process.cc revision 13867:9b10bbcf0543
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/logging.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "params/Process.hh"
64#include "sim/aux_vector.hh"
65#include "sim/process_impl.hh"
66#include "sim/syscall_desc.hh"
67#include "sim/syscall_return.hh"
68#include "sim/system.hh"
69
70using namespace std;
71using namespace X86ISA;
72
73static const int ArgumentReg[] = {
74    INTREG_RDI,
75    INTREG_RSI,
76    INTREG_RDX,
77    // This argument register is r10 for syscalls and rcx for C.
78    INTREG_R10W,
79    // INTREG_RCX,
80    INTREG_R8W,
81    INTREG_R9W
82};
83
84static const int NumArgumentRegs M5_VAR_USED =
85    sizeof(ArgumentReg) / sizeof(const int);
86
87static const int ArgumentReg32[] = {
88    INTREG_EBX,
89    INTREG_ECX,
90    INTREG_EDX,
91    INTREG_ESI,
92    INTREG_EDI,
93    INTREG_EBP
94};
95
96static const int NumArgumentRegs32 M5_VAR_USED =
97    sizeof(ArgumentReg) / sizeof(const int);
98
99template class MultiLevelPageTable<LongModePTE<47, 39>,
100                                   LongModePTE<38, 30>,
101                                   LongModePTE<29, 21>,
102                                   LongModePTE<20, 12> >;
103typedef MultiLevelPageTable<LongModePTE<47, 39>,
104                            LongModePTE<38, 30>,
105                            LongModePTE<29, 21>,
106                            LongModePTE<20, 12> > ArchPageTable;
107
108X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
109                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
110    : Process(params, params->useArchPT ?
111                      static_cast<EmulationPageTable *>(
112                              new ArchPageTable(params->name, params->pid,
113                                                params->system, PageBytes)) :
114                      new EmulationPageTable(params->name, params->pid,
115                                             PageBytes),
116              objFile),
117      syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
118{
119}
120
121void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
122                       Process *p, RegVal flags)
123{
124    Process::clone(old_tc, new_tc, p, flags);
125    X86Process *process = (X86Process*)p;
126    *process = *this;
127}
128
129X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
130                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
131    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
132{
133
134    vsyscallPage.base = 0xffffffffff600000ULL;
135    vsyscallPage.size = PageBytes;
136    vsyscallPage.vtimeOffset = 0x400;
137    vsyscallPage.vgettimeofdayOffset = 0x0;
138
139    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
140                             objFile->bssSize(), PageBytes);
141    Addr stack_base = 0x7FFFFFFFF000ULL;
142    Addr max_stack_size = 8 * 1024 * 1024;
143    Addr next_thread_stack_base = stack_base - max_stack_size;
144    Addr mmap_end = 0x7FFFF7FFF000ULL;
145
146    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
147                                     next_thread_stack_base, mmap_end);
148}
149
150void
151I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
152{
153    TheISA::PCState pc = tc->pcState();
154    Addr eip = pc.pc();
155    if (eip >= vsyscallPage.base &&
156            eip < vsyscallPage.base + vsyscallPage.size) {
157        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
158        tc->pcState(pc);
159    }
160    X86Process::syscall(callnum, tc, fault);
161}
162
163
164I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
165                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
166    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
167{
168    if (kvmInSE)
169        panic("KVM CPU model does not support 32 bit processes");
170
171    _gdtStart = ULL(0xffffd000);
172    _gdtSize = PageBytes;
173
174    vsyscallPage.base = 0xffffe000ULL;
175    vsyscallPage.size = PageBytes;
176    vsyscallPage.vsyscallOffset = 0x400;
177    vsyscallPage.vsysexitOffset = 0x410;
178
179    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
180                             objFile->bssSize(), PageBytes);
181    Addr stack_base = _gdtStart;
182    Addr max_stack_size = 8 * 1024 * 1024;
183    Addr next_thread_stack_base = stack_base - max_stack_size;
184    Addr mmap_end = 0xB7FFF000ULL;
185
186    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
187                                     next_thread_stack_base, mmap_end);
188}
189
190SyscallDesc*
191X86Process::getDesc(int callnum)
192{
193    if (callnum < 0 || callnum >= numSyscallDescs)
194        return NULL;
195    return &syscallDescs[callnum];
196}
197
198void
199X86_64Process::initState()
200{
201    X86Process::initState();
202
203    if (useForClone)
204        return;
205
206    argsInit(PageBytes);
207
208    // Set up the vsyscall page for this process.
