process.cc revision 7087:fb8d5786ff30
1/*
2 * Copyright (c) 2007 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Gabe Black
41 *          Ali Saidi
42 */
43
44#include "arch/x86/isa_traits.hh"
45#include "arch/x86/miscregs.hh"
46#include "arch/x86/process.hh"
47#include "arch/x86/segmentregs.hh"
48#include "arch/x86/types.hh"
49#include "base/loader/object_file.hh"
50#include "base/loader/elf_object.hh"
51#include "base/misc.hh"
52#include "base/trace.hh"
53#include "cpu/thread_context.hh"
54#include "mem/page_table.hh"
55#include "mem/translating_port.hh"
56#include "sim/process_impl.hh"
57#include "sim/syscall_emul.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace X86ISA;
62
63static const int ArgumentReg[] = {
64    INTREG_RDI,
65    INTREG_RSI,
66    INTREG_RDX,
67    //This argument register is r10 for syscalls and rcx for C.
68    INTREG_R10W,
69    //INTREG_RCX,
70    INTREG_R8W,
71    INTREG_R9W
72};
73static const int NumArgumentRegs = sizeof(ArgumentReg) / sizeof(const int);
74static const int ArgumentReg32[] = {
75    INTREG_EBX,
76    INTREG_ECX,
77    INTREG_EDX,
78    INTREG_ESI,
79    INTREG_EDI,
80};
81static const int NumArgumentRegs32 = sizeof(ArgumentReg) / sizeof(const int);
82
83X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
84        SyscallDesc *_syscallDescs, int _numSyscallDescs) :
85    LiveProcess(params, objFile), syscallDescs(_syscallDescs),
86    numSyscallDescs(_numSyscallDescs)
87{
88    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
89    brk_point = roundUp(brk_point, VMPageSize);
90}
91
92X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
93        ObjectFile *objFile, SyscallDesc *_syscallDescs,
94        int _numSyscallDescs) :
95    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
96{
97
98    vsyscallPage.base = 0xffffffffff600000ULL;
99    vsyscallPage.size = VMPageSize;
100    vsyscallPage.vtimeOffset = 0x400;
101    vsyscallPage.vgettimeofdayOffset = 0x410;
102
103    // Set up stack. On X86_64 Linux, stack goes from the top of memory
104    // downward, less the hole for the kernel address space plus one page
105    // for undertermined purposes.
106    stack_base = (Addr)0x7FFFFFFFF000ULL;
107
108    // Set pointer for next thread stack.  Reserve 8M for main stack.
109    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
110
111    // Set up region for mmaps. This was determined empirically and may not
112    // always be correct.
113    mmap_start = mmap_end = (Addr)0x2aaaaaaab000ULL;
114}
115
116void
117I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
118{
119    Addr eip = tc->readPC();
120    if (eip >= vsyscallPage.base &&
121            eip < vsyscallPage.base + vsyscallPage.size) {
122        tc->setNextPC(vsyscallPage.base + vsyscallPage.vsysexitOffset);
123    }
124    X86LiveProcess::syscall(callnum, tc);
125}
126
127
128I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
129        ObjectFile *objFile, SyscallDesc *_syscallDescs,
130        int _numSyscallDescs) :
131    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
132{
133    _gdtStart = ULL(0x100000000);
134    _gdtSize = VMPageSize;
135
136    vsyscallPage.base = 0xffffe000ULL;
137    vsyscallPage.size = VMPageSize;
138    vsyscallPage.vsyscallOffset = 0x400;
139    vsyscallPage.vsysexitOffset = 0x410;
140
141    stack_base = vsyscallPage.base;
142
143    // Set pointer for next thread stack.  Reserve 8M for main stack.
144    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
145
146    // Set up region for mmaps. This was determined empirically and may not
147    // always be correct.
148    mmap_start = mmap_end = (Addr)0xf7ffe000ULL;
149}
150
151SyscallDesc*
152X86LiveProcess::getDesc(int callnum)
153{
154    if (callnum < 0 || callnum >= numSyscallDescs)
155        return NULL;
156    return &syscallDescs[callnum];
157}
158
159void
160X86_64LiveProcess::startup()
161{
162    LiveProcess::startup();
163
164    if (checkpointRestored)
165        return;
166
167    argsInit(sizeof(uint64_t), VMPageSize);
168
169       // Set up the vsyscall page for this process.
