process.cc revision 12432:2480d8b432f5
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/logging.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "params/Process.hh"
64#include "sim/aux_vector.hh"
65#include "sim/process_impl.hh"
66#include "sim/syscall_desc.hh"
67#include "sim/syscall_return.hh"
68#include "sim/system.hh"
69
70using namespace std;
71using namespace X86ISA;
72
73static const int ArgumentReg[] = {
74    INTREG_RDI,
75    INTREG_RSI,
76    INTREG_RDX,
77    // This argument register is r10 for syscalls and rcx for C.
78    INTREG_R10W,
79    // INTREG_RCX,
80    INTREG_R8W,
81    INTREG_R9W
82};
83
84static const int NumArgumentRegs M5_VAR_USED =
85    sizeof(ArgumentReg) / sizeof(const int);
86
87static const int ArgumentReg32[] = {
88    INTREG_EBX,
89    INTREG_ECX,
90    INTREG_EDX,
91    INTREG_ESI,
92    INTREG_EDI,
93    INTREG_EBP
94};
95
96static const int NumArgumentRegs32 M5_VAR_USED =
97    sizeof(ArgumentReg) / sizeof(const int);
98
99X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
100                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
101    : Process(params, params->useArchPT ?
102                      static_cast<PageTableBase *>(
103                              new ArchPageTable(params->name, params->pid,
104                                                params->system, PageBytes)) :
105                      static_cast<PageTableBase *>(
106                              new FuncPageTable(params->name, params->pid,
107                                                PageBytes)),
108              objFile),
109      syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
110{
111}
112
113void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
114                       Process *p, TheISA::IntReg flags)
115{
116    Process::clone(old_tc, new_tc, p, flags);
117    X86Process *process = (X86Process*)p;
118    *process = *this;
119}
120
121X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
122                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
123    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
124{
125
126    vsyscallPage.base = 0xffffffffff600000ULL;
127    vsyscallPage.size = PageBytes;
128    vsyscallPage.vtimeOffset = 0x400;
129    vsyscallPage.vgettimeofdayOffset = 0x0;
130
131    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
132                             objFile->bssSize(), PageBytes);
133    Addr stack_base = 0x7FFFFFFFF000ULL;
134    Addr max_stack_size = 8 * 1024 * 1024;
135    Addr next_thread_stack_base = stack_base - max_stack_size;
136    Addr mmap_end = 0x7FFFF7FFF000ULL;
137
138    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
139                                     next_thread_stack_base, mmap_end);
140}
141
142void
143I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
144{
145    TheISA::PCState pc = tc->pcState();
146    Addr eip = pc.pc();
147    if (eip >= vsyscallPage.base &&
148            eip < vsyscallPage.base + vsyscallPage.size) {
149        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
150        tc->pcState(pc);
151    }
152    X86Process::syscall(callnum, tc, fault);
153}
154
155
156I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
157                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
158    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
159{
160    _gdtStart = ULL(0xffffd000);
161    _gdtSize = PageBytes;
162
163    vsyscallPage.base = 0xffffe000ULL;
164    vsyscallPage.size = PageBytes;
165    vsyscallPage.vsyscallOffset = 0x400;
166    vsyscallPage.vsysexitOffset = 0x410;
167
168    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
169                             objFile->bssSize(), PageBytes);
170    Addr stack_base = _gdtStart;
171    Addr max_stack_size = 8 * 1024 * 1024;
172    Addr next_thread_stack_base = stack_base - max_stack_size;
173    Addr mmap_end = 0xB7FFF000ULL;
174
175    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
176                                     next_thread_stack_base, mmap_end);
177}
178
179SyscallDesc*
180X86Process::getDesc(int callnum)
181{
182    if (callnum < 0 || callnum >= numSyscallDescs)
183        return NULL;
184    return &syscallDescs[callnum];
185}
186
187void
188X86_64Process::initState()
189{
190    X86Process::initState();
191
192    argsInit(PageBytes);
193
194    // Set up the vsyscall page for this process.
195    allocateMem(vsyscallPage.base, vsyscallPage.size);
196    uint8_t vtimeBlob[] = {
197        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
198        0x0f,0x05,                             // syscall
199        0xc3                                   // retq
200    };
201    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
202            vtimeBlob, sizeof(vtimeBlob));
203
204    uint8_t vgettimeofdayBlob[] = {
205        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
206        0x0f,0x05,                             // syscall
207        0xc3                                   // retq
208    };
209    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
210            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
211
212    if (kvmInSE) {
213        PortProxy physProxy = system->physProxy;
214
215        /*
216         * Set up the gdt.