209    allocateMem(vsyscallPage.base, vsyscallPage.size);
210    uint8_t vtimeBlob[] = {
211        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
212        0x0f,0x05,                             // syscall
213        0xc3                                   // retq
214    };
215    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
216            vtimeBlob, sizeof(vtimeBlob));
217
218    uint8_t vgettimeofdayBlob[] = {
219        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
220        0x0f,0x05,                             // syscall
221        0xc3                                   // retq
222    };
223    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
224            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
225
226    if (kvmInSE) {
227        PortProxy physProxy = system->physProxy;
228
229        Addr syscallCodePhysAddr = system->allocPhysPages(1);
230        Addr gdtPhysAddr = system->allocPhysPages(1);
231        Addr idtPhysAddr = system->allocPhysPages(1);
232        Addr istPhysAddr = system->allocPhysPages(1);
233        Addr tssPhysAddr = system->allocPhysPages(1);
234        Addr pfHandlerPhysAddr = system->allocPhysPages(1);
235
236        /*
237         * Set up the gdt.
238         */
239        uint8_t numGDTEntries = 0;
240        uint64_t nullDescriptor = 0;
241        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
242                            (uint8_t *)(&nullDescriptor), 8);
243        numGDTEntries++;
244
245        SegDescriptor initDesc = 0;
246        initDesc.type.codeOrData = 0; // code or data type
247        initDesc.type.c = 0;          // conforming
248        initDesc.type.r = 1;          // readable
249        initDesc.dpl = 0;             // privilege
250        initDesc.p = 1;               // present
251        initDesc.l = 1;               // longmode - 64 bit
252        initDesc.d = 0;               // operand size
253        initDesc.s = 1;               // system segment
254        initDesc.limit = 0xFFFFFFFF;
255        initDesc.base = 0;
256
257        //64 bit code segment
258        SegDescriptor csLowPLDesc = initDesc;
259        csLowPLDesc.type.codeOrData = 1;
260        csLowPLDesc.dpl = 0;
261        uint64_t csLowPLDescVal = csLowPLDesc;
262        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
263                            (uint8_t *)(&csLowPLDescVal), 8);
264
265        numGDTEntries++;
266
267        SegSelector csLowPL = 0;
268        csLowPL.si = numGDTEntries - 1;
269        csLowPL.rpl = 0;
270
271        //64 bit data segment
272        SegDescriptor dsLowPLDesc = initDesc;
273        dsLowPLDesc.type.codeOrData = 0;
274        dsLowPLDesc.dpl = 0;
275        uint64_t dsLowPLDescVal = dsLowPLDesc;
276        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
277                            (uint8_t *)(&dsLowPLDescVal), 8);
278
279        numGDTEntries++;
280
281        SegSelector dsLowPL = 0;
282        dsLowPL.si = numGDTEntries - 1;
283        dsLowPL.rpl = 0;
284
285        //64 bit data segment
286        SegDescriptor dsDesc = initDesc;
287        dsDesc.type.codeOrData = 0;
288        dsDesc.dpl = 3;
289        uint64_t dsDescVal = dsDesc;
290        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
291                            (uint8_t *)(&dsDescVal), 8);
292
293        numGDTEntries++;
294
295        SegSelector ds = 0;
296        ds.si = numGDTEntries - 1;
297        ds.rpl = 3;
298
299        //64 bit code segment
300        SegDescriptor csDesc = initDesc;
301        csDesc.type.codeOrData = 1;
302        csDesc.dpl = 3;
303        uint64_t csDescVal = csDesc;
304        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
305                            (uint8_t *)(&csDescVal), 8);
306
307        numGDTEntries++;
308
309        SegSelector cs = 0;
310        cs.si = numGDTEntries - 1;
311        cs.rpl = 3;
312
313        SegSelector scall = 0;
314        scall.si = csLowPL.si;
315        scall.rpl = 0;
316
317        SegSelector sret = 0;
318        sret.si = dsLowPL.si;
319        sret.rpl = 3;
320
321        /* In long mode the TSS has been extended to 16 Bytes */
322        TSSlow TSSDescLow = 0;
323        TSSDescLow.type = 0xB;
324        TSSDescLow.dpl = 0; // Privelege level 0
325        TSSDescLow.p = 1; // Present
326        TSSDescLow.limit = 0xFFFFFFFF;
327        TSSDescLow.base = bits(TSSVirtAddr, 31, 0);
328
329        TSShigh TSSDescHigh = 0;
330        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
331
332        struct TSSDesc {
333            uint64_t low;
334            uint64_t high;
335        } tssDescVal = {TSSDescLow, TSSDescHigh};
336
337        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
338                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
339
340        numGDTEntries++;
341
342        SegSelector tssSel = 0;
343        tssSel.si = numGDTEntries - 1;
344
345        uint64_t tss_base_addr = (TSSDescHigh.base << 32) | TSSDescLow.base;
346        uint64_t tss_limit = TSSDescLow.limit;
347
348        SegAttr tss_attr = 0;
349
