process.cc revision 11877:5ea85692a53e
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/misc.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "sim/aux_vector.hh"
64#include "sim/process_impl.hh"
65#include "sim/syscall_desc.hh"
66#include "sim/syscall_return.hh"
67#include "sim/system.hh"
68
69using namespace std;
70using namespace X86ISA;
71
72static const int ArgumentReg[] = {
73    INTREG_RDI,
74    INTREG_RSI,
75    INTREG_RDX,
76    //This argument register is r10 for syscalls and rcx for C.
77    INTREG_R10W,
78    //INTREG_RCX,
79    INTREG_R8W,
80    INTREG_R9W
81};
82
83static const int NumArgumentRegs M5_VAR_USED =
84    sizeof(ArgumentReg) / sizeof(const int);
85
86static const int ArgumentReg32[] = {
87    INTREG_EBX,
88    INTREG_ECX,
89    INTREG_EDX,
90    INTREG_ESI,
91    INTREG_EDI,
92    INTREG_EBP
93};
94
95static const int NumArgumentRegs32 M5_VAR_USED =
96    sizeof(ArgumentReg) / sizeof(const int);
97
98X86Process::X86Process(ProcessParams * params, ObjectFile *objFile,
99                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
100    : Process(params, objFile), syscallDescs(_syscallDescs),
101      numSyscallDescs(_numSyscallDescs)
102{
103    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
104    brk_point = roundUp(brk_point, PageBytes);
105}
106
107X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
108                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
109    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
110{
111
112    vsyscallPage.base = 0xffffffffff600000ULL;
113    vsyscallPage.size = PageBytes;
114    vsyscallPage.vtimeOffset = 0x400;
115    vsyscallPage.vgettimeofdayOffset = 0x0;
116
117    // Set up stack. On X86_64 Linux, stack goes from the top of memory
118    // downward, less the hole for the kernel address space plus one page
119    // for undertermined purposes.
120    stack_base = (Addr)0x7FFFFFFFF000ULL;
121
122    // Set pointer for next thread stack.  Reserve 8M for main stack.
123    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
124
125    // "mmap_base" is a function which defines where mmap region starts in
126    // the process address space.
127    // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
128    // TASK_SIZE: (1<<47)-PAGE_SIZE
129    // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
130    // We do not use any address space layout randomization in gem5
131    // therefore the random fields become zero; the smallest gap space was
132    // chosen but gap could potentially be much larger.
133    mmap_end = (Addr)0x7FFFF7FFF000ULL;
134}
135
136void
137I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
138{
139    TheISA::PCState pc = tc->pcState();
140    Addr eip = pc.pc();
141    if (eip >= vsyscallPage.base &&
142            eip < vsyscallPage.base + vsyscallPage.size) {
143        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
144        tc->pcState(pc);
145    }
146    X86Process::syscall(callnum, tc, fault);
147}
148
149
150I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
151                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
152    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
153{
154    _gdtStart = ULL(0xffffd000);
155    _gdtSize = PageBytes;
156
157    vsyscallPage.base = 0xffffe000ULL;
158    vsyscallPage.size = PageBytes;
159    vsyscallPage.vsyscallOffset = 0x400;
160    vsyscallPage.vsysexitOffset = 0x410;
161
162    stack_base = _gdtStart;
163
164    // Set pointer for next thread stack.  Reserve 8M for main stack.
165    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
166
167    // "mmap_base" is a function which defines where mmap region starts in
168    // the process address space.
169    // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
170    // TASK_SIZE: 0xC0000000
171    // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
172    // We do not use any address space layout randomization in gem5
173    // therefore the random fields become zero; the smallest gap space was
174    // chosen but gap could potentially be much larger.
175    mmap_end = (Addr)0xB7FFF000ULL;
176}
177
178SyscallDesc*
179X86Process::getDesc(int callnum)
180{
181    if (callnum < 0 || callnum >= numSyscallDescs)
182        return NULL;
183    return &syscallDescs[callnum];
184}
185
186void
187X86_64Process::initState()
188{
189    X86Process::initState();
190
191    argsInit(sizeof(uint64_t), PageBytes);
192
193       // Set up the vsyscall page for this process.