217         */
218        uint8_t numGDTEntries = 0;
219        uint64_t nullDescriptor = 0;
220        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
221                            (uint8_t *)(&nullDescriptor), 8);
222        numGDTEntries++;
223
224        SegDescriptor initDesc = 0;
225        initDesc.type.codeOrData = 0; // code or data type
226        initDesc.type.c = 0;          // conforming
227        initDesc.type.r = 1;          // readable
228        initDesc.dpl = 0;             // privilege
229        initDesc.p = 1;               // present
230        initDesc.l = 1;               // longmode - 64 bit
231        initDesc.d = 0;               // operand size
232        initDesc.g = 1;               // granularity
233        initDesc.s = 1;               // system segment
234        initDesc.limitHigh = 0xFFFF;
235        initDesc.limitLow = 0xF;
236        initDesc.baseHigh = 0x0;
237        initDesc.baseLow = 0x0;
238
239        //64 bit code segment
240        SegDescriptor csLowPLDesc = initDesc;
241        csLowPLDesc.type.codeOrData = 1;
242        csLowPLDesc.dpl = 0;
243        uint64_t csLowPLDescVal = csLowPLDesc;
244        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
245                            (uint8_t *)(&csLowPLDescVal), 8);
246
247        numGDTEntries++;
248
249        SegSelector csLowPL = 0;
250        csLowPL.si = numGDTEntries - 1;
251        csLowPL.rpl = 0;
252
253        //64 bit data segment
254        SegDescriptor dsLowPLDesc = initDesc;
255        dsLowPLDesc.type.codeOrData = 0;
256        dsLowPLDesc.dpl = 0;
257        uint64_t dsLowPLDescVal = dsLowPLDesc;
258        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
259                            (uint8_t *)(&dsLowPLDescVal), 8);
260
261        numGDTEntries++;
262
263        SegSelector dsLowPL = 0;
264        dsLowPL.si = numGDTEntries - 1;
265        dsLowPL.rpl = 0;
266
267        //64 bit data segment
268        SegDescriptor dsDesc = initDesc;
269        dsDesc.type.codeOrData = 0;
270        dsDesc.dpl = 3;
271        uint64_t dsDescVal = dsDesc;
272        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
273                            (uint8_t *)(&dsDescVal), 8);
274
275        numGDTEntries++;
276
277        SegSelector ds = 0;
278        ds.si = numGDTEntries - 1;
279        ds.rpl = 3;
280
281        //64 bit code segment
282        SegDescriptor csDesc = initDesc;
283        csDesc.type.codeOrData = 1;
284        csDesc.dpl = 3;
285        uint64_t csDescVal = csDesc;
286        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
287                            (uint8_t *)(&csDescVal), 8);
288
289        numGDTEntries++;
290
291        SegSelector cs = 0;
292        cs.si = numGDTEntries - 1;
293        cs.rpl = 3;
294
295        SegSelector scall = 0;
296        scall.si = csLowPL.si;
297        scall.rpl = 0;
298
299        SegSelector sret = 0;
300        sret.si = dsLowPL.si;
301        sret.rpl = 3;
302
303        /* In long mode the TSS has been extended to 16 Bytes */
304        TSSlow TSSDescLow = 0;
305        TSSDescLow.type = 0xB;
306        TSSDescLow.dpl = 0; // Privelege level 0
307        TSSDescLow.p = 1; // Present
308        TSSDescLow.g = 1; // Page granularity
309        TSSDescLow.limitHigh = 0xF;
310        TSSDescLow.limitLow = 0xFFFF;
311        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
312        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
313
314        TSShigh TSSDescHigh = 0;
315        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
316
317        struct TSSDesc {
318            uint64_t low;
319            uint64_t high;
320        } tssDescVal = {TSSDescLow, TSSDescHigh};
321
322        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
323                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
324
325        numGDTEntries++;
326
327        SegSelector tssSel = 0;
328        tssSel.si = numGDTEntries - 1;
329
330        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
331                                 (TSSDescLow.baseHigh << 24) |
332                                  TSSDescLow.baseLow;
333        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
334
335        SegAttr tss_attr = 0;
336
337        tss_attr.type = TSSDescLow.type;
338        tss_attr.dpl = TSSDescLow.dpl;
339        tss_attr.present = TSSDescLow.p;
340        tss_attr.granularity = TSSDescLow.g;
341        tss_attr.unusable = 0;
342
343        for (int i = 0; i < contextIds.size(); i++) {
344            ThreadContext * tc = system->getThreadContext(contextIds[i]);
345
346            tc->setMiscReg(MISCREG_CS, cs);
347            tc->setMiscReg(MISCREG_DS, ds);
348            tc->setMiscReg(MISCREG_ES, ds);
349            tc->setMiscReg(MISCREG_FS, ds);
350            tc->setMiscReg(MISCREG_GS, ds);
351            tc->setMiscReg(MISCREG_SS, ds);
352
353            // LDT
354            tc->setMiscReg(MISCREG_TSL, 0);
355            SegAttr tslAttr = 0;
356            tslAttr.present = 1;
357            tslAttr.type = 2;
358            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
359
360            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
361            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
362
363            tc->setMiscReg(MISCREG_TR, tssSel);
364            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
365            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
366            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
367            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
368
369            //Start using longmode segments.
