regop.isa revision 5901
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company 2// All rights reserved. 3// 4// Redistribution and use of this software in source and binary forms, 5// with or without modification, are permitted provided that the 6// following conditions are met: 7// 8// The software must be used only for Non-Commercial Use which means any 9// use which is NOT directed to receiving any direct monetary 10// compensation for, or commercial advantage from such use. Illustrative 11// examples of non-commercial use are academic research, personal study, 12// teaching, education and corporate research & development. 13// Illustrative examples of commercial use are distributing products for 14// commercial advantage and providing services using the software for 15// commercial advantage. 16// 17// If you wish to use this software or functionality therein that may be 18// covered by patents for commercial use, please contact: 19// Director of Intellectual Property Licensing 20// Office of Strategy and Technology 21// Hewlett-Packard Company 22// 1501 Page Mill Road 23// Palo Alto, California 94304 24// 25// Redistributions of source code must retain the above copyright notice, 26// this list of conditions and the following disclaimer. Redistributions 27// in binary form must reproduce the above copyright notice, this list of 28// conditions and the following disclaimer in the documentation and/or 29// other materials provided with the distribution. Neither the name of 30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its 31// contributors may be used to endorse or promote products derived from 32// this software without specific prior written permission. No right of 33// sublicense is granted herewith. Derivatives of the software and 34// output created using the software may be prepared, but only for 35// Non-Commercial Uses. Derivatives of the software may be shared with 36// others provided: (i) the others agree to abide by the list of 37// conditions herein which includes the Non-Commercial Use restrictions; 38// and (ii) such Derivatives of the software include the above copyright 39// notice to acknowledge the contribution from this software where 40// applicable, this list of conditions and the disclaimer below. 41// 42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 53// 54// Authors: Gabe Black 55 56////////////////////////////////////////////////////////////////////////// 57// 58// RegOp Microop templates 59// 60////////////////////////////////////////////////////////////////////////// 61 62def template MicroRegOpExecute {{ 63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, 64 Trace::InstRecord *traceData) const 65 { 66 Fault fault = NoFault; 67 68 DPRINTF(X86, "The data size is %d\n", dataSize); 69 %(op_decl)s; 70 %(op_rd)s; 71 72 if(%(cond_check)s) 73 { 74 %(code)s; 75 %(flag_code)s; 76 } 77 else 78 { 79 %(else_code)s; 80 } 81 82 //Write the resulting state to the execution context 83 if(fault == NoFault) 84 { 85 %(op_wb)s; 86 } 87 return fault; 88 } 89}}; 90 91def template MicroRegOpImmExecute {{ 92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, 93 Trace::InstRecord *traceData) const 94 { 95 Fault fault = NoFault; 96 97 %(op_decl)s; 98 %(op_rd)s; 99 100 if(%(cond_check)s) 101 { 102 %(code)s; 103 %(flag_code)s; 104 } 105 else 106 { 107 %(else_code)s; 108 } 109 110 //Write the resulting state to the execution context 111 if(fault == NoFault) 112 { 113 %(op_wb)s; 114 } 115 return fault; 116 } 117}}; 118 119def template MicroRegOpDeclare {{ 120 class %(class_name)s : public %(base_class)s 121 { 122 protected: 123 void buildMe(); 124 125 public: 126 %(class_name)s(ExtMachInst _machInst, 127 const char * instMnem, 128 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 129 RegIndex _src1, RegIndex _src2, RegIndex _dest, 130 uint8_t _dataSize, uint16_t _ext); 131 132 %(class_name)s(ExtMachInst _machInst, 133 const char * instMnem, 134 RegIndex _src1, RegIndex _src2, RegIndex _dest, 135 uint8_t _dataSize, uint16_t _ext); 136 137 %(BasicExecDeclare)s 138 }; 139}}; 140 141def template MicroRegOpImmDeclare {{ 142 143 class %(class_name)s : public %(base_class)s 144 { 145 protected: 146 void buildMe(); 147 148 public: 149 %(class_name)s(ExtMachInst _machInst, 150 const char * instMnem, 151 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 152 RegIndex _src1, uint16_t _imm8, RegIndex _dest, 153 uint8_t _dataSize, uint16_t _ext); 154 155 %(class_name)s(ExtMachInst _machInst, 156 const char * instMnem, 157 RegIndex _src1, uint16_t _imm8, RegIndex _dest, 158 uint8_t _dataSize, uint16_t _ext); 159 160 %(BasicExecDeclare)s 161 }; 162}}; 163 164def template MicroRegOpConstructor {{ 165 166 inline void %(class_name)s::buildMe() 167 { 168 %(constructor)s; 169 } 170 171 inline %(class_name)s::%(class_name)s( 172 ExtMachInst machInst, const char * instMnem, 173 RegIndex _src1, RegIndex _src2, RegIndex _dest, 174 uint8_t _dataSize, uint16_t _ext) : 175 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 176 false, false, false, false, 177 _src1, _src2, _dest, _dataSize, _ext, 178 %(op_class)s) 179 { 180 buildMe(); 181 } 182 183 inline %(class_name)s::%(class_name)s( 184 ExtMachInst machInst, const char * instMnem, 185 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 186 RegIndex _src1, RegIndex _src2, RegIndex _dest, 187 uint8_t _dataSize, uint16_t _ext) : 188 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 189 isMicro, isDelayed, isFirst, isLast, 190 _src1, _src2, _dest, _dataSize, _ext, 191 %(op_class)s) 192 { 193 buildMe(); 194 } 195}}; 196 197def template MicroRegOpImmConstructor {{ 198 199 inline void %(class_name)s::buildMe() 200 { 201 %(constructor)s; 202 } 203 204 inline %(class_name)s::%(class_name)s( 205 ExtMachInst machInst, const char * instMnem, 206 RegIndex _src1, uint16_t _imm8, RegIndex _dest, 207 uint8_t _dataSize, uint16_t _ext) : 208 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 209 false, false, false, false, 210 _src1, _imm8, _dest, _dataSize, _ext, 211 %(op_class)s) 212 { 213 buildMe(); 214 } 215 216 inline %(class_name)s::%(class_name)s( 217 ExtMachInst machInst, const char * instMnem, 218 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 219 RegIndex _src1, uint16_t _imm8, RegIndex _dest, 220 uint8_t _dataSize, uint16_t _ext) : 221 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 222 isMicro, isDelayed, isFirst, isLast, 223 _src1, _imm8, _dest, _dataSize, _ext, 224 %(op_class)s) 225 { 226 buildMe(); 227 } 228}}; 229 230output header {{ 231 void 232 divide(uint64_t dividend, uint64_t divisor, 233 uint64_t "ient, uint64_t &remainder); 234 235 enum SegmentSelectorCheck { 236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck, 237 SegSoftIntGateCheck, SegSSCheck, SegIretCheck, SegIntCSCheck, 238 SegTRCheck, SegTSSCheck 239 }; 240 241 enum LongModeDescriptorType { 242 LDT64 = 2, 243 AvailableTSS64 = 9, 244 BusyTSS64 = 0xb, 245 CallGate64 = 0xc, 246 IntGate64 = 0xe, 247 TrapGate64 = 0xf 248 }; 249}}; 250 251output decoder {{ 252 void 253 divide(uint64_t dividend, uint64_t divisor, 254 uint64_t "ient, uint64_t &remainder) 255 { 256 //Check for divide by zero. 257 if (divisor == 0) 258 panic("Divide by zero!\\n"); 259 //If the divisor is bigger than the dividend, don't do anything. 260 if (divisor <= dividend) { 261 //Shift the divisor so it's msb lines up with the dividend. 262 int dividendMsb = findMsbSet(dividend); 263 int divisorMsb = findMsbSet(divisor); 264 int shift = dividendMsb - divisorMsb; 265 divisor <<= shift; 266 //Compute what we'll add to the quotient if the divisor isn't 267 //now larger than the dividend. 268 uint64_t quotientBit = 1; 269 quotientBit <<= shift; 270 //If we need to step back a bit (no pun intended) because the 271 //divisor got too to large, do that here. This is the "or two" 272 //part of one or two bit division. 273 if (divisor > dividend) { 274 quotientBit >>= 1; 275 divisor >>= 1; 276 } 277 //Decrement the remainder and increment the quotient. 278 quotient += quotientBit; 279 remainder -= divisor; 280 } 281 } 282}}; 283 284let {{ 285 # Make these empty strings so that concatenating onto 286 # them will always work. 287 header_output = "" 288 decoder_output = "" 289 exec_output = "" 290 291 immTemplates = ( 292 MicroRegOpImmDeclare, 293 MicroRegOpImmConstructor, 294 MicroRegOpImmExecute) 295 296 regTemplates = ( 297 MicroRegOpDeclare, 298 MicroRegOpConstructor, 299 MicroRegOpExecute) 300 301 class RegOpMeta(type): 302 def buildCppClasses(self, name, Name, suffix, \ 303 code, flag_code, cond_check, else_code): 304 305 # Globals to stick the output in 306 global header_output 307 global decoder_output 308 global exec_output 309 310 # Stick all the code together so it can be searched at once 311 allCode = "|".join((code, flag_code, cond_check, else_code)) 312 313 # If op2 is used anywhere, make register and immediate versions 314 # of this code. 315 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?") 