194    allocateMem(vsyscallPage.base, vsyscallPage.size);
195    uint8_t vtimeBlob[] = {
196        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
197        0x0f,0x05,                             // syscall
198        0xc3                                   // retq
199    };
200    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
201            vtimeBlob, sizeof(vtimeBlob));
202
203    uint8_t vgettimeofdayBlob[] = {
204        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
205        0x0f,0x05,                             // syscall
206        0xc3                                   // retq
207    };
208    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
209            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
210
211    if (kvmInSE) {
212        PortProxy physProxy = system->physProxy;
213
214        /*
215         * Set up the gdt.
216         */
217        uint8_t numGDTEntries = 0;
218        uint64_t nullDescriptor = 0;
219        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
220                            (uint8_t *)(&nullDescriptor), 8);
221        numGDTEntries++;
222
223        SegDescriptor initDesc = 0;
224        initDesc.type.codeOrData = 0; // code or data type
225        initDesc.type.c = 0;          // conforming
226        initDesc.type.r = 1;          // readable
227        initDesc.dpl = 0;             // privilege
228        initDesc.p = 1;               // present
229        initDesc.l = 1;               // longmode - 64 bit
230        initDesc.d = 0;               // operand size
231        initDesc.g = 1;               // granularity
232        initDesc.s = 1;               // system segment
233        initDesc.limitHigh = 0xFFFF;
234        initDesc.limitLow = 0xF;
235        initDesc.baseHigh = 0x0;
236        initDesc.baseLow = 0x0;
237
238        //64 bit code segment
239        SegDescriptor csLowPLDesc = initDesc;
240        csLowPLDesc.type.codeOrData = 1;
241        csLowPLDesc.dpl = 0;
242        uint64_t csLowPLDescVal = csLowPLDesc;
243        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
244                            (uint8_t *)(&csLowPLDescVal), 8);
245
246        numGDTEntries++;
247
248        SegSelector csLowPL = 0;
249        csLowPL.si = numGDTEntries - 1;
250        csLowPL.rpl = 0;
251
252        //64 bit data segment
253        SegDescriptor dsLowPLDesc = initDesc;
254        dsLowPLDesc.type.codeOrData = 0;
255        dsLowPLDesc.dpl = 0;
256        uint64_t dsLowPLDescVal = dsLowPLDesc;
257        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
258                            (uint8_t *)(&dsLowPLDescVal), 8);
259
260        numGDTEntries++;
261
262        SegSelector dsLowPL = 0;
263        dsLowPL.si = numGDTEntries - 1;
264        dsLowPL.rpl = 0;
265
266        //64 bit data segment
267        SegDescriptor dsDesc = initDesc;
268        dsDesc.type.codeOrData = 0;
269        dsDesc.dpl = 3;
270        uint64_t dsDescVal = dsDesc;
271        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
272                            (uint8_t *)(&dsDescVal), 8);
273
274        numGDTEntries++;
275
276        SegSelector ds = 0;
277        ds.si = numGDTEntries - 1;
278        ds.rpl = 3;
279
280        //64 bit code segment
281        SegDescriptor csDesc = initDesc;
282        csDesc.type.codeOrData = 1;
283        csDesc.dpl = 3;
284        uint64_t csDescVal = csDesc;
285        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
286                            (uint8_t *)(&csDescVal), 8);
287
288        numGDTEntries++;
289
290        SegSelector cs = 0;
291        cs.si = numGDTEntries - 1;
292        cs.rpl = 3;
293
294        SegSelector scall = 0;
295        scall.si = csLowPL.si;
296        scall.rpl = 0;
297
298        SegSelector sret = 0;
299        sret.si = dsLowPL.si;
300        sret.rpl = 3;
301
302        /* In long mode the TSS has been extended to 16 Bytes */
303        TSSlow TSSDescLow = 0;
304        TSSDescLow.type = 0xB;
305        TSSDescLow.dpl = 0; // Privelege level 0
306        TSSDescLow.p = 1; // Present
307        TSSDescLow.g = 1; // Page granularity
308        TSSDescLow.limitHigh = 0xF;
309        TSSDescLow.limitLow = 0xFFFF;
310        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
311        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
312
313        TSShigh TSSDescHigh = 0;
314        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
315
316        struct TSSDesc {
317            uint64_t low;
318            uint64_t high;
319        } tssDescVal = {TSSDescLow, TSSDescHigh};
320
321        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
322                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
323