370            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
371            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
372            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
373            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
374            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
375            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
376
377            Efer efer = 0;
378            efer.sce = 1; // Enable system call extensions.
379            efer.lme = 1; // Enable long mode.
380            efer.lma = 1; // Activate long mode.
381            efer.nxe = 0; // Enable nx support.
382            efer.svme = 1; // Enable svm support for now.
383            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
384            tc->setMiscReg(MISCREG_EFER, efer);
385
386            //Set up the registers that describe the operating mode.
387            CR0 cr0 = 0;
388            cr0.pg = 1; // Turn on paging.
389            cr0.cd = 0; // Don't disable caching.
390            cr0.nw = 0; // This is bit is defined to be ignored.
391            cr0.am = 1; // No alignment checking
392            cr0.wp = 1; // Supervisor mode can write read only pages
393            cr0.ne = 1;
394            cr0.et = 1; // This should always be 1
395            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
396                        // would be pointless.
397            cr0.em = 0; // Allow x87 instructions to execute natively.
398            cr0.mp = 1; // This doesn't really matter, but the manual suggests
399                        // setting it to one.
400            cr0.pe = 1; // We're definitely in protected mode.
401            tc->setMiscReg(MISCREG_CR0, cr0);
402
403            CR0 cr2 = 0;
404            tc->setMiscReg(MISCREG_CR2, cr2);
405
406            CR3 cr3 = pageTablePhysAddr;
407            tc->setMiscReg(MISCREG_CR3, cr3);
408
409            CR4 cr4 = 0;
410            //Turn on pae.
411            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
412            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
413            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
414            cr4.pce = 0; // Performance-Monitoring Counter Enable
415            cr4.pge = 0; // Page-Global Enable
416            cr4.mce = 0; // Machine Check Enable
417            cr4.pae = 1; // Physical-Address Extension
418            cr4.pse = 0; // Page Size Extensions
419            cr4.de = 0; // Debugging Extensions
420            cr4.tsd = 0; // Time Stamp Disable
421            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
422            cr4.vme = 0; // Virtual-8086 Mode Extensions
423
424            tc->setMiscReg(MISCREG_CR4, cr4);
425
426            CR4 cr8 = 0;
427            tc->setMiscReg(MISCREG_CR8, cr8);
428
429            const Addr PageMapLevel4 = pageTablePhysAddr;
430            //Point to the page tables.