350        tss_attr.type = TSSDescLow.type;
351        tss_attr.dpl = TSSDescLow.dpl;
352        tss_attr.present = TSSDescLow.p;
353        tss_attr.granularity = TSSDescLow.g;
354        tss_attr.unusable = 0;
355
356        for (int i = 0; i < contextIds.size(); i++) {
357            ThreadContext * tc = system->getThreadContext(contextIds[i]);
358
359            tc->setMiscReg(MISCREG_CS, cs);
360            tc->setMiscReg(MISCREG_DS, ds);
361            tc->setMiscReg(MISCREG_ES, ds);
362            tc->setMiscReg(MISCREG_FS, ds);
363            tc->setMiscReg(MISCREG_GS, ds);
364            tc->setMiscReg(MISCREG_SS, ds);
365
366            // LDT
367            tc->setMiscReg(MISCREG_TSL, 0);
368            SegAttr tslAttr = 0;
369            tslAttr.present = 1;
370            tslAttr.type = 2;
371            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
372
373            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
374            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
375
376            tc->setMiscReg(MISCREG_TR, tssSel);
377            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
378            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
379            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
380            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
381
382            //Start using longmode segments.
383            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
384            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
385            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
386            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
387            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
388            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
389
390            Efer efer = 0;
391            efer.sce = 1; // Enable system call extensions.
392            efer.lme = 1; // Enable long mode.
393            efer.lma = 1; // Activate long mode.
394            efer.nxe = 0; // Enable nx support.
395            efer.svme = 1; // Enable svm support for now.
396            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
397            tc->setMiscReg(MISCREG_EFER, efer);
398
399            //Set up the registers that describe the operating mode.
400            CR0 cr0 = 0;
401            cr0.pg = 1; // Turn on paging.
402            cr0.cd = 0; // Don't disable caching.
403            cr0.nw = 0; // This is bit is defined to be ignored.
404            cr0.am = 1; // No alignment checking
405            cr0.wp = 1; // Supervisor mode can write read only pages
406            cr0.ne = 1;
407            cr0.et = 1; // This should always be 1
408            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
409                        // would be pointless.
410            cr0.em = 0; // Allow x87 instructions to execute natively.
411            cr0.mp = 1; // This doesn't really matter, but the manual suggests
412                        // setting it to one.
413            cr0.pe = 1; // We're definitely in protected mode.
414            tc->setMiscReg(MISCREG_CR0, cr0);
415
416            CR0 cr2 = 0;
417            tc->setMiscReg(MISCREG_CR2, cr2);
418
419            CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
420            tc->setMiscReg(MISCREG_CR3, cr3);
421
422            CR4 cr4 = 0;
423            //Turn on pae.
424            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
425            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
426            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
427            cr4.pce = 0; // Performance-Monitoring Counter Enable
428            cr4.pge = 0; // Page-Global Enable
429            cr4.mce = 0; // Machine Check Enable
430            cr4.pae = 1; // Physical-Address Extension
431            cr4.pse = 0; // Page Size Extensions
432            cr4.de = 0; // Debugging Extensions
433            cr4.tsd = 0; // Time Stamp Disable
434            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
435            cr4.vme = 0; // Virtual-8086 Mode Extensions
436
437            tc->setMiscReg(MISCREG_CR4, cr4);
438
439            CR4 cr8 = 0;
440            tc->setMiscReg(MISCREG_CR8, cr8);
441
442            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
443
444            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
445
446            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
447            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
448
449            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
450            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
451
452            /* enabling syscall and sysret */
453            RegVal star = ((RegVal)sret << 48) | ((RegVal)scall << 32);
454            tc->setMiscReg(MISCREG_STAR, star);
455            RegVal lstar = (RegVal)syscallCodeVirtAddr;
456            tc->setMiscReg(MISCREG_LSTAR, lstar);
457            RegVal sfmask = (1 << 8) | (1 << 10); // TF | DF
458            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
