specialize.isa revision 5788:6d4161a36ca1
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:
9//
10// The software must be used only for Non-Commercial Use which means any
11// use which is NOT directed to receiving any direct monetary
12// compensation for, or commercial advantage from such use.  Illustrative
13// examples of non-commercial use are academic research, personal study,
14// teaching, education and corporate research & development.
15// Illustrative examples of commercial use are distributing products for
16// commercial advantage and providing services using the software for
17// commercial advantage.
18//
19// If you wish to use this software or functionality therein that may be
20// covered by patents for commercial use, please contact:
21//     Director of Intellectual Property Licensing
22//     Office of Strategy and Technology
23//     Hewlett-Packard Company
24//     1501 Page Mill Road
25//     Palo Alto, California  94304
26//
27// Redistributions of source code must retain the above copyright notice,
28// this list of conditions and the following disclaimer.  Redistributions
29// in binary form must reproduce the above copyright notice, this list of
30// conditions and the following disclaimer in the documentation and/or
31// other materials provided with the distribution.  Neither the name of
32// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33// contributors may be used to endorse or promote products derived from
34// this software without specific prior written permission.  No right of
35// sublicense is granted herewith.  Derivatives of the software and
36// output created using the software may be prepared, but only for
37// Non-Commercial Uses.  Derivatives of the software may be shared with
38// others provided: (i) the others agree to abide by the list of
39// conditions herein which includes the Non-Commercial Use restrictions;
40// and (ii) such Derivatives of the software include the above copyright
41// notice to acknowledge the contribution from this software where
42// applicable, this list of conditions and the disclaimer below.
43//
44// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
60//  Code to "specialize" a microcode sequence to use a particular
61//  variety of operands
62//
63
64let {{
65    # This code builds up a decode block which decodes based on switchval.
66    # vals is a dict which matches case values with what should be decoded to.
67    # Each element of the dict is a list containing a function and then the
68    # arguments to pass to it.
69    def doSplitDecode(switchVal, vals, default = None):
70        blocks = OutputBlocks()
71        blocks.decode_block = 'switch(%s) {\n' % switchVal
72        for (val, todo) in vals.items():
73            new_blocks = todo[0](*todo[1:])
74            new_blocks.decode_block = \
75                '\tcase %s: %s\n' % (val, new_blocks.decode_block)
76            blocks.append(new_blocks)
77        if default:
78            new_blocks = default[0](*default[1:])
79            new_blocks.decode_block = \
80                '\tdefault: %s\n' % new_blocks.decode_block
81            blocks.append(new_blocks)
82        blocks.decode_block += '}\n'
83        return blocks
84}};
85
86let {{
87    def doRipRelativeDecode(Name, opTypes, env):
88        # print "RIPing %s with opTypes %s" % (Name, opTypes)
89        env.memoryInst = True
90        normEnv = copy.copy(env)
91        normEnv.addToDisassembly(
92                '''printMem(out, env.seg, env.scale, env.index, env.base,
93                    machInst.displacement, env.addressSize, false);''')
94        normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv)
95        ripEnv = copy.copy(env)
96        ripEnv.addToDisassembly(
97                '''printMem(out, env.seg, 1, 0, 0,
98                    machInst.displacement, env.addressSize, true);''')
99        ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv)
100
101        blocks = OutputBlocks()
102        blocks.append(normBlocks)
103        blocks.append(ripBlocks)
104
105        blocks.decode_block = '''
106        if(machInst.modRM.mod == 0 &&
107          machInst.modRM.rm == 5 &&
108          machInst.mode.submode == SixtyFourBitMode)
109        { %s }
110        else
111        { %s }''' % \
112         (ripBlocks.decode_block, normBlocks.decode_block)
113        return blocks
114}};
115
116let {{
117    class OpType(object):
118        parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))")
119        def __init__(self, opTypeString):
120            match = OpType.parser.search(opTypeString)
121            if match == None:
122                raise Exception, "Problem parsing operand type %s" % opTypeString
123            self.reg = match.group("reg")
124            self.tag = match.group("tag")
125            self.size = match.group("size")
126            if not self.size:
127                self.size = match.group("rsize")
128
129    ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
130    ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
131    InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))"
132
133    # This function specializes the given piece of code to use a particular
134    # set of argument types described by "opTypes".