431            tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
432
433            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
434
435            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
436
437            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
438            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
439
440            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
441            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
442
443            /* enabling syscall and sysret */
444            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
445            tc->setMiscReg(MISCREG_STAR, star);
446            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
447            tc->setMiscReg(MISCREG_LSTAR, lstar);
448            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
449            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
450        }
451
452        /* Set up the content of the TSS and write it to physical memory. */
453
454        struct {
455            uint32_t reserved0;        // +00h
456            uint32_t RSP0_low;         // +04h
457            uint32_t RSP0_high;        // +08h
458            uint32_t RSP1_low;         // +0Ch
459            uint32_t RSP1_high;        // +10h
460            uint32_t RSP2_low;         // +14h
461            uint32_t RSP2_high;        // +18h
462            uint32_t reserved1;        // +1Ch
463            uint32_t reserved2;        // +20h
464            uint32_t IST1_low;         // +24h
465            uint32_t IST1_high;        // +28h
466            uint32_t IST2_low;         // +2Ch
467            uint32_t IST2_high;        // +30h
468            uint32_t IST3_low;         // +34h
469            uint32_t IST3_high;        // +38h
470            uint32_t IST4_low;         // +3Ch
471            uint32_t IST4_high;        // +40h
472            uint32_t IST5_low;         // +44h
473            uint32_t IST5_high;        // +48h
474            uint32_t IST6_low;         // +4Ch
475            uint32_t IST6_high;        // +50h
476            uint32_t IST7_low;         // +54h
477            uint32_t IST7_high;        // +58h
478            uint32_t reserved3;        // +5Ch
479            uint32_t reserved4;        // +60h
480            uint16_t reserved5;        // +64h
481            uint16_t IO_MapBase;       // +66h
482        } tss;
483
484        /** setting Interrupt Stack Table */
485        uint64_t IST_start = ISTVirtAddr + PageBytes;
486        tss.IST1_low  = IST_start;
487        tss.IST1_high = IST_start >> 32;
488        tss.RSP0_low  = tss.IST1_low;
489        tss.RSP0_high = tss.IST1_high;
490        tss.RSP1_low  = tss.IST1_low;
491        tss.RSP1_high = tss.IST1_high;
492        tss.RSP2_low  = tss.IST1_low;
493        tss.RSP2_high = tss.IST1_high;
494        physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
495
496        /* Setting IDT gates */
497        GateDescriptorLow PFGateLow = 0;
498        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
499        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
500        PFGateLow.selector = csLowPL;
501        PFGateLow.p = 1;
502        PFGateLow.dpl = 0;
503        PFGateLow.type = 0xe;      // gate interrupt type
504        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
505
506        GateDescriptorHigh PFGateHigh = 0;
507        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
508
509        struct {
510            uint64_t low;
511            uint64_t high;
512        } PFGate = {PFGateLow, PFGateHigh};
513
514        physProxy.writeBlob(IDTPhysAddr + 0xE0,
515                            (uint8_t *)(&PFGate), sizeof(PFGate));
516
517        /* System call handler */
518        uint8_t syscallBlob[] = {
519            // mov    %rax, (0xffffc90000005600)
520            0x48, 0xa3, 0x00, 0x60, 0x00,
521            0x00, 0x00, 0xc9, 0xff, 0xff,
522            // sysret
523            0x48, 0x0f, 0x07
524        };
525
526        physProxy.writeBlob(syscallCodePhysAddr,
527                            syscallBlob, sizeof(syscallBlob));
528
529        /** Page fault handler */
530        uint8_t faultBlob[] = {
531            // mov    %rax, (0xffffc90000005700)
532            0x48, 0xa3, 0x00, 0x61, 0x00,
533            0x00, 0x00, 0xc9, 0xff, 0xff,
534            // add    $0x8, %rsp # skip error
535            0x48, 0x83, 0xc4, 0x08,
536            // iretq
537            0x48, 0xcf
538        };
539
540        physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
541
542        MultiLevelPageTable<PageTableOps> *pt =
543            dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
544
545        /* Syscall handler */
546        pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
547        /* GDT */
548        pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
549        /* IDT */
550        pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
551        /* TSS */
552        pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
553        /* IST */
554        pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
555        /* PF handler */
556        pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
557        /* MMIO region for m5ops */
558        pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
559    } else {
560        for (int i = 0; i < contextIds.size(); i++) {
561            ThreadContext * tc = system->getThreadContext(contextIds[i]);
562
563            SegAttr dataAttr = 0;
564            dataAttr.dpl = 3;
565            dataAttr.unusable = 0;
566            dataAttr.defaultSize = 1;
567            dataAttr.longMode = 1;
568            dataAttr.avl = 0;
569            dataAttr.granularity = 1;
570            dataAttr.present = 1;
571            dataAttr.type = 3;
572            dataAttr.writable = 1;
573            dataAttr.readable = 1;
574            dataAttr.expandDown = 0;
575            dataAttr.system = 1;
576
577            // Initialize the segment registers.