316 match = matcher.search(allCode) 317 if match: 318 typeQual = "" 319 if match.group("typeQual"): 320 typeQual = match.group("typeQual") 321 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual) 322 self.buildCppClasses(name, Name, suffix, 323 matcher.sub(src2_name, code), 324 matcher.sub(src2_name, flag_code), 325 matcher.sub(src2_name, cond_check), 326 matcher.sub(src2_name, else_code)) 327 self.buildCppClasses(name + "i", Name, suffix + "Imm", 328 matcher.sub("imm8", code), 329 matcher.sub("imm8", flag_code), 330 matcher.sub("imm8", cond_check), 331 matcher.sub("imm8", else_code)) 332 return 333 334 # If there's something optional to do with flags, generate 335 # a version without it and fix up this version to use it. 336 if flag_code != "" or cond_check != "true": 337 self.buildCppClasses(name, Name, suffix, 338 code, "", "true", else_code) 339 suffix = "Flags" + suffix 340 341 # If psrc1 or psrc2 is used, we need to actually insert code to 342 # compute it. 343 matcher = re.compile("(?<!\w)psrc1(?!\w)") 344 if matcher.search(allCode): 345 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code 346 matcher = re.compile("(?<!\w)psrc2(?!\w)") 347 if matcher.search(allCode): 348 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code 349 # Also make available versions which do sign extension 350 matcher = re.compile("(?<!\w)spsrc1(?!\w)") 351 if matcher.search(allCode): 352 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code 353 matcher = re.compile("(?<!\w)spsrc2(?!\w)") 354 if matcher.search(allCode): 355 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code 356 357 base = "X86ISA::RegOp" 358 359 # If imm8 shows up in the code, use the immediate templates, if 360 # not, hopefully the register ones will be correct. 361 templates = regTemplates 362 matcher = re.compile("(?<!\w)imm8(?!\w)") 363 if matcher.search(allCode): 364 base += "Imm" 365 templates = immTemplates 366 367 # Get everything ready for the substitution 368 iop = InstObjParams(name, Name + suffix, base, 369 {"code" : code, 370 "flag_code" : flag_code, 371 "cond_check" : cond_check, 372 "else_code" : else_code}) 373 374 # Generate the actual code (finally!) 375 header_output += templates[0].subst(iop) 376 decoder_output += templates[1].subst(iop) 377 exec_output += templates[2].subst(iop) 378 379 380 def __new__(mcls, Name, bases, dict): 381 abstract = False 382 name = Name.lower() 383 if "abstract" in dict: 384 abstract = dict['abstract'] 385 del dict['abstract'] 386 387 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict) 388 if not abstract: 389 cls.className = Name 390 cls.base_mnemonic = name 391 code = cls.code 392 flag_code = cls.flag_code 393 cond_check = cls.cond_check 394 else_code = cls.else_code 395 396 # Set up the C++ classes 397 mcls.buildCppClasses(cls, name, Name, "", 398 code, flag_code, cond_check, else_code) 399 400 # Hook into the microassembler dict 401 global microopClasses 402 microopClasses[name] = cls 403 404 allCode = "|".join((code, flag_code, cond_check, else_code)) 405 406 # If op2 is used anywhere, make register and immediate versions 407 # of this code. 408 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?") 409 if matcher.search(allCode): 410 microopClasses[name + 'i'] = cls 411 return cls 412 413 414 class RegOp(X86Microop): 415 __metaclass__ = RegOpMeta 416 # This class itself doesn't act as a microop 417 abstract = True 418 419 # Default template parameter values 420 flag_code = "" 421 cond_check = "true" 422 else_code = ";" 423 424 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"): 425 self.dest = dest 426 self.src1 = src1 427 self.op2 = op2 428 self.flags = flags 429 self.dataSize = dataSize 430 if flags is None: 431 self.ext = 0 432 else: 433 if not isinstance(flags, (list, tuple)): 434 raise Exception, "flags must be a list or tuple of flags" 435 self.ext = " | ".join(flags) 436 self.className += "Flags" 437 438 def getAllocator(self, *microFlags): 439 className = self.className 440 if self.mnemonic == self.base_mnemonic + 'i': 441 className += "Imm" 442 allocator = '''new %(class_name)s(machInst, macrocodeBlock 443 %(flags)s, %(src1)s, %(op2)s, %(dest)s, 444 %(dataSize)s, %(ext)s)''' % { 445 "class_name" : className, 446 "flags" : self.microFlagsText(microFlags), 447 "src1" : self.src1, "op2" : self.op2, 448 "dest" : self.dest, 449 "dataSize" : self.dataSize, 450 "ext" : self.ext} 451 return allocator 452 453 class LogicRegOp(RegOp): 454 abstract = True 455 flag_code = ''' 456 //Don't have genFlags handle the OF or CF bits 457 uint64_t mask = CFBit | ECFBit | OFBit; 458 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2); 459 //If a logic microop wants to set these, it wants to set them to 0. 