459        }
460
461        /* Set up the content of the TSS and write it to physical memory. */
462
463        struct {
464            uint32_t reserved0;        // +00h
465            uint32_t RSP0_low;         // +04h
466            uint32_t RSP0_high;        // +08h
467            uint32_t RSP1_low;         // +0Ch
468            uint32_t RSP1_high;        // +10h
469            uint32_t RSP2_low;         // +14h
470            uint32_t RSP2_high;        // +18h
471            uint32_t reserved1;        // +1Ch
472            uint32_t reserved2;        // +20h
473            uint32_t IST1_low;         // +24h
474            uint32_t IST1_high;        // +28h
475            uint32_t IST2_low;         // +2Ch
476            uint32_t IST2_high;        // +30h
477            uint32_t IST3_low;         // +34h
478            uint32_t IST3_high;        // +38h
479            uint32_t IST4_low;         // +3Ch
480            uint32_t IST4_high;        // +40h
481            uint32_t IST5_low;         // +44h
482            uint32_t IST5_high;        // +48h
483            uint32_t IST6_low;         // +4Ch
484            uint32_t IST6_high;        // +50h
485            uint32_t IST7_low;         // +54h
486            uint32_t IST7_high;        // +58h
487            uint32_t reserved3;        // +5Ch
488            uint32_t reserved4;        // +60h
489            uint16_t reserved5;        // +64h
490            uint16_t IO_MapBase;       // +66h
491        } tss;
492
493        /** setting Interrupt Stack Table */
494        uint64_t IST_start = ISTVirtAddr + PageBytes;
495        tss.IST1_low  = IST_start;
496        tss.IST1_high = IST_start >> 32;
497        tss.RSP0_low  = tss.IST1_low;
498        tss.RSP0_high = tss.IST1_high;
499        tss.RSP1_low  = tss.IST1_low;
500        tss.RSP1_high = tss.IST1_high;
501        tss.RSP2_low  = tss.IST1_low;
502        tss.RSP2_high = tss.IST1_high;
503        physProxy.writeBlob(tssPhysAddr, (uint8_t *)(&tss), sizeof(tss));
504
505        /* Setting IDT gates */
506        GateDescriptorLow PFGateLow = 0;
507        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
508        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
509        PFGateLow.selector = csLowPL;
510        PFGateLow.p = 1;
511        PFGateLow.dpl = 0;
512        PFGateLow.type = 0xe;      // gate interrupt type
513        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
514
515        GateDescriptorHigh PFGateHigh = 0;
516        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
517
518        struct {
519            uint64_t low;
520            uint64_t high;
521        } PFGate = {PFGateLow, PFGateHigh};
522
523        physProxy.writeBlob(idtPhysAddr + 0xE0,
524                            (uint8_t *)(&PFGate), sizeof(PFGate));
525
526        /* System call handler */
527        uint8_t syscallBlob[] = {
528            // mov    %rax, (0xffffc90000005600)
529            0x48, 0xa3, 0x00, 0x60, 0x00,
530            0x00, 0x00, 0xc9, 0xff, 0xff,
531            // sysret
532            0x48, 0x0f, 0x07
533        };
534
535        physProxy.writeBlob(syscallCodePhysAddr,
536                            syscallBlob, sizeof(syscallBlob));
537
538        /** Page fault handler */
539        uint8_t faultBlob[] = {
540            // mov    %rax, (0xffffc90000005700)
541            0x48, 0xa3, 0x00, 0x61, 0x00,
542            0x00, 0x00, 0xc9, 0xff, 0xff,
543            // add    $0x8, %rsp # skip error
544            0x48, 0x83, 0xc4, 0x08,
545            // iretq
546            0x48, 0xcf
547        };
548
549        physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
550
551        /* Syscall handler */
552        pTable->map(syscallCodeVirtAddr, syscallCodePhysAddr,
553                    PageBytes, false);
554        /* GDT */
555        pTable->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
556        /* IDT */
557        pTable->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
558        /* TSS */
559        pTable->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
560        /* IST */
561        pTable->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
562        /* PF handler */
563        pTable->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
564        /* MMIO region for m5ops */
565        pTable->map(MMIORegionVirtAddr, MMIORegionPhysAddr,
566                    16 * PageBytes, false);
567    } else {
568        for (int i = 0; i < contextIds.size(); i++) {
569            ThreadContext * tc = system->getThreadContext(contextIds[i]);
570
571            SegAttr dataAttr = 0;
572            dataAttr.dpl = 3;
573            dataAttr.unusable = 0;
574            dataAttr.defaultSize = 1;
575            dataAttr.longMode = 1;
576            dataAttr.avl = 0;
577            dataAttr.granularity = 1;
578            dataAttr.present = 1;
579            dataAttr.type = 3;
580            dataAttr.writable = 1;
581            dataAttr.readable = 1;
582            dataAttr.expandDown = 0;
583            dataAttr.system = 1;
584
585            // Initialize the segment registers.