578            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
579                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
580                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
581                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
582            }
583
584            SegAttr csAttr = 0;
585            csAttr.dpl = 3;
586            csAttr.unusable = 0;
587            csAttr.defaultSize = 0;
588            csAttr.longMode = 1;
589            csAttr.avl = 0;
590            csAttr.granularity = 1;
591            csAttr.present = 1;
592            csAttr.type = 10;
593            csAttr.writable = 0;
594            csAttr.readable = 1;
595            csAttr.expandDown = 0;
596            csAttr.system = 1;
597
598            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
599
600            Efer efer = 0;
601            efer.sce = 1; // Enable system call extensions.
602            efer.lme = 1; // Enable long mode.
603            efer.lma = 1; // Activate long mode.
604            efer.nxe = 1; // Enable nx support.
605            efer.svme = 0; // Disable svm support for now. It isn't implemented.
606            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
607            tc->setMiscReg(MISCREG_EFER, efer);
608
609            // Set up the registers that describe the operating mode.
610            CR0 cr0 = 0;
611            cr0.pg = 1; // Turn on paging.
612            cr0.cd = 0; // Don't disable caching.
613            cr0.nw = 0; // This is bit is defined to be ignored.
614            cr0.am = 0; // No alignment checking
615            cr0.wp = 0; // Supervisor mode can write read only pages
616            cr0.ne = 1;
617            cr0.et = 1; // This should always be 1
618            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
619                        // would be pointless.
620            cr0.em = 0; // Allow x87 instructions to execute natively.
621            cr0.mp = 1; // This doesn't really matter, but the manual suggests
622                        // setting it to one.
623            cr0.pe = 1; // We're definitely in protected mode.
624            tc->setMiscReg(MISCREG_CR0, cr0);
625
626            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
627        }
628    }
629}
630
631void
632I386Process::initState()
633{
634    X86Process::initState();
635
636    argsInit(PageBytes);
637
638    /*
639     * Set up a GDT for this process. The whole GDT wouldn't really be for
640     * this process, but the only parts we care about are.
641     */
642    allocateMem(_gdtStart, _gdtSize);
643    uint64_t zero = 0;
644    assert(_gdtSize % sizeof(zero) == 0);
645    for (Addr gdtCurrent = _gdtStart;
646            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
647        initVirtMem.write(gdtCurrent, zero);
648    }
649
650    // Set up the vsyscall page for this process.
651    allocateMem(vsyscallPage.base, vsyscallPage.size);
652    uint8_t vsyscallBlob[] = {
653        0x51,       // push %ecx
654        0x52,       // push %edp
655        0x55,       // push %ebp
656        0x89, 0xe5, // mov %esp, %ebp
657        0x0f, 0x34  // sysenter
658    };
659    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
660            vsyscallBlob, sizeof(vsyscallBlob));
661
662    uint8_t vsysexitBlob[] = {
663        0x5d,       // pop %ebp
664        0x5a,       // pop %edx
665        0x59,       // pop %ecx
666        0xc3        // ret
667    };
668    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
669            vsysexitBlob, sizeof(vsysexitBlob));
670
671    for (int i = 0; i < contextIds.size(); i++) {
672        ThreadContext * tc = system->getThreadContext(contextIds[i]);
673
674        SegAttr dataAttr = 0;
675        dataAttr.dpl = 3;
676        dataAttr.unusable = 0;
677        dataAttr.defaultSize = 1;
678        dataAttr.longMode = 0;
679        dataAttr.avl = 0;
680        dataAttr.granularity = 1;
681        dataAttr.present = 1;
682        dataAttr.type = 3;
683        dataAttr.writable = 1;
684        dataAttr.readable = 1;
685        dataAttr.expandDown = 0;
686        dataAttr.system = 1;
687
688        // Initialize the segment registers.
689        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
690            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
691            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
692            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
693            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
694            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
695        }
696
697        SegAttr csAttr = 0;
698        csAttr.dpl = 3;
699        csAttr.unusable = 0;
700        csAttr.defaultSize = 1;
701        csAttr.longMode = 0;
702        csAttr.avl = 0;
703        csAttr.granularity = 1;
704        csAttr.present = 1;
705        csAttr.type = 0xa;
706        csAttr.writable = 0;
707        csAttr.readable = 1;
708        csAttr.expandDown = 0;
709        csAttr.system = 1;
710
711        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
712
713        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
714        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
715        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
716
717        // Set the LDT selector to 0 to deactivate it.
718        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
719
720        Efer efer = 0;
721        efer.sce = 1; // Enable system call extensions.