460 ccFlagBits &= ~(CFBit & ext); 461 ccFlagBits &= ~(ECFBit & ext); 462 ccFlagBits &= ~(OFBit & ext); 463 ''' 464 465 class FlagRegOp(RegOp): 466 abstract = True 467 flag_code = \ 468 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);" 469 470 class SubRegOp(RegOp): 471 abstract = True 472 flag_code = \ 473 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);" 474 475 class CondRegOp(RegOp): 476 abstract = True 477 cond_check = "checkCondition(ccFlagBits, ext)" 478 479 class RdRegOp(RegOp): 480 abstract = True 481 def __init__(self, dest, src1=None, dataSize="env.dataSize"): 482 if not src1: 483 src1 = dest 484 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize) 485 486 class WrRegOp(RegOp): 487 abstract = True 488 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"): 489 super(WrRegOp, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize) 490 491 class Add(FlagRegOp): 492 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);' 493 494 class Or(LogicRegOp): 495 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);' 496 497 class Adc(FlagRegOp): 498 code = ''' 499 CCFlagBits flags = ccFlagBits; 500 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize); 501 ''' 502 503 class Sbb(SubRegOp): 504 code = ''' 505 CCFlagBits flags = ccFlagBits; 506 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize); 507 ''' 508 509 class And(LogicRegOp): 510 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)' 511 512 class Sub(SubRegOp): 513 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)' 514 515 class Xor(LogicRegOp): 516 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)' 517 518 # Neither of these is quite correct because it assumes that right shifting 519 # a signed or unsigned value does sign or zero extension respectively. 520 # The C standard says that what happens on a right shift with a 1 in the 521 # MSB position is undefined. On x86 and under likely most compilers the 522 # "right thing" happens, but this isn't a guarantee. 523 class Mul1s(WrRegOp): 524 code = ''' 525 ProdLow = psrc1 * op2; 526 int halfSize = (dataSize * 8) / 2; 527 int64_t spsrc1_h = spsrc1 >> halfSize; 528 int64_t spsrc1_l = spsrc1 & mask(halfSize); 529 int64_t spsrc2_h = sop2 >> halfSize; 530 int64_t spsrc2_l = sop2 & mask(halfSize); 531 ProdHi = ((spsrc1_l * spsrc2_h + spsrc1_h * spsrc2_l + 532 ((spsrc1_l * spsrc2_l) >> halfSize)) >> halfSize) + 533 spsrc1_h * spsrc2_h; 534 ''' 535 536 class Mul1u(WrRegOp): 537 code = ''' 538 ProdLow = psrc1 * op2; 539 int halfSize = (dataSize * 8) / 2; 540 uint64_t psrc1_h = psrc1 >> halfSize; 541 uint64_t psrc1_l = psrc1 & mask(halfSize); 542 uint64_t psrc2_h = op2 >> halfSize; 543 uint64_t psrc2_l = op2 & mask(halfSize); 544 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l + 545 ((psrc1_l * psrc2_l) >> halfSize)) >> halfSize) + 546 psrc1_h * psrc2_h; 547 ''' 548 549 class Mulel(RdRegOp): 550 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);' 551 552 class Muleh(RdRegOp): 553 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"): 554 if not src1: 555 src1 = dest 556 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", flags, dataSize) 557 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);' 558 flag_code = ''' 559 if (ProdHi) 560 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit)); 561 else 562 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit)); 563 ''' 564 565 # One or two bit divide 566 class Div1(WrRegOp): 567 code = ''' 568 //These are temporaries so that modifying them later won't make 569 //the ISA parser think they're also sources. 570 uint64_t quotient = 0; 571 uint64_t remainder = psrc1; 572 //Similarly, this is a temporary so changing it doesn't make it 573 //a source. 574 uint64_t divisor = op2; 575 //This is a temporary just for consistency and clarity. 576 uint64_t dividend = remainder; 577 //Do the division. 578 divide(dividend, divisor, quotient, remainder); 579 //Record the final results. 580 Remainder = remainder; 581 Quotient = quotient; 582 Divisor = divisor; 583 ''' 584 585 # Step divide 586 class Div2(RegOp): 587 code = ''' 588 uint64_t dividend = Remainder; 589 uint64_t divisor = Divisor; 590 uint64_t quotient = Quotient; 591 uint64_t remainder = dividend; 592 int remaining = op2; 593 //If we overshot, do nothing. This lets us unrool division loops a 594 //little. 595 if (remaining) { 596 //Shift in bits from the low order portion of the dividend 597 while(dividend < divisor && remaining) { 598 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1); 599 quotient <<= 1; 600 remaining--; 601 } 602 remainder = dividend; 603 //Do the division. 