324        numGDTEntries++;
325
326        SegSelector tssSel = 0;
327        tssSel.si = numGDTEntries - 1;
328
329        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
330                                 (TSSDescLow.baseHigh << 24) |
331                                  TSSDescLow.baseLow;
332        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
333
334        SegAttr tss_attr = 0;
335
336        tss_attr.type = TSSDescLow.type;
337        tss_attr.dpl = TSSDescLow.dpl;
338        tss_attr.present = TSSDescLow.p;
339        tss_attr.granularity = TSSDescLow.g;
340        tss_attr.unusable = 0;
341
342        for (int i = 0; i < contextIds.size(); i++) {
343            ThreadContext * tc = system->getThreadContext(contextIds[i]);
344
345            tc->setMiscReg(MISCREG_CS, cs);
346            tc->setMiscReg(MISCREG_DS, ds);
347            tc->setMiscReg(MISCREG_ES, ds);
348            tc->setMiscReg(MISCREG_FS, ds);
349            tc->setMiscReg(MISCREG_GS, ds);
350            tc->setMiscReg(MISCREG_SS, ds);
351
352            // LDT
353            tc->setMiscReg(MISCREG_TSL, 0);
354            SegAttr tslAttr = 0;
355            tslAttr.present = 1;
356            tslAttr.type = 2;
357            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
358
359            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
360            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
361
362            tc->setMiscReg(MISCREG_TR, tssSel);
363            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
364            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
365            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
366            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
367
368            //Start using longmode segments.
369            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
370            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
371            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
372            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
373            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
374            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
375
376            Efer efer = 0;
377            efer.sce = 1; // Enable system call extensions.
378            efer.lme = 1; // Enable long mode.
379            efer.lma = 1; // Activate long mode.
380            efer.nxe = 0; // Enable nx support.
381            efer.svme = 1; // Enable svm support for now.
382            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
383            tc->setMiscReg(MISCREG_EFER, efer);
384
385            //Set up the registers that describe the operating mode.
386            CR0 cr0 = 0;
387            cr0.pg = 1; // Turn on paging.
388            cr0.cd = 0; // Don't disable caching.
389            cr0.nw = 0; // This is bit is defined to be ignored.
390            cr0.am = 1; // No alignment checking
391            cr0.wp = 1; // Supervisor mode can write read only pages
392            cr0.ne = 1;
393            cr0.et = 1; // This should always be 1
394            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
395                        // would be pointless.
396            cr0.em = 0; // Allow x87 instructions to execute natively.
397            cr0.mp = 1; // This doesn't really matter, but the manual suggests
398                        // setting it to one.
399            cr0.pe = 1; // We're definitely in protected mode.
400            tc->setMiscReg(MISCREG_CR0, cr0);
401
402            CR0 cr2 = 0;
403            tc->setMiscReg(MISCREG_CR2, cr2);
404
405            CR3 cr3 = pageTablePhysAddr;
406            tc->setMiscReg(MISCREG_CR3, cr3);
407
408            CR4 cr4 = 0;
409            //Turn on pae.
410            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
411            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
412            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
413            cr4.pce = 0; // Performance-Monitoring Counter Enable
414            cr4.pge = 0; // Page-Global Enable
415            cr4.mce = 0; // Machine Check Enable
416            cr4.pae = 1; // Physical-Address Extension
417            cr4.pse = 0; // Page Size Extensions
418            cr4.de = 0; // Debugging Extensions
419            cr4.tsd = 0; // Time Stamp Disable
420            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
421            cr4.vme = 0; // Virtual-8086 Mode Extensions
422
423            tc->setMiscReg(MISCREG_CR4, cr4);
424
425            CR4 cr8 = 0;
426            tc->setMiscReg(MISCREG_CR8, cr8);
427
428            const Addr PageMapLevel4 = pageTablePhysAddr;
429            //Point to the page tables.