170    pTable->allocate(vsyscallPage.base, vsyscallPage.size);
171    uint8_t vtimeBlob[] = {
172        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
173        0x0f,0x05,                             // syscall
174        0xc3                                   // retq
175    };
176    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
177            vtimeBlob, sizeof(vtimeBlob));
178
179    uint8_t vgettimeofdayBlob[] = {
180        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
181        0x0f,0x05,                             // syscall
182        0xc3                                   // retq
183    };
184    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
185            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
186
187    for (int i = 0; i < contextIds.size(); i++) {
188        ThreadContext * tc = system->getThreadContext(contextIds[i]);
189
190        SegAttr dataAttr = 0;
191        dataAttr.dpl = 3;
192        dataAttr.unusable = 0;
193        dataAttr.defaultSize = 1;
194        dataAttr.longMode = 1;
195        dataAttr.avl = 0;
196        dataAttr.granularity = 1;
197        dataAttr.present = 1;
198        dataAttr.type = 3;
199        dataAttr.writable = 1;
200        dataAttr.readable = 1;
201        dataAttr.expandDown = 0;
202        dataAttr.system = 1;
203
204        //Initialize the segment registers.
205        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
206            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
207            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
208            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
209        }
210
211        SegAttr csAttr = 0;
212        csAttr.dpl = 3;
213        csAttr.unusable = 0;
214        csAttr.defaultSize = 0;
215        csAttr.longMode = 1;
216        csAttr.avl = 0;
217        csAttr.granularity = 1;
218        csAttr.present = 1;
219        csAttr.type = 10;
220        csAttr.writable = 0;
221        csAttr.readable = 1;
222        csAttr.expandDown = 0;
223        csAttr.system = 1;
224
225        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
226
227        Efer efer = 0;
228        efer.sce = 1; // Enable system call extensions.
229        efer.lme = 1; // Enable long mode.
230        efer.lma = 1; // Activate long mode.
231        efer.nxe = 1; // Enable nx support.
232        efer.svme = 0; // Disable svm support for now. It isn't implemented.
233        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
234        tc->setMiscReg(MISCREG_EFER, efer);
235
236        //Set up the registers that describe the operating mode.
237        CR0 cr0 = 0;
238        cr0.pg = 1; // Turn on paging.
239        cr0.cd = 0; // Don't disable caching.
240        cr0.nw = 0; // This is bit is defined to be ignored.
241        cr0.am = 0; // No alignment checking
242        cr0.wp = 0; // Supervisor mode can write read only pages
243        cr0.ne = 1;
244        cr0.et = 1; // This should always be 1
245        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
246                    // would be pointless.
247        cr0.em = 0; // Allow x87 instructions to execute natively.
248        cr0.mp = 1; // This doesn't really matter, but the manual suggests
249                    // setting it to one.
250        cr0.pe = 1; // We're definitely in protected mode.
251        tc->setMiscReg(MISCREG_CR0, cr0);
252
253        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
254    }
255}
256
257void
258I386LiveProcess::startup()
259{
260    LiveProcess::startup();
261
262    if (checkpointRestored)
263        return;
264
265    argsInit(sizeof(uint32_t), VMPageSize);
266
267    /*
268     * Set up a GDT for this process. The whole GDT wouldn't really be for
269     * this process, but the only parts we care about are.
270     */
271    pTable->allocate(_gdtStart, _gdtSize);
272    uint64_t zero = 0;
273    assert(_gdtSize % sizeof(zero) == 0);
274    for (Addr gdtCurrent = _gdtStart;
275            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
276        initVirtMem->write(gdtCurrent, zero);
277    }
278
279    // Set up the vsyscall page for this process.
280    pTable->allocate(vsyscallPage.base, vsyscallPage.size);
281    uint8_t vsyscallBlob[] = {
282        0x51,       // push %ecx
283        0x52,       // push %edp
284        0x55,       // push %ebp
285        0x89, 0xe5, // mov %esp, %ebp
286        0x0f, 0x34  // sysenter
287    };
288    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
289            vsyscallBlob, sizeof(vsyscallBlob));
290
291    uint8_t vsysexitBlob[] = {
292        0x5d,       // pop %ebp
293        0x5a,       // pop %edx
294        0x59,       // pop %ecx
295        0xc3        // ret
296    };
297    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
298            vsysexitBlob, sizeof(vsysexitBlob));
299
300    for (int i = 0; i < contextIds.size(); i++) {
301        ThreadContext * tc = system->getThreadContext(contextIds[i]);
302
303        SegAttr dataAttr = 0;
304        dataAttr.dpl = 3;
305        dataAttr.unusable = 0;
306        dataAttr.defaultSize = 1;
307        dataAttr.longMode = 0;
308        dataAttr.avl = 0;
309        dataAttr.granularity = 1;
310        dataAttr.present = 1;
311        dataAttr.type = 3;
312        dataAttr.writable = 1;
313        dataAttr.readable = 1;
314        dataAttr.expandDown = 0;
315        dataAttr.system = 1;
316
317        //Initialize the segment registers.