604 divide(dividend, divisor, quotient, remainder); 605 } 606 //Keep track of how many bits there are still to pull in. 607 DestReg = merge(DestReg, remaining, dataSize); 608 //Record the final results 609 Remainder = remainder; 610 Quotient = quotient; 611 ''' 612 flag_code = ''' 613 if (DestReg == 0) 614 ccFlagBits = ccFlagBits | (ext & EZFBit); 615 else 616 ccFlagBits = ccFlagBits & ~(ext & EZFBit); 617 ''' 618 619 class Divq(RdRegOp): 620 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);' 621 622 class Divr(RdRegOp): 623 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);' 624 625 class Mov(CondRegOp): 626 code = 'DestReg = merge(SrcReg1, op2, dataSize)' 627 else_code = 'DestReg=DestReg;' 628 629 # Shift instructions 630 631 class Sll(RegOp): 632 code = ''' 633 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 634 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize); 635 ''' 636 flag_code = ''' 637 // If the shift amount is zero, no flags should be modified. 638 if (shiftAmt) { 639 //Zero out any flags we might modify. This way we only have to 640 //worry about setting them. 641 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 642 int CFBits = 0; 643 //Figure out if we -would- set the CF bits if requested. 644 if (bits(SrcReg1, dataSize * 8 - shiftAmt)) 645 CFBits = 1; 646 //If some combination of the CF bits need to be set, set them. 647 if ((ext & (CFBit | ECFBit)) && CFBits) 648 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 649 //Figure out what the OF bit should be. 650 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1))) 651 ccFlagBits = ccFlagBits | OFBit; 652 //Use the regular mechanisms to calculate the other flags. 653 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 654 DestReg, psrc1, op2); 655 } 656 ''' 657 658 class Srl(RegOp): 659 code = ''' 660 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 661 // Because what happens to the bits shift -in- on a right shift 662 // is not defined in the C/C++ standard, we have to mask them out 663 // to be sure they're zero. 664 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt); 665 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize); 666 ''' 667 flag_code = ''' 668 // If the shift amount is zero, no flags should be modified. 669 if (shiftAmt) { 670 //Zero out any flags we might modify. This way we only have to 671 //worry about setting them. 672 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 673 //If some combination of the CF bits need to be set, set them. 674 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1)) 675 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 676 //Figure out what the OF bit should be. 677 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1)) 678 ccFlagBits = ccFlagBits | OFBit; 679 //Use the regular mechanisms to calculate the other flags. 680 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 681 DestReg, psrc1, op2); 682 } 683 ''' 684 685 class Sra(RegOp): 686 code = ''' 687 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 688 // Because what happens to the bits shift -in- on a right shift 689 // is not defined in the C/C++ standard, we have to sign extend 690 // them manually to be sure. 691 uint64_t arithMask = 692 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt); 693 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize); 694 ''' 695 flag_code = ''' 696 // If the shift amount is zero, no flags should be modified. 697 if (shiftAmt) { 698 //Zero out any flags we might modify. This way we only have to 699 //worry about setting them. 700 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 701 //If some combination of the CF bits need to be set, set them. 702 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1)) 703 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 704 //Use the regular mechanisms to calculate the other flags. 705 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 706 DestReg, psrc1, op2); 707 } 708 ''' 709 710 class Ror(RegOp): 711 code = ''' 712 uint8_t shiftAmt = 713 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 714 if(shiftAmt) 715 { 716 uint64_t top = psrc1 << (dataSize * 8 - shiftAmt); 717 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt); 718 DestReg = merge(DestReg, top | bottom, dataSize); 719 } 720 else 721 DestReg = DestReg; 722 ''' 723 flag_code = ''' 724 // If the shift amount is zero, no flags should be modified. 725 if (shiftAmt) { 726 //Zero out any flags we might modify. This way we only have to 727 //worry about setting them. 728 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 729 //Find the most and second most significant bits of the result. 730 int msb = bits(DestReg, dataSize * 8 - 1); 731 int smsb = bits(DestReg, dataSize * 8 - 2); 732 //If some combination of the CF bits need to be set, set them. 733 if ((ext & (CFBit | ECFBit)) && msb) 734 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 735 //Figure out what the OF bit should be. 736 if ((ext & OFBit) && (msb ^ smsb)) 737 ccFlagBits = ccFlagBits | OFBit; 738 //Use the regular mechanisms to calculate the other flags. 