430            tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
431
432            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
433
434            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
435
436            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
437            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
438
439            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
440            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
441
442            /* enabling syscall and sysret */
443            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
444            tc->setMiscReg(MISCREG_STAR, star);
445            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
446            tc->setMiscReg(MISCREG_LSTAR, lstar);
447            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
448            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
449        }
450
451        /* Set up the content of the TSS and write it to physical memory. */
452
453        struct {
454            uint32_t reserved0;        // +00h
455            uint32_t RSP0_low;         // +04h
456            uint32_t RSP0_high;        // +08h
457            uint32_t RSP1_low;         // +0Ch
458            uint32_t RSP1_high;        // +10h
459            uint32_t RSP2_low;         // +14h
460            uint32_t RSP2_high;        // +18h
461            uint32_t reserved1;        // +1Ch
462            uint32_t reserved2;        // +20h
463            uint32_t IST1_low;         // +24h
464            uint32_t IST1_high;        // +28h
465            uint32_t IST2_low;         // +2Ch
466            uint32_t IST2_high;        // +30h
467            uint32_t IST3_low;         // +34h
468            uint32_t IST3_high;        // +38h
469            uint32_t IST4_low;         // +3Ch
470            uint32_t IST4_high;        // +40h
471            uint32_t IST5_low;         // +44h
472            uint32_t IST5_high;        // +48h
473            uint32_t IST6_low;         // +4Ch
474            uint32_t IST6_high;        // +50h
475            uint32_t IST7_low;         // +54h
476            uint32_t IST7_high;        // +58h
477            uint32_t reserved3;        // +5Ch
478            uint32_t reserved4;        // +60h
479            uint16_t reserved5;        // +64h
480            uint16_t IO_MapBase;       // +66h
481        } tss;
482
483        /** setting Interrupt Stack Table */
484        uint64_t IST_start = ISTVirtAddr + PageBytes;
485        tss.IST1_low  = IST_start;
486        tss.IST1_high = IST_start >> 32;
487        tss.RSP0_low  = tss.IST1_low;
488        tss.RSP0_high = tss.IST1_high;
489        tss.RSP1_low  = tss.IST1_low;
490        tss.RSP1_high = tss.IST1_high;
491        tss.RSP2_low  = tss.IST1_low;
492        tss.RSP2_high = tss.IST1_high;
493        physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
494
495        /* Setting IDT gates */
496        GateDescriptorLow PFGateLow = 0;
497        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
498        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
499        PFGateLow.selector = csLowPL;
500        PFGateLow.p = 1;
501        PFGateLow.dpl = 0;
502        PFGateLow.type = 0xe;      // gate interrupt type
503        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
504
505        GateDescriptorHigh PFGateHigh = 0;
506        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
507
508        struct {
509            uint64_t low;
510            uint64_t high;
511        } PFGate = {PFGateLow, PFGateHigh};
512
513        physProxy.writeBlob(IDTPhysAddr + 0xE0,
514                            (uint8_t *)(&PFGate), sizeof(PFGate));
515
516        /* System call handler */
517        uint8_t syscallBlob[] = {
518            // mov    %rax, (0xffffc90000005600)
519            0x48, 0xa3, 0x00, 0x60, 0x00,
520            0x00, 0x00, 0xc9, 0xff, 0xff,
521            // sysret
522            0x48, 0x0f, 0x07
523        };
524
525        physProxy.writeBlob(syscallCodePhysAddr,
526                            syscallBlob, sizeof(syscallBlob));
527
528        /** Page fault handler */
529        uint8_t faultBlob[] = {
530            // mov    %rax, (0xffffc90000005700)
531            0x48, 0xa3, 0x00, 0x61, 0x00,
532            0x00, 0x00, 0xc9, 0xff, 0xff,
533            // add    $0x8, %rsp # skip error
534            0x48, 0x83, 0xc4, 0x08,
535            // iretq
536            0x48, 0xcf
537        };
538
539        physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
540
541        MultiLevelPageTable<PageTableOps> *pt =
542            dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
543
544        /* Syscall handler */
545        pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
546        /* GDT */
547        pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
548        /* IDT */
549        pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
550        /* TSS */
551        pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
552        /* IST */
553        pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
554        /* PF handler */
555        pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
556        /* MMIO region for m5ops */
557        pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
558    } else {
559        for (int i = 0; i < contextIds.size(); i++) {
560            ThreadContext * tc = system->getThreadContext(contextIds[i]);
561
562            SegAttr dataAttr = 0;
563            dataAttr.dpl = 3;
564            dataAttr.unusable = 0;
565            dataAttr.defaultSize = 1;
566            dataAttr.longMode = 1;
567            dataAttr.avl = 0;
568            dataAttr.granularity = 1;
569            dataAttr.present = 1;
570            dataAttr.type = 3;
571            dataAttr.writable = 1;
572            dataAttr.readable = 1;
573            dataAttr.expandDown = 0;
574            dataAttr.system = 1;
575
576            //Initialize the segment registers.