586            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
587                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
588                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
589                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
590            }
591
592            SegAttr csAttr = 0;
593            csAttr.dpl = 3;
594            csAttr.unusable = 0;
595            csAttr.defaultSize = 0;
596            csAttr.longMode = 1;
597            csAttr.avl = 0;
598            csAttr.granularity = 1;
599            csAttr.present = 1;
600            csAttr.type = 10;
601            csAttr.writable = 0;
602            csAttr.readable = 1;
603            csAttr.expandDown = 0;
604            csAttr.system = 1;
605
606            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
607
608            Efer efer = 0;
609            efer.sce = 1; // Enable system call extensions.
610            efer.lme = 1; // Enable long mode.
611            efer.lma = 1; // Activate long mode.
612            efer.nxe = 1; // Enable nx support.
613            efer.svme = 0; // Disable svm support for now. It isn't implemented.
614            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
615            tc->setMiscReg(MISCREG_EFER, efer);
616
617            // Set up the registers that describe the operating mode.
618            CR0 cr0 = 0;
619            cr0.pg = 1; // Turn on paging.
620            cr0.cd = 0; // Don't disable caching.
621            cr0.nw = 0; // This is bit is defined to be ignored.
622            cr0.am = 0; // No alignment checking
623            cr0.wp = 0; // Supervisor mode can write read only pages
624            cr0.ne = 1;
625            cr0.et = 1; // This should always be 1
626            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
627                        // would be pointless.
628            cr0.em = 0; // Allow x87 instructions to execute natively.
629            cr0.mp = 1; // This doesn't really matter, but the manual suggests
630                        // setting it to one.
631            cr0.pe = 1; // We're definitely in protected mode.
632            tc->setMiscReg(MISCREG_CR0, cr0);
633
634            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
635        }
636    }
637}
638
639void
640I386Process::initState()
641{
642    X86Process::initState();
643
644    argsInit(PageBytes);
645
646    /*
647     * Set up a GDT for this process. The whole GDT wouldn't really be for
648     * this process, but the only parts we care about are.
649     */
650    allocateMem(_gdtStart, _gdtSize);
651    uint64_t zero = 0;
652    assert(_gdtSize % sizeof(zero) == 0);
653    for (Addr gdtCurrent = _gdtStart;
654            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
655        initVirtMem.write(gdtCurrent, zero);
656    }
657
658    // Set up the vsyscall page for this process.
659    allocateMem(vsyscallPage.base, vsyscallPage.size);
660    uint8_t vsyscallBlob[] = {
661        0x51,       // push %ecx
662        0x52,       // push %edp
663        0x55,       // push %ebp
664        0x89, 0xe5, // mov %esp, %ebp
665        0x0f, 0x34  // sysenter
666    };
667    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
668            vsyscallBlob, sizeof(vsyscallBlob));
669
670    uint8_t vsysexitBlob[] = {
671        0x5d,       // pop %ebp
672        0x5a,       // pop %edx
673        0x59,       // pop %ecx
674        0xc3        // ret
675    };
676    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
677            vsysexitBlob, sizeof(vsysexitBlob));
678
679    for (int i = 0; i < contextIds.size(); i++) {
680        ThreadContext * tc = system->getThreadContext(contextIds[i]);
681
682        SegAttr dataAttr = 0;
683        dataAttr.dpl = 3;
684        dataAttr.unusable = 0;
685        dataAttr.defaultSize = 1;
686        dataAttr.longMode = 0;
687        dataAttr.avl = 0;
688        dataAttr.granularity = 1;
689        dataAttr.present = 1;
690        dataAttr.type = 3;
691        dataAttr.writable = 1;
692        dataAttr.readable = 1;
693        dataAttr.expandDown = 0;
694        dataAttr.system = 1;
695
696        // Initialize the segment registers.
697        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
698            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
699            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
700            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
701            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
702            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
703        }
704
705        SegAttr csAttr = 0;
706        csAttr.dpl = 3;
707        csAttr.unusable = 0;
708        csAttr.defaultSize = 1;
709        csAttr.longMode = 0;
710        csAttr.avl = 0;
711        csAttr.granularity = 1;
712        csAttr.present = 1;
713        csAttr.type = 0xa;
714        csAttr.writable = 0;
715        csAttr.readable = 1;
716        csAttr.expandDown = 0;
717        csAttr.system = 1;
718
719        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
720
721        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
722        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
723        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
724
725        // Set the LDT selector to 0 to deactivate it.