318        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
319            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
320            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
321            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
322            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
323            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
324        }
325
326        SegAttr csAttr = 0;
327        csAttr.dpl = 3;
328        csAttr.unusable = 0;
329        csAttr.defaultSize = 1;
330        csAttr.longMode = 0;
331        csAttr.avl = 0;
332        csAttr.granularity = 1;
333        csAttr.present = 1;
334        csAttr.type = 0xa;
335        csAttr.writable = 0;
336        csAttr.readable = 1;
337        csAttr.expandDown = 0;
338        csAttr.system = 1;
339
340        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
341
342        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
343        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
344        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
345
346        // Set the LDT selector to 0 to deactivate it.
347        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
348
349        Efer efer = 0;
350        efer.sce = 1; // Enable system call extensions.
351        efer.lme = 1; // Enable long mode.
352        efer.lma = 0; // Deactivate long mode.
353        efer.nxe = 1; // Enable nx support.
354        efer.svme = 0; // Disable svm support for now. It isn't implemented.
355        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
356        tc->setMiscReg(MISCREG_EFER, efer);
357
358        //Set up the registers that describe the operating mode.
359        CR0 cr0 = 0;
360        cr0.pg = 1; // Turn on paging.
361        cr0.cd = 0; // Don't disable caching.
362        cr0.nw = 0; // This is bit is defined to be ignored.
363        cr0.am = 0; // No alignment checking
364        cr0.wp = 0; // Supervisor mode can write read only pages
365        cr0.ne = 1;
366        cr0.et = 1; // This should always be 1
367        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
368                    // would be pointless.
369        cr0.em = 0; // Allow x87 instructions to execute natively.
370        cr0.mp = 1; // This doesn't really matter, but the manual suggests
371                    // setting it to one.
372        cr0.pe = 1; // We're definitely in protected mode.
373        tc->setMiscReg(MISCREG_CR0, cr0);
374
375        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
376    }
377}
378
379template<class IntType>
380void
381X86LiveProcess::argsInit(int pageSize,
382        std::vector<AuxVector<IntType> > extraAuxvs)
383{
384    int intSize = sizeof(IntType);
385
386    typedef AuxVector<IntType> auxv_t;
387    std::vector<auxv_t> auxv = extraAuxvs;
388
389    string filename;
390    if(argv.size() < 1)
391        filename = "";
392    else
393        filename = argv[0];
394
395    //We want 16 byte alignment
396    uint64_t align = 16;
397
398    // load object file into target memory
399    objFile->loadSections(initVirtMem);
400
401    enum X86CpuFeature {
402        X86_OnboardFPU = 1 << 0,
403        X86_VirtualModeExtensions = 1 << 1,
404        X86_DebuggingExtensions = 1 << 2,
405        X86_PageSizeExtensions = 1 << 3,
406
407        X86_TimeStampCounter = 1 << 4,
408        X86_ModelSpecificRegisters = 1 << 5,
409        X86_PhysicalAddressExtensions = 1 << 6,
410        X86_MachineCheckExtensions = 1 << 7,
411
412        X86_CMPXCHG8Instruction = 1 << 8,
413        X86_OnboardAPIC = 1 << 9,
414        X86_SYSENTER_SYSEXIT = 1 << 11,
415
416        X86_MemoryTypeRangeRegisters = 1 << 12,
417        X86_PageGlobalEnable = 1 << 13,
418        X86_MachineCheckArchitecture = 1 << 14,
419        X86_CMOVInstruction = 1 << 15,
420
421        X86_PageAttributeTable = 1 << 16,
422        X86_36BitPSEs = 1 << 17,
423        X86_ProcessorSerialNumber = 1 << 18,
424        X86_CLFLUSHInstruction = 1 << 19,
425
426        X86_DebugTraceStore = 1 << 21,
427        X86_ACPIViaMSR = 1 << 22,
428        X86_MultimediaExtensions = 1 << 23,
429
430        X86_FXSAVE_FXRSTOR = 1 << 24,
431        X86_StreamingSIMDExtensions = 1 << 25,
432        X86_StreamingSIMDExtensions2 = 1 << 26,
433        X86_CPUSelfSnoop = 1 << 27,
434
435        X86_HyperThreading = 1 << 28,
436        X86_AutomaticClockControl = 1 << 29,
437        X86_IA64Processor = 1 << 30
438    };
439
440    //Setup the auxilliary vectors. These will already have endian conversion.