577            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
578                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
579                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
580                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
581            }
582
583            SegAttr csAttr = 0;
584            csAttr.dpl = 3;
585            csAttr.unusable = 0;
586            csAttr.defaultSize = 0;
587            csAttr.longMode = 1;
588            csAttr.avl = 0;
589            csAttr.granularity = 1;
590            csAttr.present = 1;
591            csAttr.type = 10;
592            csAttr.writable = 0;
593            csAttr.readable = 1;
594            csAttr.expandDown = 0;
595            csAttr.system = 1;
596
597            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
598
599            Efer efer = 0;
600            efer.sce = 1; // Enable system call extensions.
601            efer.lme = 1; // Enable long mode.
602            efer.lma = 1; // Activate long mode.
603            efer.nxe = 1; // Enable nx support.
604            efer.svme = 0; // Disable svm support for now. It isn't implemented.
605            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
606            tc->setMiscReg(MISCREG_EFER, efer);
607
608            //Set up the registers that describe the operating mode.
609            CR0 cr0 = 0;
610            cr0.pg = 1; // Turn on paging.
611            cr0.cd = 0; // Don't disable caching.
612            cr0.nw = 0; // This is bit is defined to be ignored.
613            cr0.am = 0; // No alignment checking
614            cr0.wp = 0; // Supervisor mode can write read only pages
615            cr0.ne = 1;
616            cr0.et = 1; // This should always be 1
617            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
618                        // would be pointless.
619            cr0.em = 0; // Allow x87 instructions to execute natively.
620            cr0.mp = 1; // This doesn't really matter, but the manual suggests
621                        // setting it to one.
622            cr0.pe = 1; // We're definitely in protected mode.
623            tc->setMiscReg(MISCREG_CR0, cr0);
624
625            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
626        }
627    }
628}
629
630void
631I386Process::initState()
632{
633    X86Process::initState();
634
635    argsInit(sizeof(uint32_t), PageBytes);
636
637    /*
638     * Set up a GDT for this process. The whole GDT wouldn't really be for
639     * this process, but the only parts we care about are.
640     */
641    allocateMem(_gdtStart, _gdtSize);
642    uint64_t zero = 0;
643    assert(_gdtSize % sizeof(zero) == 0);
644    for (Addr gdtCurrent = _gdtStart;
645            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
646        initVirtMem.write(gdtCurrent, zero);
647    }
648
649    // Set up the vsyscall page for this process.
650    allocateMem(vsyscallPage.base, vsyscallPage.size);
651    uint8_t vsyscallBlob[] = {
652        0x51,       // push %ecx
653        0x52,       // push %edp
654        0x55,       // push %ebp
655        0x89, 0xe5, // mov %esp, %ebp
656        0x0f, 0x34  // sysenter
657    };
658    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
659            vsyscallBlob, sizeof(vsyscallBlob));
660
661    uint8_t vsysexitBlob[] = {
662        0x5d,       // pop %ebp
663        0x5a,       // pop %edx
664        0x59,       // pop %ecx
665        0xc3        // ret
666    };
667    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
668            vsysexitBlob, sizeof(vsysexitBlob));
669
670    for (int i = 0; i < contextIds.size(); i++) {
671        ThreadContext * tc = system->getThreadContext(contextIds[i]);
672
673        SegAttr dataAttr = 0;
674        dataAttr.dpl = 3;
675        dataAttr.unusable = 0;
676        dataAttr.defaultSize = 1;
677        dataAttr.longMode = 0;
678        dataAttr.avl = 0;
679        dataAttr.granularity = 1;
680        dataAttr.present = 1;
681        dataAttr.type = 3;
682        dataAttr.writable = 1;
683        dataAttr.readable = 1;
684        dataAttr.expandDown = 0;
685        dataAttr.system = 1;
686
687        //Initialize the segment registers.
688        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
689            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
690            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
691            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
692            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
693            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
694        }
695
696        SegAttr csAttr = 0;
697        csAttr.dpl = 3;
698        csAttr.unusable = 0;
699        csAttr.defaultSize = 1;
700        csAttr.longMode = 0;
701        csAttr.avl = 0;
702        csAttr.granularity = 1;
703        csAttr.present = 1;
704        csAttr.type = 0xa;
705        csAttr.writable = 0;
706        csAttr.readable = 1;
707        csAttr.expandDown = 0;
708        csAttr.system = 1;
709
710        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
711
712        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
713        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
714        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
715
716        // Set the LDT selector to 0 to deactivate it.