135    def specializeInst(Name, opTypes, env):
136        # print "Specializing %s with opTypes %s" % (Name, opTypes)
137        while len(opTypes):
138            # Parse the operand type string we're working with
139            opType = OpType(opTypes[0])
140            opTypes.pop(0)
141
142            if opType.tag not in ("I", "J"):
143                if opType.size:
144                    env.setSize(opType.size)
145
146            if opType.reg:
147                #Figure out what to do with fixed register operands
148                #This is the index to use, so we should stick it some place.
149                if opType.reg in ("A", "B", "C", "D"):
150                    regString = "INTREG_R%sX" % opType.reg
151                else:
152                    regString = "INTREG_R%s" % opType.reg
153                env.addReg(regString)
154                env.addToDisassembly(
155                        "printReg(out, %s, regSize);\n" % regString)
156                Name += "_R"
157            elif opType.tag == "B":
158                # This refers to registers whose index is encoded as part of the opcode
159                env.addToDisassembly(
160                        "printReg(out, %s, regSize);\n" % InstRegIndex)
161                Name += "_R"
162                env.addReg(InstRegIndex)
163            elif opType.tag == "M":
164                # This refers to memory. The macroop constructor sets up modrm
165                # addressing. Non memory modrm settings should cause an error.
166                env.doModRM = True
167                return doRipRelativeDecode(Name, opTypes, env)
168            elif opType.tag == None or opType.size == None:
169                raise Exception, "Problem parsing operand tag: %s" % opType.tag
170            elif opType.tag == "C":
171                # A control register indexed by the "reg" field
172                env.addReg(ModRMRegIndex)
173                env.addToDisassembly(
174                        "ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex)
175                Name += "_C"
176            elif opType.tag == "D":
177                # A debug register indexed by the "reg" field
178                env.addReg(ModRMRegIndex)
179                env.addToDisassembly(
180                        "ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex)
181                Name += "_D"
182            elif opType.tag == "S":
183                # A segment selector register indexed by the "reg" field
184                env.addReg(ModRMRegIndex)
185                env.addToDisassembly(
186                        "printSegment(out, %s);\n" % ModRMRegIndex)
187                Name += "_S"
188            elif opType.tag in ("G", "P", "T", "V"):
189                # Use the "reg" field of the ModRM byte to select the register
190                env.addReg(ModRMRegIndex)
191                env.addToDisassembly(
192                        "printReg(out, %s, regSize);\n" % ModRMRegIndex)
193                Name += "_R"
194            elif opType.tag in ("E", "Q", "W"):
195                # This might refer to memory or to a register. We need to
196                # divide it up farther.
197                regEnv = copy.copy(env)
198                regEnv.addReg(ModRMRMIndex)
199                regEnv.addToDisassembly(
200                        "printReg(out, %s, regSize);\n" % ModRMRMIndex)
201                # This refers to memory. The macroop constructor should set up
202                # modrm addressing.
203                memEnv = copy.copy(env)
204                memEnv.doModRM = True
205                return doSplitDecode("MODRM_MOD",
206                    {"3" : (specializeInst, Name + "_R", copy.copy(opTypes), regEnv)},
207                           (doRipRelativeDecode, Name, copy.copy(opTypes), memEnv))
208            elif opType.tag in ("I", "J"):
209                # Immediates
210                env.addToDisassembly(
211                        "ccprintf(out, \"%#x\", machInst.immediate);\n")
212                Name += "_I"
213            elif opType.tag == "O":
214                # Immediate containing a memory offset
215                Name += "_MI"
216            elif opType.tag in ("PR", "R", "VR"):
217                # Non register modrm settings should cause an error
218                env.addReg(ModRMRMIndex)
219                env.addToDisassembly(
220                        "printReg(out, %s, regSize);\n" % ModRMRMIndex)
221                Name += "_R"
222            elif opType.tag in ("X", "Y"):
223                # This type of memory addressing is for string instructions.
224                # They'll use the right index and segment internally.
225                if opType.tag == "X":
226                    env.addToDisassembly(
227                            '''printMem(out, env.seg,
228                                1, X86ISA::ZeroReg, X86ISA::INTREG_RSI, 0,
229                                env.addressSize, false);''')
230                else:
231                    env.addToDisassembly(
232                            '''printMem(out, SEGMENT_REG_ES,
233                                1, X86ISA::ZeroReg, X86ISA::INTREG_RDI, 0,
234                                env.addressSize, false);''')
235                Name += "_M"
236            else:
237                raise Exception, "Unrecognized tag %s." % opType.tag
238
239        # Generate code to return a macroop of the given name which will
240        # operate in the "emulation environment" env
241        return genMacroop(Name, env)
242}};
243