726        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
727
728        Efer efer = 0;
729        efer.sce = 1; // Enable system call extensions.
730        efer.lme = 1; // Enable long mode.
731        efer.lma = 0; // Deactivate long mode.
732        efer.nxe = 1; // Enable nx support.
733        efer.svme = 0; // Disable svm support for now. It isn't implemented.
734        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
735        tc->setMiscReg(MISCREG_EFER, efer);
736
737        // Set up the registers that describe the operating mode.
738        CR0 cr0 = 0;
739        cr0.pg = 1; // Turn on paging.
740        cr0.cd = 0; // Don't disable caching.
741        cr0.nw = 0; // This is bit is defined to be ignored.
742        cr0.am = 0; // No alignment checking
743        cr0.wp = 0; // Supervisor mode can write read only pages
744        cr0.ne = 1;
745        cr0.et = 1; // This should always be 1
746        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
747                    // would be pointless.
748        cr0.em = 0; // Allow x87 instructions to execute natively.
749        cr0.mp = 1; // This doesn't really matter, but the manual suggests
750                    // setting it to one.
751        cr0.pe = 1; // We're definitely in protected mode.
752        tc->setMiscReg(MISCREG_CR0, cr0);
753
754        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
755    }
756}
757
758template<class IntType>
759void
760X86Process::argsInit(int pageSize,
761                     std::vector<AuxVector<IntType> > extraAuxvs)
762{
763    int intSize = sizeof(IntType);
764
765    typedef AuxVector<IntType> auxv_t;
766    std::vector<auxv_t> auxv = extraAuxvs;
767
768    string filename;
769    if (argv.size() < 1)
770        filename = "";
771    else
772        filename = argv[0];
773
774    // We want 16 byte alignment
775    uint64_t align = 16;
776
777    // Patch the ld_bias for dynamic executables.
778    updateBias();
779
780    // load object file into target memory
781    objFile->loadSections(initVirtMem);
782
783    enum X86CpuFeature {
784        X86_OnboardFPU = 1 << 0,
785        X86_VirtualModeExtensions = 1 << 1,
786        X86_DebuggingExtensions = 1 << 2,
787        X86_PageSizeExtensions = 1 << 3,
788
789        X86_TimeStampCounter = 1 << 4,
790        X86_ModelSpecificRegisters = 1 << 5,
791        X86_PhysicalAddressExtensions = 1 << 6,
792        X86_MachineCheckExtensions = 1 << 7,
793
794        X86_CMPXCHG8Instruction = 1 << 8,
795        X86_OnboardAPIC = 1 << 9,
796        X86_SYSENTER_SYSEXIT = 1 << 11,
797
798        X86_MemoryTypeRangeRegisters = 1 << 12,
799        X86_PageGlobalEnable = 1 << 13,
800        X86_MachineCheckArchitecture = 1 << 14,
801        X86_CMOVInstruction = 1 << 15,
802
803        X86_PageAttributeTable = 1 << 16,
804        X86_36BitPSEs = 1 << 17,
805        X86_ProcessorSerialNumber = 1 << 18,
806        X86_CLFLUSHInstruction = 1 << 19,
807
808        X86_DebugTraceStore = 1 << 21,
809        X86_ACPIViaMSR = 1 << 22,
810        X86_MultimediaExtensions = 1 << 23,
811
812        X86_FXSAVE_FXRSTOR = 1 << 24,
813        X86_StreamingSIMDExtensions = 1 << 25,
814        X86_StreamingSIMDExtensions2 = 1 << 26,
815        X86_CPUSelfSnoop = 1 << 27,
816
817        X86_HyperThreading = 1 << 28,
818        X86_AutomaticClockControl = 1 << 29,
819        X86_IA64Processor = 1 << 30
820    };
821
822    // Setup the auxiliary vectors. These will already have endian
823    // conversion. Auxiliary vectors are loaded only for elf formatted
824    // executables; the auxv is responsible for passing information from
825    // the OS to the interpreter.