717        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
718
719        Efer efer = 0;
720        efer.sce = 1; // Enable system call extensions.
721        efer.lme = 1; // Enable long mode.
722        efer.lma = 0; // Deactivate long mode.
723        efer.nxe = 1; // Enable nx support.
724        efer.svme = 0; // Disable svm support for now. It isn't implemented.
725        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
726        tc->setMiscReg(MISCREG_EFER, efer);
727
728        //Set up the registers that describe the operating mode.
729        CR0 cr0 = 0;
730        cr0.pg = 1; // Turn on paging.
731        cr0.cd = 0; // Don't disable caching.
732        cr0.nw = 0; // This is bit is defined to be ignored.
733        cr0.am = 0; // No alignment checking
734        cr0.wp = 0; // Supervisor mode can write read only pages
735        cr0.ne = 1;
736        cr0.et = 1; // This should always be 1
737        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
738                    // would be pointless.
739        cr0.em = 0; // Allow x87 instructions to execute natively.
740        cr0.mp = 1; // This doesn't really matter, but the manual suggests
741                    // setting it to one.
742        cr0.pe = 1; // We're definitely in protected mode.
743        tc->setMiscReg(MISCREG_CR0, cr0);
744
745        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
746    }
747}
748
749template<class IntType>
750void
751X86Process::argsInit(int pageSize,
752        std::vector<AuxVector<IntType> > extraAuxvs)
753{
754    int intSize = sizeof(IntType);
755
756    typedef AuxVector<IntType> auxv_t;
757    std::vector<auxv_t> auxv = extraAuxvs;
758
759    string filename;
760    if (argv.size() < 1)
761        filename = "";
762    else
763        filename = argv[0];
764
765    //We want 16 byte alignment
766    uint64_t align = 16;
767
768    // Patch the ld_bias for dynamic executables.
769    updateBias();
770
771    // load object file into target memory
772    objFile->loadSections(initVirtMem);
773
774    enum X86CpuFeature {
775        X86_OnboardFPU = 1 << 0,
776        X86_VirtualModeExtensions = 1 << 1,
777        X86_DebuggingExtensions = 1 << 2,
778        X86_PageSizeExtensions = 1 << 3,
779
780        X86_TimeStampCounter = 1 << 4,
781        X86_ModelSpecificRegisters = 1 << 5,
782        X86_PhysicalAddressExtensions = 1 << 6,
783        X86_MachineCheckExtensions = 1 << 7,
784
785        X86_CMPXCHG8Instruction = 1 << 8,
786        X86_OnboardAPIC = 1 << 9,
787        X86_SYSENTER_SYSEXIT = 1 << 11,
788
789        X86_MemoryTypeRangeRegisters = 1 << 12,
790        X86_PageGlobalEnable = 1 << 13,
791        X86_MachineCheckArchitecture = 1 << 14,
792        X86_CMOVInstruction = 1 << 15,
793
794        X86_PageAttributeTable = 1 << 16,
795        X86_36BitPSEs = 1 << 17,
796        X86_ProcessorSerialNumber = 1 << 18,
797        X86_CLFLUSHInstruction = 1 << 19,
798
799        X86_DebugTraceStore = 1 << 21,
800        X86_ACPIViaMSR = 1 << 22,
801        X86_MultimediaExtensions = 1 << 23,
802
803        X86_FXSAVE_FXRSTOR = 1 << 24,
804        X86_StreamingSIMDExtensions = 1 << 25,
805        X86_StreamingSIMDExtensions2 = 1 << 26,
806        X86_CPUSelfSnoop = 1 << 27,
807
808        X86_HyperThreading = 1 << 28,
809        X86_AutomaticClockControl = 1 << 29,
810        X86_IA64Processor = 1 << 30
811    };
812
813    // Setup the auxiliary vectors. These will already have endian
814    // conversion. Auxiliary vectors are loaded only for elf formatted
815    // executables; the auxv is responsible for passing information from
816    // the OS to the interpreter.