441    //Auxilliary vectors are loaded only for elf formatted executables.
442    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
443    if(elfObject)
444    {
445        uint64_t features =
446            X86_OnboardFPU |
447            X86_VirtualModeExtensions |
448            X86_DebuggingExtensions |
449            X86_PageSizeExtensions |
450            X86_TimeStampCounter |
451            X86_ModelSpecificRegisters |
452            X86_PhysicalAddressExtensions |
453            X86_MachineCheckExtensions |
454            X86_CMPXCHG8Instruction |
455            X86_OnboardAPIC |
456            X86_SYSENTER_SYSEXIT |
457            X86_MemoryTypeRangeRegisters |
458            X86_PageGlobalEnable |
459            X86_MachineCheckArchitecture |
460            X86_CMOVInstruction |
461            X86_PageAttributeTable |
462            X86_36BitPSEs |
463//            X86_ProcessorSerialNumber |
464            X86_CLFLUSHInstruction |
465//            X86_DebugTraceStore |
466//            X86_ACPIViaMSR |
467            X86_MultimediaExtensions |
468            X86_FXSAVE_FXRSTOR |
469            X86_StreamingSIMDExtensions |
470            X86_StreamingSIMDExtensions2 |
471//            X86_CPUSelfSnoop |
472//            X86_HyperThreading |
473//            X86_AutomaticClockControl |
474//            X86_IA64Processor |
475            0;
476
477        //Bits which describe the system hardware capabilities
478        //XXX Figure out what these should be
479        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
480        //The system page size
481        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::VMPageSize));
482        //Frequency at which times() increments
483        //Defined to be 100 in the kernel source.
484        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
485        // For statically linked executables, this is the virtual address of the
486        // program header tables if they appear in the executable image
487        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
488        // This is the size of a program header entry from the elf file.
489        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
490        // This is the number of program headers from the original elf file.
491        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
492        //This is the address of the elf "interpreter", It should be set
493        //to 0 for regular executables. It should be something else
494        //(not sure what) for dynamic libraries.
495        auxv.push_back(auxv_t(M5_AT_BASE, 0));
496
497        //XXX Figure out what this should be.
498        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
499        //The entry point to the program
500        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
501        //Different user and group IDs
502        auxv.push_back(auxv_t(M5_AT_UID, uid()));
503        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
504        auxv.push_back(auxv_t(M5_AT_GID, gid()));
505        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
506        //Whether to enable "secure mode" in the executable
507        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
508        //The address of 16 "random" bytes.
509        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
510        //The name of the program
511        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
512        //The platform string
513        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
514    }
515
516    //Figure out how big the initial stack needs to be
517
518    // A sentry NULL void pointer at the top of the stack.
519    int sentry_size = intSize;
520
521    //This is the name of the file which is present on the initial stack
522    //It's purpose is to let the user space linker examine the original file.
523    int file_name_size = filename.size() + 1;
524
525    const int numRandomBytes = 16;
526    int aux_data_size = numRandomBytes;
527
528    string platform = "x86_64";
529    aux_data_size += platform.size() + 1;
530
531    int env_data_size = 0;
532    for (int i = 0; i < envp.size(); ++i) {
533        env_data_size += envp[i].size() + 1;
534    }
535    int arg_data_size = 0;
536    for (int i = 0; i < argv.size(); ++i) {
537        arg_data_size += argv[i].size() + 1;
538    }
539
540    //The info_block needs to be padded so it's size is a multiple of the
541    //alignment mask. Also, it appears that there needs to be at least some
542    //padding, so if the size is already a multiple, we need to increase it
543    //anyway.
544    int base_info_block_size =
545        sentry_size + file_name_size + env_data_size + arg_data_size;
546
547    int info_block_size = roundUp(base_info_block_size, align);
548
549    int info_block_padding = info_block_size - base_info_block_size;
550
551    //Each auxilliary vector is two 8 byte words
552    int aux_array_size = intSize * 2 * (auxv.size() + 1);
553
554    int envp_array_size = intSize * (envp.size() + 1);
555    int argv_array_size = intSize * (argv.size() + 1);
556
557    int argc_size = intSize;
558
559    //Figure out the size of the contents of the actual initial frame
560    int frame_size =
561        aux_array_size +
562        envp_array_size +
563        argv_array_size +
564        argc_size;
565
566    //There needs to be padding after the auxiliary vector data so that the
567    //very bottom of the stack is aligned properly.
