/A
212237SN/A    // The TSC has to be updated with side-effects if the CPUs in a
213217SN/A    // CPU switch have different frequencies.
214217SN/A    dest->setMiscReg(MISCREG_TSC, src->readMiscReg(MISCREG_TSC));
215217SN/A
216237SN/A    dest->getITBPtr()->flushAll();
217217SN/A    dest->getDTBPtr()->flushAll();
218217SN/A}
219217SN/A
220217SN/Avoid
221217SN/AcopyRegs(ThreadContext *src, ThreadContext *dest)
222217SN/A{
223217SN/A    //copy int regs
224217SN/A    for (int i = 0; i < NumIntRegs; ++i)
225217SN/A         dest->setIntReg(i, src->readIntReg(i));
226217SN/A    //copy float regs
227217SN/A    for (int i = 0; i < NumFloatRegs; ++i)
228217SN/A         dest->setFloatRegBits(i, src->readFloatRegBits(i));
229217SN/A    copyMiscRegs(src, dest);
230217SN/A    dest->pcState(src->pcState());
231217SN/A}
232217SN/A
233217SN/Avoid
234217SN/AskipFunction(ThreadContext *tc)
235217SN/A{
236217SN/A    panic("Not implemented for x86\n");
237217SN/A}
238217SN/A
239217SN/Auint64_t
240217SN/AgetRFlags(ThreadContext *tc)
241217SN/A{
242217SN/A    const uint64_t ncc_flags(tc->readMiscRegNoEffect(MISCREG_RFLAGS));
243217SN/A    const uint64_t cc_flags(tc->readIntReg(X86ISA::INTREG_PSEUDO(0)));
244217SN/A    const uint64_t cfof_bits(tc->readIntReg(X86ISA::INTREG_PSEUDO(1)));
245217SN/A    const uint64_t df_bit(tc->readIntReg(X86ISA::INTREG_PSEUDO(2)));
246217SN/A    // ecf (PSEUDO(3)) & ezf (PSEUDO(4)) are only visible to
247217SN/A    // microcode, so we can safely ignore them.
248217SN/A
249217SN/A    // Reconstruct the real rflags state, mask out internal flags, and
250217SN/A    // make sure reserved bits have the expected values.
251217SN/A    return ((ncc_flags | cc_flags | cfof_bits | df_bit) & 0x3F7FD5)
252217SN/A        | 0x2;
253217SN/A}
254217SN/A
255237SN/Avoid
256237SN/AsetRFlags(ThreadContext *tc, uint64_t val)
2574000Ssaidi@eecs.umich.edu{
258237SN/A    tc->setIntReg(X86ISA::INTREG_PSEUDO(0), val & ccFlagMask);
259237SN/A    tc->setIntReg(X86ISA::INTREG_PSEUDO(1), val & cfofMask);
260237SN/A    tc->setIntReg(X86ISA::INTREG_PSEUDO(2), val & DFBit);
261237SN/A
262237SN/A    // Internal microcode registers (ECF & EZF)
263237SN/A    tc->setIntReg(X86ISA::INTREG_PSEUDO(3), 0);
264237SN/A    tc->setIntReg(X86ISA::INTREG_PSEUDO(4), 0);
265221SN/A
266221SN/A    // Update the RFLAGS misc reg with whatever didn't go into the
267237SN/A    // magic registers.
268221SN/A    tc->setMiscReg(MISCREG_RFLAGS, val & ~(ccFlagMask | cfofMask | DFBit));
269237SN/A}
270221SN/A
271221SN/Auint8_t
272221SN/AconvX87TagsToXTags(uint16_t ftw)
273237SN/A{
274221SN/A    uint8_t ftwx(0);
275237SN/A    for (int i = 0; i < 8; ++i) {
276217SN/A        // Extract the tag for the current element on the FP stack
277217SN/A        const unsigned tag((ftw >> (2 * i)) & 0x3);
2781642SN/A
2791642SN/A        /*
2801642SN/A         * Check the type of the current FP element. Valid values are:
2811642SN/A         * 0 == Valid
2821642SN/A         * 1 == Zero
2831642SN/A         * 2 == Special (Nan, unsupported, infinity, denormal)
2841642SN/A         * 3 == Empty
2851642SN/A         */
2861642SN/A        // The xsave version of the tag word only keeps track of
2871642SN/A        // whether the element is empty or not. Set the corresponding
288219SN/A        // bit in the ftwx if it's not empty,
289217SN/A        if (tag != 0x3)
290217SN/A            ftwx |= 1 << i;
291217SN/A    }
292395SN/A
293395SN/A    return ftwx;
294395SN/A}
295395SN/A
296395SN/Auint16_t
2972SN/AconvX87XTagsToTags(uint8_t ftwx)
298395SN/A{
299512SN/A    uint16_t ftw(0);
300510SN/A    for (int i = 0; i < 8; ++i) {
301395SN/A        const unsigned xtag(((ftwx >> i) & 0x1));
302395SN/A
3032SN/A        // The xtag for an x87 stack position is 0 for empty stack positions.
304395SN/A        if (!xtag) {
305395SN/A            // Set the tag word to 3 (empty) for the current element.
3062SN/A            ftw |= 0x3 << (2 * i);
307512SN/A        } else {
308395SN/A            // TODO: We currently assume that non-empty elements are
3092SN/A            // valid (0x0), but we should ideally reconstruct the full
310395SN/A            // state (valid/zero/special).
3112SN/A        }
3122SN/A    }
3132SN/A
314510SN/A    return ftw;
3152SN/A}
316395SN/A
317395SN/Auint16_t
318395SN/AgenX87Tags(uint16_t ftw, uint8_t top, int8_t spm)
319395SN/A{
320395SN/A    const uint8_t new_top((top + spm + 8) % 8);
3212SN/A
3222SN/A    if (spm > 0) {
3232SN/A        // Removing elements from the stack. Flag the elements as empty.
324395SN/A        for (int i = top; i != new_top; i = (i + 1 + 8) % 8)
3252SN/A            ftw |= 0x3 << (2 * i);
326395SN/A    } else if (spm < 0) {
327395SN/A        // Adding elements to the stack. Flag the new elements as
3282SN/A        // valid. We should ideally decode them and "do the right
329395SN/A        // thing".
3302SN/A        for (int i = new_top; i != top; i = (i + 1 + 8) % 8)
3312SN/A            ftw &= ~(0x3 << (2 * i));
3322SN/A    }
3332868Sktlim@umich.edu
3342SN/A    return ftw;
3352868Sktlim@umich.edu}
336449SN/A
337363SN/A} // namespace X86_ISA
338449SN/A