826    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
827    if (elfObject) {
828        uint64_t features =
829            X86_OnboardFPU |
830            X86_VirtualModeExtensions |
831            X86_DebuggingExtensions |
832            X86_PageSizeExtensions |
833            X86_TimeStampCounter |
834            X86_ModelSpecificRegisters |
835            X86_PhysicalAddressExtensions |
836            X86_MachineCheckExtensions |
837            X86_CMPXCHG8Instruction |
838            X86_OnboardAPIC |
839            X86_SYSENTER_SYSEXIT |
840            X86_MemoryTypeRangeRegisters |
841            X86_PageGlobalEnable |
842            X86_MachineCheckArchitecture |
843            X86_CMOVInstruction |
844            X86_PageAttributeTable |
845            X86_36BitPSEs |
846//            X86_ProcessorSerialNumber |
847            X86_CLFLUSHInstruction |
848//            X86_DebugTraceStore |
849//            X86_ACPIViaMSR |
850            X86_MultimediaExtensions |
851            X86_FXSAVE_FXRSTOR |
852            X86_StreamingSIMDExtensions |
853            X86_StreamingSIMDExtensions2 |
854//            X86_CPUSelfSnoop |
855//            X86_HyperThreading |
856//            X86_AutomaticClockControl |
857//            X86_IA64Processor |
858            0;
859
860        // Bits which describe the system hardware capabilities
861        // XXX Figure out what these should be
862        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
863        // The system page size
864        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
865        // Frequency at which times() increments
866        // Defined to be 100 in the kernel source.
867        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
868        // This is the virtual address of the program header tables if they
869        // appear in the executable image.
870        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
871        // This is the size of a program header entry from the elf file.
872        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
873        // This is the number of program headers from the original elf file.
874        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
875        // This is the base address of the ELF interpreter; it should be
876        // zero for static executables or contain the base address for
877        // dynamic executables.
878        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
879        // XXX Figure out what this should be.
880        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
881        // The entry point to the program
882        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
883        // Different user and group IDs
884        auxv.push_back(auxv_t(M5_AT_UID, uid()));
885        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
886        auxv.push_back(auxv_t(M5_AT_GID, gid()));
887        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
888        // Whether to enable "secure mode" in the executable
889        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
890        // The address of 16 "random" bytes.
891        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
892        // The name of the program
893        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
894        // The platform string
895        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
896    }
897
898    // Figure out how big the initial stack needs to be
899
900    // A sentry NULL void pointer at the top of the stack.
901    int sentry_size = intSize;
902
903    // This is the name of the file which is present on the initial stack
904    // It's purpose is to let the user space linker examine the original file.
905    int file_name_size = filename.size() + 1;
906
907    const int numRandomBytes = 16;
908    int aux_data_size = numRandomBytes;
909
910    string platform = "x86_64";
911    aux_data_size += platform.size() + 1;
912
913    int env_data_size = 0;
914    for (int i = 0; i < envp.size(); ++i)
915        env_data_size += envp[i].size() + 1;
916    int arg_data_size = 0;
917    for (int i = 0; i < argv.size(); ++i)
918        arg_data_size += argv[i].size() + 1;
919
920    // The info_block needs to be padded so its size is a multiple of the
921    // alignment mask. Also, it appears that there needs to be at least some
922    // padding, so if the size is already a multiple, we need to increase it
923    // anyway.
924    int base_info_block_size =
925        sentry_size + file_name_size + env_data_size + arg_data_size;
926
927    int info_block_size = roundUp(base_info_block_size, align);
928
929    int info_block_padding = info_block_size - base_info_block_size;
930
931    // Each auxiliary vector is two 8 byte words
932    int aux_array_size = intSize * 2 * (auxv.size() + 1);
933
934    int envp_array_size = intSize * (envp.size() + 1);
935    int argv_array_size = intSize * (argv.size() + 1);
936
937    int argc_size = intSize;
938
939    // Figure out the size of the contents of the actual initial frame
940    int frame_size =
941        aux_array_size +
942        envp_array_size +
943        argv_array_size +
944        argc_size;
945
946    // There needs to be padding after the auxiliary vector data so that the
947    // very bottom of the stack is aligned properly.