722        efer.lme = 1; // Enable long mode.
723        efer.lma = 0; // Deactivate long mode.
724        efer.nxe = 1; // Enable nx support.
725        efer.svme = 0; // Disable svm support for now. It isn't implemented.
726        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
727        tc->setMiscReg(MISCREG_EFER, efer);
728
729        // Set up the registers that describe the operating mode.
730        CR0 cr0 = 0;
731        cr0.pg = 1; // Turn on paging.
732        cr0.cd = 0; // Don't disable caching.
733        cr0.nw = 0; // This is bit is defined to be ignored.
734        cr0.am = 0; // No alignment checking
735        cr0.wp = 0; // Supervisor mode can write read only pages
736        cr0.ne = 1;
737        cr0.et = 1; // This should always be 1
738        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
739                    // would be pointless.
740        cr0.em = 0; // Allow x87 instructions to execute natively.
741        cr0.mp = 1; // This doesn't really matter, but the manual suggests
742                    // setting it to one.
743        cr0.pe = 1; // We're definitely in protected mode.
744        tc->setMiscReg(MISCREG_CR0, cr0);
745
746        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
747    }
748}
749
750template<class IntType>
751void
752X86Process::argsInit(int pageSize,
753                     std::vector<AuxVector<IntType> > extraAuxvs)
754{
755    int intSize = sizeof(IntType);
756
757    typedef AuxVector<IntType> auxv_t;
758    std::vector<auxv_t> auxv = extraAuxvs;
759
760    string filename;
761    if (argv.size() < 1)
762        filename = "";
763    else
764        filename = argv[0];
765
766    // We want 16 byte alignment
767    uint64_t align = 16;
768
769    // Patch the ld_bias for dynamic executables.
770    updateBias();
771
772    // load object file into target memory
773    objFile->loadSections(initVirtMem);
774
775    enum X86CpuFeature {
776        X86_OnboardFPU = 1 << 0,
777        X86_VirtualModeExtensions = 1 << 1,
778        X86_DebuggingExtensions = 1 << 2,
779        X86_PageSizeExtensions = 1 << 3,
780
781        X86_TimeStampCounter = 1 << 4,
782        X86_ModelSpecificRegisters = 1 << 5,
783        X86_PhysicalAddressExtensions = 1 << 6,
784        X86_MachineCheckExtensions = 1 << 7,
785
786        X86_CMPXCHG8Instruction = 1 << 8,
787        X86_OnboardAPIC = 1 << 9,
788        X86_SYSENTER_SYSEXIT = 1 << 11,
789
790        X86_MemoryTypeRangeRegisters = 1 << 12,
791        X86_PageGlobalEnable = 1 << 13,
792        X86_MachineCheckArchitecture = 1 << 14,
793        X86_CMOVInstruction = 1 << 15,
794
795        X86_PageAttributeTable = 1 << 16,
796        X86_36BitPSEs = 1 << 17,
797        X86_ProcessorSerialNumber = 1 << 18,
798        X86_CLFLUSHInstruction = 1 << 19,
799
800        X86_DebugTraceStore = 1 << 21,
801        X86_ACPIViaMSR = 1 << 22,
802        X86_MultimediaExtensions = 1 << 23,
803
804        X86_FXSAVE_FXRSTOR = 1 << 24,
805        X86_StreamingSIMDExtensions = 1 << 25,
806        X86_StreamingSIMDExtensions2 = 1 << 26,
807        X86_CPUSelfSnoop = 1 << 27,
808
809        X86_HyperThreading = 1 << 28,
810        X86_AutomaticClockControl = 1 << 29,
811        X86_IA64Processor = 1 << 30
812    };
813
814    // Setup the auxiliary vectors. These will already have endian
815    // conversion. Auxiliary vectors are loaded only for elf formatted
816    // executables; the auxv is responsible for passing information from
817    // the OS to the interpreter.