739 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 740 DestReg, psrc1, op2); 741 } 742 ''' 743 744 class Rcr(RegOp): 745 code = ''' 746 uint8_t shiftAmt = 747 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 748 if(shiftAmt) 749 { 750 CCFlagBits flags = ccFlagBits; 751 uint64_t top = flags.cf << (dataSize * 8 - shiftAmt); 752 if(shiftAmt > 1) 753 top |= psrc1 << (dataSize * 8 - shiftAmt - 1); 754 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt); 755 DestReg = merge(DestReg, top | bottom, dataSize); 756 } 757 else 758 DestReg = DestReg; 759 ''' 760 flag_code = ''' 761 // If the shift amount is zero, no flags should be modified. 762 if (shiftAmt) { 763 //Zero out any flags we might modify. This way we only have to 764 //worry about setting them. 765 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 766 //Figure out what the OF bit should be. 767 if ((ext & OFBit) && ((ccFlagBits & CFBit) ^ 768 bits(SrcReg1, dataSize * 8 - 1))) 769 ccFlagBits = ccFlagBits | OFBit; 770 //If some combination of the CF bits need to be set, set them. 771 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1)) 772 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 773 //Use the regular mechanisms to calculate the other flags. 774 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 775 DestReg, psrc1, op2); 776 } 777 ''' 778 779 class Rol(RegOp): 780 code = ''' 781 uint8_t shiftAmt = 782 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 783 if(shiftAmt) 784 { 785 uint64_t top = psrc1 << shiftAmt; 786 uint64_t bottom = 787 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt); 788 DestReg = merge(DestReg, top | bottom, dataSize); 789 } 790 else 791 DestReg = DestReg; 792 ''' 793 flag_code = ''' 794 // If the shift amount is zero, no flags should be modified. 795 if (shiftAmt) { 796 //Zero out any flags we might modify. This way we only have to 797 //worry about setting them. 798 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 799 //The CF bits, if set, would be set to the lsb of the result. 800 int lsb = DestReg & 0x1; 801 int msb = bits(DestReg, dataSize * 8 - 1); 802 //If some combination of the CF bits need to be set, set them. 803 if ((ext & (CFBit | ECFBit)) && lsb) 804 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 805 //Figure out what the OF bit should be. 806 if ((ext & OFBit) && (msb ^ lsb)) 807 ccFlagBits = ccFlagBits | OFBit; 808 //Use the regular mechanisms to calculate the other flags. 809 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 810 DestReg, psrc1, op2); 811 } 812 ''' 813 814 class Rcl(RegOp): 815 code = ''' 816 uint8_t shiftAmt = 817 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 818 if(shiftAmt) 819 { 820 CCFlagBits flags = ccFlagBits; 821 uint64_t top = psrc1 << shiftAmt; 822 uint64_t bottom = flags.cf << (shiftAmt - 1); 823 if(shiftAmt > 1) 824 bottom |= 825 bits(psrc1, dataSize * 8 - 1, 826 dataSize * 8 - shiftAmt + 1); 827 DestReg = merge(DestReg, top | bottom, dataSize); 828 } 829 else 830 DestReg = DestReg; 831 ''' 832 flag_code = ''' 833 // If the shift amount is zero, no flags should be modified. 834 if (shiftAmt) { 835 //Zero out any flags we might modify. This way we only have to 836 //worry about setting them. 837 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 838 int msb = bits(DestReg, dataSize * 8 - 1); 839 int CFBits = bits(SrcReg1, dataSize * 8 - shiftAmt); 840 //If some combination of the CF bits need to be set, set them. 841 if ((ext & (CFBit | ECFBit)) && CFBits) 842 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 843 //Figure out what the OF bit should be. 844 if ((ext & OFBit) && (msb ^ CFBits)) 845 ccFlagBits = ccFlagBits | OFBit; 846 //Use the regular mechanisms to calculate the other flags. 847 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 848 DestReg, psrc1, op2); 849 } 850 ''' 851 852 class Wrip(WrRegOp, CondRegOp): 853 code = 'RIP = psrc1 + sop2 + CSBase' 854 else_code="RIP = RIP;" 855 856 class Wruflags(WrRegOp): 857 code = 'ccFlagBits = psrc1 ^ op2' 858 859 class Wrflags(WrRegOp): 860 code = ''' 861 MiscReg newFlags = psrc1 ^ op2; 862 MiscReg userFlagMask = 0xDD5; 863 // Get only the user flags 864 ccFlagBits = newFlags & userFlagMask; 865 // Get everything else 866 nccFlagBits = newFlags & ~userFlagMask; 867 ''' 868 869 class Rdip(RdRegOp): 870 code = 'DestReg = RIP - CSBase' 871 872 class Ruflags(RdRegOp): 873 code = 'DestReg = ccFlagBits' 874 875 class Rflags(RdRegOp): 876 code = 'DestReg = ccFlagBits | nccFlagBits' 877 878 class Ruflag(RegOp): 879 code = ''' 880 int flag = bits(ccFlagBits, imm8); 881 DestReg = merge(DestReg, flag, dataSize); 882 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) : 883 (ccFlagBits & ~EZFBit); 884 ''' 885 def __init__(self, dest, imm, flags=None, \ 886 dataSize="env.dataSize"): 887 super(Ruflag, self).