817    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
818    if (elfObject) {
819        uint64_t features =
820            X86_OnboardFPU |
821            X86_VirtualModeExtensions |
822            X86_DebuggingExtensions |
823            X86_PageSizeExtensions |
824            X86_TimeStampCounter |
825            X86_ModelSpecificRegisters |
826            X86_PhysicalAddressExtensions |
827            X86_MachineCheckExtensions |
828            X86_CMPXCHG8Instruction |
829            X86_OnboardAPIC |
830            X86_SYSENTER_SYSEXIT |
831            X86_MemoryTypeRangeRegisters |
832            X86_PageGlobalEnable |
833            X86_MachineCheckArchitecture |
834            X86_CMOVInstruction |
835            X86_PageAttributeTable |
836            X86_36BitPSEs |
837//            X86_ProcessorSerialNumber |
838            X86_CLFLUSHInstruction |
839//            X86_DebugTraceStore |
840//            X86_ACPIViaMSR |
841            X86_MultimediaExtensions |
842            X86_FXSAVE_FXRSTOR |
843            X86_StreamingSIMDExtensions |
844            X86_StreamingSIMDExtensions2 |
845//            X86_CPUSelfSnoop |
846//            X86_HyperThreading |
847//            X86_AutomaticClockControl |
848//            X86_IA64Processor |
849            0;
850
851        //Bits which describe the system hardware capabilities
852        //XXX Figure out what these should be
853        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
854        //The system page size
855        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
856        //Frequency at which times() increments
857        //Defined to be 100 in the kernel source.
858        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
859        // This is the virtual address of the program header tables if they
860        // appear in the executable image.
861        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
862        // This is the size of a program header entry from the elf file.
863        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
864        // This is the number of program headers from the original elf file.
865        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
866        // This is the base address of the ELF interpreter; it should be
867        // zero for static executables or contain the base address for
868        // dynamic executables.
869        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
870        //XXX Figure out what this should be.
871        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
872        //The entry point to the program
873        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
874        //Different user and group IDs
875        auxv.push_back(auxv_t(M5_AT_UID, uid()));
876        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
877        auxv.push_back(auxv_t(M5_AT_GID, gid()));
878        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
879        //Whether to enable "secure mode" in the executable
880        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
881        //The address of 16 "random" bytes.
882        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
883        //The name of the program
884        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
885        //The platform string
886        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
887    }
888
889    //Figure out how big the initial stack needs to be
890
891    // A sentry NULL void pointer at the top of the stack.
892    int sentry_size = intSize;
893
894    //This is the name of the file which is present on the initial stack
895    //It's purpose is to let the user space linker examine the original file.
896    int file_name_size = filename.size() + 1;
897
898    const int numRandomBytes = 16;
899    int aux_data_size = numRandomBytes;
900
901    string platform = "x86_64";
902    aux_data_size += platform.size() + 1;
903
904    int env_data_size = 0;
905    for (int i = 0; i < envp.size(); ++i)
906        env_data_size += envp[i].size() + 1;
907    int arg_data_size = 0;
908    for (int i = 0; i < argv.size(); ++i)
909        arg_data_size += argv[i].size() + 1;
910
911    //The info_block needs to be padded so it's size is a multiple of the
912    //alignment mask. Also, it appears that there needs to be at least some
913    //padding, so if the size is already a multiple, we need to increase it
914    //anyway.
915    int base_info_block_size =
916        sentry_size + file_name_size + env_data_size + arg_data_size;
917
918    int info_block_size = roundUp(base_info_block_size, align);
919
920    int info_block_padding = info_block_size - base_info_block_size;
921
922    //Each auxilliary vector is two 8 byte words
923    int aux_array_size = intSize * 2 * (auxv.size() + 1);
924
925    int envp_array_size = intSize * (envp.size() + 1);
926    int argv_array_size = intSize * (argv.size() + 1);
927
928    int argc_size = intSize;
929
930    //Figure out the size of the contents of the actual initial frame
931    int frame_size =
932        aux_array_size +
933        envp_array_size +
934        argv_array_size +
935        argc_size;
936
937    //There needs to be padding after the auxiliary vector data so that the
938    //very bottom of the stack is aligned properly.