818    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
819    if (elfObject) {
820        uint64_t features =
821            X86_OnboardFPU |
822            X86_VirtualModeExtensions |
823            X86_DebuggingExtensions |
824            X86_PageSizeExtensions |
825            X86_TimeStampCounter |
826            X86_ModelSpecificRegisters |
827            X86_PhysicalAddressExtensions |
828            X86_MachineCheckExtensions |
829            X86_CMPXCHG8Instruction |
830            X86_OnboardAPIC |
831            X86_SYSENTER_SYSEXIT |
832            X86_MemoryTypeRangeRegisters |
833            X86_PageGlobalEnable |
834            X86_MachineCheckArchitecture |
835            X86_CMOVInstruction |
836            X86_PageAttributeTable |
837            X86_36BitPSEs |
838//            X86_ProcessorSerialNumber |
839            X86_CLFLUSHInstruction |
840//            X86_DebugTraceStore |
841//            X86_ACPIViaMSR |
842            X86_MultimediaExtensions |
843            X86_FXSAVE_FXRSTOR |
844            X86_StreamingSIMDExtensions |
845            X86_StreamingSIMDExtensions2 |
846//            X86_CPUSelfSnoop |
847//            X86_HyperThreading |
848//            X86_AutomaticClockControl |
849//            X86_IA64Processor |
850            0;
851
852        // Bits which describe the system hardware capabilities
853        // XXX Figure out what these should be
854        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
855        // The system page size
856        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
857        // Frequency at which times() increments
858        // Defined to be 100 in the kernel source.
859        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
860        // This is the virtual address of the program header tables if they
861        // appear in the executable image.
862        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
863        // This is the size of a program header entry from the elf file.
864        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
865        // This is the number of program headers from the original elf file.
866        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
867        // This is the base address of the ELF interpreter; it should be
868        // zero for static executables or contain the base address for
869        // dynamic executables.
870        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
871        // XXX Figure out what this should be.
872        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
873        // The entry point to the program
874        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
875        // Different user and group IDs
876        auxv.push_back(auxv_t(M5_AT_UID, uid()));
877        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
878        auxv.push_back(auxv_t(M5_AT_GID, gid()));
879        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
880        // Whether to enable "secure mode" in the executable
881        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
882        // The address of 16 "random" bytes.
883        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
884        // The name of the program
885        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
886        // The platform string
887        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
888    }
889
890    // Figure out how big the initial stack needs to be
891
892    // A sentry NULL void pointer at the top of the stack.
893    int sentry_size = intSize;
894
895    // This is the name of the file which is present on the initial stack
896    // It's purpose is to let the user space linker examine the original file.
897    int file_name_size = filename.size() + 1;
898
899    const int numRandomBytes = 16;
900    int aux_data_size = numRandomBytes;
901
902    string platform = "x86_64";
903    aux_data_size += platform.size() + 1;
904
905    int env_data_size = 0;
906    for (int i = 0; i < envp.size(); ++i)
907        env_data_size += envp[i].size() + 1;
908    int arg_data_size = 0;
909    for (int i = 0; i < argv.size(); ++i)
910        arg_data_size += argv[i].size() + 1;
911
912    // The info_block needs to be padded so its size is a multiple of the
913    // alignment mask. Also, it appears that there needs to be at least some
914    // padding, so if the size is already a multiple, we need to increase it
915    // anyway.
916    int base_info_block_size =
917        sentry_size + file_name_size + env_data_size + arg_data_size;
918
919    int info_block_size = roundUp(base_info_block_size, align);
920
921    int info_block_padding = info_block_size - base_info_block_size;
922
923    // Each auxiliary vector is two 8 byte words
924    int aux_array_size = intSize * 2 * (auxv.size() + 1);
925
926    int envp_array_size = intSize * (envp.size() + 1);
927    int argv_array_size = intSize * (argv.size() + 1);
928
929    int argc_size = intSize;
930
931    // Figure out the size of the contents of the actual initial frame
932    int frame_size =
933        aux_array_size +
934        envp_array_size +
935        argv_array_size +
936        argc_size;
937
938    // There needs to be padding after the auxiliary vector data so that the
939    // very bottom of the stack is aligned properly.