__init__(dest, \ 888 "NUM_INTREGS", imm, flags, dataSize) 889 890 class Rflag(RegOp): 891 code = ''' 892 MiscReg flagMask = 0x3F7FDD5; 893 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask; 894 int flag = bits(flags, imm8); 895 DestReg = merge(DestReg, flag, dataSize); 896 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) : 897 (ccFlagBits & ~EZFBit); 898 ''' 899 def __init__(self, dest, imm, flags=None, \ 900 dataSize="env.dataSize"): 901 super(Rflag, self).__init__(dest, \ 902 "NUM_INTREGS", imm, flags, dataSize) 903 904 class Sext(RegOp): 905 code = ''' 906 IntReg val = psrc1; 907 // Mask the bit position so that it wraps. 908 int bitPos = op2 & (dataSize * 8 - 1); 909 int sign_bit = bits(val, bitPos, bitPos); 910 uint64_t maskVal = mask(bitPos+1); 911 val = sign_bit ? (val | ~maskVal) : (val & maskVal); 912 DestReg = merge(DestReg, val, dataSize); 913 ''' 914 flag_code = ''' 915 if (!sign_bit) 916 ccFlagBits = ccFlagBits & 917 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit)); 918 else 919 ccFlagBits = ccFlagBits | 920 (ext & (CFBit | ECFBit | ZFBit | EZFBit)); 921 ''' 922 923 class Zext(RegOp): 924 code = 'DestReg = bits(psrc1, op2, 0);' 925 926 class Rdcr(RegOp): 927 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 928 super(Rdcr, self).__init__(dest, \ 929 src1, "NUM_INTREGS", flags, dataSize) 930 code = ''' 931 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) { 932 fault = new InvalidOpcode(); 933 } else { 934 DestReg = ControlSrc1; 935 } 936 ''' 937 938 class Wrcr(RegOp): 939 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 940 super(Wrcr, self).__init__(dest, \ 941 src1, "NUM_INTREGS", flags, dataSize) 942 code = ''' 943 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) { 944 fault = new InvalidOpcode(); 945 } else { 946 // There are *s in the line below so it doesn't confuse the 947 // parser. They may be unnecessary. 948 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize); 949 MiscReg newVal = psrc1; 950 951 // Check for any modifications that would cause a fault. 952 switch(dest) { 953 case 0: 954 { 955 Efer efer = EferOp; 956 CR0 cr0 = newVal; 957 CR4 oldCr4 = CR4Op; 958 if (bits(newVal, 63, 32) || 959 (!cr0.pe && cr0.pg) || 960 (!cr0.cd && cr0.nw) || 961 (cr0.pg && efer.lme && !oldCr4.pae)) 962 fault = new GeneralProtection(0); 963 } 964 break; 965 case 2: 966 break; 967 case 3: 968 break; 969 case 4: 970 { 971 CR4 cr4 = newVal; 972 // PAE can't be disabled in long mode. 973 if (bits(newVal, 63, 11) || 974 (machInst.mode.mode == LongMode && !cr4.pae)) 975 fault = new GeneralProtection(0); 976 } 977 break; 978 case 8: 979 { 980 if (bits(newVal, 63, 4)) 981 fault = new GeneralProtection(0); 982 } 983 default: 984 panic("Unrecognized control register %d.\\n", dest); 985 } 986 ControlDest = newVal; 987 } 988 ''' 989 990 # Microops for manipulating segmentation registers 991 class SegOp(CondRegOp): 992 abstract = True 993 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 994 super(SegOp, self).__init__(dest, \ 995 src1, "NUM_INTREGS", flags, dataSize) 996 997 class Wrbase(SegOp): 998 code = ''' 999 SegBaseDest = psrc1; 1000 ''' 1001 1002 class Wrlimit(SegOp): 1003 code = ''' 1004 SegLimitDest = psrc1; 1005 ''' 1006 1007 class Wrsel(SegOp): 1008 code = ''' 1009 SegSelDest = psrc1; 1010 ''' 1011 1012 class Rdbase(SegOp): 1013 code = ''' 1014 DestReg = SegBaseSrc1; 1015 ''' 1016 1017 class Rdlimit(SegOp): 1018 code = ''' 1019 DestReg = SegLimitSrc1; 1020 ''' 1021 1022 class RdAttr(SegOp): 1023 code = ''' 1024 DestReg = SegAttrSrc1; 1025 ''' 1026 1027 class Rdsel(SegOp): 1028 code = ''' 1029 DestReg = SegSelSrc1; 1030 ''' 1031 1032 class Rdval(RegOp): 1033 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1034 super(Rdval, self).__init__(dest, \ 1035 src1, "NUM_INTREGS", flags, dataSize) 1036 code = ''' 1037 DestReg = MiscRegSrc1; 1038 ''' 1039 1040 class Wrval(RegOp): 1041 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1042 super(Wrval, self).__init__(dest, \ 1043 src1, "NUM_INTREGS", flags, dataSize) 1044 code = ''' 1045 MiscRegDest = SrcReg1; 1046 ''' 1047 1048 class Chks(RegOp): 1049 def __init__(self, dest, src1, src2=0, 1050 flags=None, dataSize="env.dataSize"): 1051 super(Chks, self).