939    int partial_size = frame_size + aux_data_size;
940    int aligned_partial_size = roundUp(partial_size, align);
941    int aux_padding = aligned_partial_size - partial_size;
942
943    int space_needed =
944        info_block_size +
945        aux_data_size +
946        aux_padding +
947        frame_size;
948
949    stack_min = stack_base - space_needed;
950    stack_min = roundDown(stack_min, align);
951    stack_size = roundUp(stack_base - stack_min, pageSize);
952
953    // map memory
954    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
955
956    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
957    allocateMem(stack_end, stack_size);
958
959    // map out initial stack contents
960    IntType sentry_base = stack_base - sentry_size;
961    IntType file_name_base = sentry_base - file_name_size;
962    IntType env_data_base = file_name_base - env_data_size;
963    IntType arg_data_base = env_data_base - arg_data_size;
964    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
965    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
966    IntType envp_array_base = auxv_array_base - envp_array_size;
967    IntType argv_array_base = envp_array_base - argv_array_size;
968    IntType argc_base = argv_array_base - argc_size;
969
970    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
971    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
972    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
973    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
974    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
975    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
976    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
977    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
978    DPRINTF(Stack, "0x%x - argc \n", argc_base);
979    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
980
981    // write contents to stack
982
983    // figure out argc
984    IntType argc = argv.size();
985    IntType guestArgc = X86ISA::htog(argc);
986
987    //Write out the sentry void *
988    IntType sentry_NULL = 0;
989    initVirtMem.writeBlob(sentry_base,
990            (uint8_t*)&sentry_NULL, sentry_size);
991
992    //Write the file name
993    initVirtMem.writeString(file_name_base, filename.c_str());
994
995    //Fix up the aux vectors which point to data
996    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
997    auxv[auxv.size() - 3].a_val = aux_data_base;
998    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
999    auxv[auxv.size() - 2].a_val = argv_array_base;
1000    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1001    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1002
1003    //Copy the aux stuff
1004    for (int x = 0; x < auxv.size(); x++) {
1005        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1006                (uint8_t*)&(auxv[x].a_type), intSize);
1007        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1008                (uint8_t*)&(auxv[x].a_val), intSize);
1009    }
1010    //Write out the terminating zeroed auxilliary vector
1011    const uint64_t zero = 0;
1012    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1013                          (uint8_t*)&zero, intSize);
1014    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1015                          (uint8_t*)&zero, intSize);
1016
1017    initVirtMem.writeString(aux_data_base, platform.c_str());
1018
1019    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1020    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1021
1022    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1023
1024    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1025    //Set the stack pointer register
1026    tc->setIntReg(StackPointerReg, stack_min);
1027
1028    // There doesn't need to be any segment base added in since we're dealing
1029    // with the flat segmentation model.
1030    tc->pcState(getStartPC());
1031
1032    //Align the "stack_min" to a page boundary.
1033    stack_min = roundDown(stack_min, pageSize);
1034}
1035
1036void
1037X86_64Process::argsInit(int intSize, int pageSize)
1038{
1039    std::vector<AuxVector<uint64_t> > extraAuxvs;
1040    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1041                vsyscallPage.base));
1042    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1043}
1044
1045void
1046I386Process::argsInit(int intSize, int pageSize)
1047{
1048    std::vector<AuxVector<uint32_t> > extraAuxvs;
1049    //Tell the binary where the vsyscall part of the vsyscall page is.
1050    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1051                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1052    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1053                vsyscallPage.base));
1054    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1055}
1056
1057void
1058X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1059{
1060    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1061}
1062
1063X86ISA::IntReg
1064X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1065{
1066    assert(i < NumArgumentRegs);
1067    return tc->readIntReg(ArgumentReg[i++]);
1068}
1069
1070void
1071X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1072{
1073    assert(i < NumArgumentRegs);
1074    return tc->setIntReg(ArgumentReg[i], val);
1075}
1076
1077X86ISA::IntReg
1078I386Process::getSyscallArg(ThreadContext *tc, int &i)
1079{
1080    assert(i < NumArgumentRegs32);
1081    return tc->readIntReg(ArgumentReg32[i++]);
1082}
1083
1084X86ISA::IntReg
1085I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1086{
1087    assert(width == 32 || width == 64);
1088    assert(i < NumArgumentRegs);
1089    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1090    if (width == 64)
1091        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1092    return retVal;
1093}
1094
1095void
1096I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1097{
1098    assert(i < NumArgumentRegs);
1099    return tc->setIntReg(ArgumentReg[i], val);
1100}
1101