568    int partial_size = frame_size + aux_data_size;
569    int aligned_partial_size = roundUp(partial_size, align);
570    int aux_padding = aligned_partial_size - partial_size;
571
572    int space_needed =
573        info_block_size +
574        aux_data_size +
575        aux_padding +
576        frame_size;
577
578    stack_min = stack_base - space_needed;
579    stack_min = roundDown(stack_min, align);
580    stack_size = stack_base - stack_min;
581
582    // map memory
583    pTable->allocate(roundDown(stack_min, pageSize),
584                     roundUp(stack_size, pageSize));
585
586    // map out initial stack contents
587    IntType sentry_base = stack_base - sentry_size;
588    IntType file_name_base = sentry_base - file_name_size;
589    IntType env_data_base = file_name_base - env_data_size;
590    IntType arg_data_base = env_data_base - arg_data_size;
591    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
592    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
593    IntType envp_array_base = auxv_array_base - envp_array_size;
594    IntType argv_array_base = envp_array_base - argv_array_size;
595    IntType argc_base = argv_array_base - argc_size;
596
597    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
598    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
599    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
600    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
601    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
602    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
603    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
604    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
605    DPRINTF(Stack, "0x%x - argc \n", argc_base);
606    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
607
608    // write contents to stack
609
610    // figure out argc
611    IntType argc = argv.size();
612    IntType guestArgc = X86ISA::htog(argc);
613
614    //Write out the sentry void *
615    IntType sentry_NULL = 0;
616    initVirtMem->writeBlob(sentry_base,
617            (uint8_t*)&sentry_NULL, sentry_size);
618
619    //Write the file name
620    initVirtMem->writeString(file_name_base, filename.c_str());
621
622    //Fix up the aux vectors which point to data
623    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
624    auxv[auxv.size() - 3].a_val = aux_data_base;
625    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
626    auxv[auxv.size() - 2].a_val = argv_array_base;
627    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
628    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
629
630    //Copy the aux stuff
631    for(int x = 0; x < auxv.size(); x++)
632    {
633        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
634                (uint8_t*)&(auxv[x].a_type), intSize);
635        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
636                (uint8_t*)&(auxv[x].a_val), intSize);
637    }
638    //Write out the terminating zeroed auxilliary vector
639    const uint64_t zero = 0;
640    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
641            (uint8_t*)&zero, 2 * intSize);
642
643    initVirtMem->writeString(aux_data_base, platform.c_str());
644
645    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
646    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
647
648    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
649
650    ThreadContext *tc = system->getThreadContext(contextIds[0]);
651    //Set the stack pointer register
652    tc->setIntReg(StackPointerReg, stack_min);
653
654    Addr prog_entry = objFile->entryPoint();
655    // There doesn't need to be any segment base added in since we're dealing
656    // with the flat segmentation model.
657    tc->setPC(prog_entry);
658    tc->setNextPC(prog_entry + sizeof(MachInst));
659
660    //Align the "stack_min" to a page boundary.
661    stack_min = roundDown(stack_min, pageSize);
662
663//    num_processes++;
664}
665
666void
667X86_64LiveProcess::argsInit(int intSize, int pageSize)
668{
669    std::vector<AuxVector<uint64_t> > extraAuxvs;
670    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
671                vsyscallPage.base));
672    X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
673}
674
675void
676I386LiveProcess::argsInit(int intSize, int pageSize)
677{
678    std::vector<AuxVector<uint32_t> > extraAuxvs;
679    //Tell the binary where the vsyscall part of the vsyscall page is.
680    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
681                vsyscallPage.base + vsyscallPage.vsyscallOffset));
682    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
683                vsyscallPage.base));
684    X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
685}
686
687void
688X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn return_value)
689{
690    tc->setIntReg(INTREG_RAX, return_value.value());
691}
692
693X86ISA::IntReg
694X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
695{
696    assert(i < NumArgumentRegs);
697    return tc->readIntReg(ArgumentReg[i++]);
698}
699
700void
701X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
702{
703    assert(i < NumArgumentRegs);
704    return tc->setIntReg(ArgumentReg[i], val);
705}
706
707X86ISA::IntReg
708I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
709{
710    assert(i < NumArgumentRegs32);
711    return tc->readIntReg(ArgumentReg32[i++]);
712}
713
714X86ISA::IntReg
715I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
716{
717    assert(width == 32 || width == 64);
718    assert(i < NumArgumentRegs);
719    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
720    if (width == 64)
721        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
722    return retVal;
723}
724
725void
726I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
727{
728    assert(i < NumArgumentRegs);
729    return tc->setIntReg(ArgumentReg[i], val);
730}
731