__init__(dest, 1052 src1, src2, flags, dataSize) 1053 code = ''' 1054 // The selector is in source 1 and can be at most 16 bits. 1055 SegSelector selector = DestReg; 1056 SegDescriptor desc = SrcReg1; 1057 HandyM5Reg m5reg = M5Reg; 1058 1059 switch (imm8) 1060 { 1061 case SegNoCheck: 1062 break; 1063 case SegCSCheck: 1064 panic("CS checks for far calls/jumps not implemented.\\n"); 1065 break; 1066 case SegCallGateCheck: 1067 panic("CS checks for far calls/jumps through call gates" 1068 "not implemented.\\n"); 1069 break; 1070 case SegSoftIntGateCheck: 1071 // Check permissions. 1072 if (desc.dpl < m5reg.cpl) { 1073 fault = new GeneralProtection(selector); 1074 } 1075 // Fall through on purpose 1076 case SegIntGateCheck: 1077 // Make sure the gate's the right type. 1078 if ((m5reg.mode == LongMode && (desc.type & 0xe) != 0xe) || 1079 ((desc.type & 0x6) != 0x6)) { 1080 fault = new GeneralProtection(0); 1081 } 1082 break; 1083 case SegSSCheck: 1084 if (selector.si || selector.ti) { 1085 if (!desc.p) { 1086 fault = new StackFault(selector); 1087 } 1088 } else { 1089 if ((m5reg.submode != SixtyFourBitMode || 1090 m5reg.cpl == 3) || 1091 !(desc.s == 1 && 1092 desc.type.codeOrData == 0 && desc.type.w) || 1093 (desc.dpl != m5reg.cpl) || 1094 (selector.rpl != m5reg.cpl)) { 1095 fault = new GeneralProtection(selector); 1096 } 1097 } 1098 break; 1099 case SegIretCheck: 1100 { 1101 if ((!selector.si && !selector.ti) || 1102 (selector.rpl < m5reg.cpl) || 1103 !(desc.s == 1 && desc.type.codeOrData == 1) || 1104 (!desc.type.c && desc.dpl != selector.rpl) || 1105 (desc.type.c && desc.dpl > selector.rpl)) { 1106 fault = new GeneralProtection(selector); 1107 } else if (!desc.p) { 1108 fault = new SegmentNotPresent(selector); 1109 } 1110 break; 1111 } 1112 case SegIntCSCheck: 1113 if (m5reg.mode == LongMode) { 1114 if (desc.l != 1 || desc.d != 0) { 1115 fault = new GeneralProtection(selector); 1116 } 1117 } else { 1118 panic("Interrupt CS checks not implemented " 1119 "in legacy mode.\\n"); 1120 } 1121 break; 1122 case SegTRCheck: 1123 if (!selector.si || selector.ti) { 1124 fault = new GeneralProtection(selector); 1125 } 1126 break; 1127 case SegTSSCheck: 1128 if (!desc.p) { 1129 fault = new SegmentNotPresent(selector); 1130 } else if (!(desc.type == 0x9 || 1131 (desc.type == 1 && 1132 m5reg.mode != LongMode))) { 1133 1134 } 1135 break; 1136 default: 1137 panic("Undefined segment check type.\\n"); 1138 } 1139 ''' 1140 flag_code = ''' 1141 // Check for a NULL selector and set ZF,EZF appropriately. 1142 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit)); 1143 if (!selector.si && !selector.ti) 1144 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit)); 1145 ''' 1146 1147 class Wrdh(RegOp): 1148 code = ''' 1149 SegDescriptor desc = SrcReg1; 1150 1151 uint64_t target = bits(SrcReg2, 31, 0) << 32; 1152 switch(desc.type) { 1153 case LDT64: 1154 case AvailableTSS64: 1155 case BusyTSS64: 1156 replaceBits(target, 23, 0, desc.baseLow); 1157 replaceBits(target, 31, 24, desc.baseHigh); 1158 break; 1159 case CallGate64: 1160 case IntGate64: 1161 case TrapGate64: 1162 replaceBits(target, 15, 0, bits(desc, 15, 0)); 1163 replaceBits(target, 31, 16, bits(desc, 63, 48)); 1164 break; 1165 default: 1166 panic("Wrdh used with wrong descriptor type!\\n"); 1167 } 1168 DestReg = target; 1169 ''' 1170 1171 class Wrtsc(WrRegOp): 1172 code = ''' 1173 TscOp = psrc1; 1174 ''' 1175 1176 class Rdtsc(RdRegOp): 1177 code = ''' 1178 DestReg = TscOp; 1179 ''' 1180 1181 class Rdm5reg(RdRegOp): 1182 code = ''' 1183 DestReg = M5Reg; 1184 ''' 1185 1186 class Wrdl(RegOp): 1187 code = ''' 1188 SegDescriptor desc = SrcReg1; 1189 SegSelector selector = SrcReg2; 1190 if (selector.si || selector.ti) { 1191 SegAttr attr = 0; 1192 attr.dpl = desc.dpl; 1193 attr.defaultSize = desc.d; 1194 if (!desc.s) { 1195 // The expand down bit happens to be set for gates. 1196 if (desc.type.e) { 1197 panic("Gate descriptor encountered.\\n"); 1198 } 1199 attr.readable = 1; 1200 attr.writable = 1; 1201 } else { 1202 if (!desc.p) 1203 panic("Segment not present.\\n"); 1204 if (desc.type.codeOrData) { 1205 attr.readable = desc.type.r; 1206 attr.longMode = desc.l; 1207 } else { 1208 attr.expandDown = desc.type.e; 1209 attr.readable = 1; 1210 attr.writable = desc.type.w; 1211 } 1212 } 1213 Addr base = desc.baseLow | (desc.baseHigh << 24); 1214 Addr limit = desc.limitLow | (desc.limitHigh << 16); 1215 if (desc.g) 1216 limit = (limit << 12) | mask(12); 1217 SegBaseDest = base; 1218 SegLimitDest = limit; 1219 SegAttrDest = attr; 1220 } else { 1221 SegBaseDest = SegBaseDest; 1222 SegLimitDest = SegLimitDest; 1223 SegAttrDest = SegAttrDest; 1224 } 1225 ''' 1226}}; 1227