948    int partial_size = frame_size + aux_data_size;
949    int aligned_partial_size = roundUp(partial_size, align);
950    int aux_padding = aligned_partial_size - partial_size;
951
952    int space_needed =
953        info_block_size +
954        aux_data_size +
955        aux_padding +
956        frame_size;
957
958    Addr stack_base = memState->getStackBase();
959
960    Addr stack_min = stack_base - space_needed;
961    stack_min = roundDown(stack_min, align);
962
963    unsigned stack_size = stack_base - stack_min;
964    stack_size = roundUp(stack_size, pageSize);
965    memState->setStackSize(stack_size);
966
967    // map memory
968    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
969
970    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
971    allocateMem(stack_end, stack_size);
972
973    // map out initial stack contents
974    IntType sentry_base = stack_base - sentry_size;
975    IntType file_name_base = sentry_base - file_name_size;
976    IntType env_data_base = file_name_base - env_data_size;
977    IntType arg_data_base = env_data_base - arg_data_size;
978    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
979    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
980    IntType envp_array_base = auxv_array_base - envp_array_size;
981    IntType argv_array_base = envp_array_base - argv_array_size;
982    IntType argc_base = argv_array_base - argc_size;
983
984    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
985    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
986    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
987    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
988    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
989    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
990    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
991    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
992    DPRINTF(Stack, "0x%x - argc \n", argc_base);
993    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
994
995    // write contents to stack
996
997    // figure out argc
998    IntType argc = argv.size();
999    IntType guestArgc = X86ISA::htog(argc);
1000
1001    // Write out the sentry void *
1002    IntType sentry_NULL = 0;
1003    initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
1004
1005    // Write the file name
1006    initVirtMem.writeString(file_name_base, filename.c_str());
1007
1008    // Fix up the aux vectors which point to data
1009    assert(auxv[auxv.size() - 3].getHostAuxType() == M5_AT_RANDOM);
1010    auxv[auxv.size() - 3].setAuxVal(aux_data_base);
1011    assert(auxv[auxv.size() - 2].getHostAuxType() == M5_AT_EXECFN);
1012    auxv[auxv.size() - 2].setAuxVal(argv_array_base);
1013    assert(auxv[auxv.size() - 1].getHostAuxType() == M5_AT_PLATFORM);
1014    auxv[auxv.size() - 1].setAuxVal(aux_data_base + numRandomBytes);
1015
1016
1017    // Copy the aux stuff
1018    for (int x = 0; x < auxv.size(); x++) {
1019        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1020                              (uint8_t*)&(auxv[x].getAuxType()),
1021                              intSize);
1022        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1023                              (uint8_t*)&(auxv[x].getAuxVal()),
1024                              intSize);
1025    }
1026    // Write out the terminating zeroed auxiliary vector
1027    const uint64_t zero = 0;
1028    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1029                          (uint8_t*)&zero, intSize);
1030    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1031                          (uint8_t*)&zero, intSize);
1032
1033    initVirtMem.writeString(aux_data_base, platform.c_str());
1034
1035    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1036    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1037
1038    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1039
1040    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1041    // Set the stack pointer register
1042    tc->setIntReg(StackPointerReg, stack_min);
1043
1044    // There doesn't need to be any segment base added in since we're dealing
1045    // with the flat segmentation model.
1046    tc->pcState(getStartPC());
1047
1048    // Align the "stack_min" to a page boundary.
1049    memState->setStackMin(roundDown(stack_min, pageSize));
1050}
1051
1052void
1053X86_64Process::argsInit(int pageSize)
1054{
1055    std::vector<AuxVector<uint64_t> > extraAuxvs;
1056    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1057                vsyscallPage.base));
1058    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1059}
1060
1061void
1062I386Process::argsInit(int pageSize)
1063{
1064    std::vector<AuxVector<uint32_t> > extraAuxvs;
1065    //Tell the binary where the vsyscall part of the vsyscall page is.
1066    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1067                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1068    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1069                vsyscallPage.base));
1070    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1071}
1072
1073void
1074X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1075{
1076    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1077}
1078
1079RegVal
1080X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1081{
1082    assert(i < NumArgumentRegs);
1083    return tc->readIntReg(ArgumentReg[i++]);
1084}
1085
1086void
1087X86_64Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
1088{
1089    assert(i < NumArgumentRegs);
1090    return tc->setIntReg(ArgumentReg[i], val);
1091}
1092
1093void
1094X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1095                     Process *p, RegVal flags)
1096{
1097    X86Process::clone(old_tc, new_tc, p, flags);
1098    ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1099}
1100
1101RegVal
1102I386Process::getSyscallArg(ThreadContext *tc, int &i)
1103{
1104    assert(i < NumArgumentRegs32);
1105    return tc->readIntReg(ArgumentReg32[i++]);
1106}
1107
1108RegVal
1109I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1110{
1111    assert(width == 32 || width == 64);
1112    assert(i < NumArgumentRegs);
1113    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1114    if (width == 64)
1115        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1116    return retVal;
1117}
1118
1119void
1120I386Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
1121{
1122    assert(i < NumArgumentRegs);
1123    return tc->setIntReg(ArgumentReg[i], val);
1124}
1125
1126void
1127I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1128                   Process *p, RegVal flags)
1129{
1130    X86Process::clone(old_tc, new_tc, p, flags);
1131    ((I386Process*)p)->vsyscallPage = vsyscallPage;
1132}
1133