940    int partial_size = frame_size + aux_data_size;
941    int aligned_partial_size = roundUp(partial_size, align);
942    int aux_padding = aligned_partial_size - partial_size;
943
944    int space_needed =
945        info_block_size +
946        aux_data_size +
947        aux_padding +
948        frame_size;
949
950    Addr stack_base = memState->getStackBase();
951
952    Addr stack_min = stack_base - space_needed;
953    stack_min = roundDown(stack_min, align);
954
955    unsigned stack_size = stack_base - stack_min;
956    stack_size = roundUp(stack_size, pageSize);
957    memState->setStackSize(stack_size);
958
959    // map memory
960    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
961
962    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
963    allocateMem(stack_end, stack_size);
964
965    // map out initial stack contents
966    IntType sentry_base = stack_base - sentry_size;
967    IntType file_name_base = sentry_base - file_name_size;
968    IntType env_data_base = file_name_base - env_data_size;
969    IntType arg_data_base = env_data_base - arg_data_size;
970    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
971    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
972    IntType envp_array_base = auxv_array_base - envp_array_size;
973    IntType argv_array_base = envp_array_base - argv_array_size;
974    IntType argc_base = argv_array_base - argc_size;
975
976    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
977    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
978    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
979    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
980    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
981    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
982    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
983    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
984    DPRINTF(Stack, "0x%x - argc \n", argc_base);
985    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
986
987    // write contents to stack
988
989    // figure out argc
990    IntType argc = argv.size();
991    IntType guestArgc = X86ISA::htog(argc);
992
993    // Write out the sentry void *
994    IntType sentry_NULL = 0;
995    initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
996
997    // Write the file name
998    initVirtMem.writeString(file_name_base, filename.c_str());
999
1000    // Fix up the aux vectors which point to data
1001    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
1002    auxv[auxv.size() - 3].a_val = aux_data_base;
1003    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
1004    auxv[auxv.size() - 2].a_val = argv_array_base;
1005    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1006    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1007
1008
1009    // Copy the aux stuff
1010    for (int x = 0; x < auxv.size(); x++) {
1011        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1012                (uint8_t*)&(auxv[x].a_type), intSize);
1013        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1014                (uint8_t*)&(auxv[x].a_val), intSize);
1015    }
1016    // Write out the terminating zeroed auxiliary vector
1017    const uint64_t zero = 0;
1018    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1019                          (uint8_t*)&zero, intSize);
1020    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1021                          (uint8_t*)&zero, intSize);
1022
1023    initVirtMem.writeString(aux_data_base, platform.c_str());
1024
1025    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1026    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1027
1028    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1029
1030    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1031    // Set the stack pointer register
1032    tc->setIntReg(StackPointerReg, stack_min);
1033
1034    // There doesn't need to be any segment base added in since we're dealing
1035    // with the flat segmentation model.
1036    tc->pcState(getStartPC());
1037
1038    // Align the "stack_min" to a page boundary.
1039    memState->setStackMin(roundDown(stack_min, pageSize));
1040}
1041
1042void
1043X86_64Process::argsInit(int pageSize)
1044{
1045    std::vector<AuxVector<uint64_t> > extraAuxvs;
1046    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1047                vsyscallPage.base));
1048    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1049}
1050
1051void
1052I386Process::argsInit(int pageSize)
1053{
1054    std::vector<AuxVector<uint32_t> > extraAuxvs;
1055    //Tell the binary where the vsyscall part of the vsyscall page is.
1056    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1057                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1058    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1059                vsyscallPage.base));
1060    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1061}
1062
1063void
1064X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1065{
1066    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1067}
1068
1069X86ISA::IntReg
1070X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1071{
1072    assert(i < NumArgumentRegs);
1073    return tc->readIntReg(ArgumentReg[i++]);
1074}
1075
1076void
1077X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1078{
1079    assert(i < NumArgumentRegs);
1080    return tc->setIntReg(ArgumentReg[i], val);
1081}
1082
1083void
1084X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1085                     Process *p, TheISA::IntReg flags)
1086{
1087    X86Process::clone(old_tc, new_tc, p, flags);
1088    ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1089}
1090
1091X86ISA::IntReg
1092I386Process::getSyscallArg(ThreadContext *tc, int &i)
1093{
1094    assert(i < NumArgumentRegs32);
1095    return tc->readIntReg(ArgumentReg32[i++]);
1096}
1097
1098X86ISA::IntReg
1099I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1100{
1101    assert(width == 32 || width == 64);
1102    assert(i < NumArgumentRegs);
1103    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1104    if (width == 64)
1105        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1106    return retVal;
1107}
1108
1109void
1110I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1111{
1112    assert(i < NumArgumentRegs);
1113    return tc->setIntReg(ArgumentReg[i], val);
1114}
1115
1116void
1117I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1118                   Process *p, TheISA::IntReg flags)
1119{
1120    X86Process::clone(old_tc, new_tc, p, flags);
1121    ((I386Process*)p)->vsyscallPage = vsyscallPage;
1122}
1123