regop.isa revision 6464
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company 2// All rights reserved. 3// 4// Redistribution and use of this software in source and binary forms, 5// with or without modification, are permitted provided that the 6// following conditions are met: 7// 8// The software must be used only for Non-Commercial Use which means any 9// use which is NOT directed to receiving any direct monetary 10// compensation for, or commercial advantage from such use. Illustrative 11// examples of non-commercial use are academic research, personal study, 12// teaching, education and corporate research & development. 13// Illustrative examples of commercial use are distributing products for 14// commercial advantage and providing services using the software for 15// commercial advantage. 16// 17// If you wish to use this software or functionality therein that may be 18// covered by patents for commercial use, please contact: 19// Director of Intellectual Property Licensing 20// Office of Strategy and Technology 21// Hewlett-Packard Company 22// 1501 Page Mill Road 23// Palo Alto, California 94304 24// 25// Redistributions of source code must retain the above copyright notice, 26// this list of conditions and the following disclaimer. Redistributions 27// in binary form must reproduce the above copyright notice, this list of 28// conditions and the following disclaimer in the documentation and/or 29// other materials provided with the distribution. Neither the name of 30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its 31// contributors may be used to endorse or promote products derived from 32// this software without specific prior written permission. No right of 33// sublicense is granted herewith. Derivatives of the software and 34// output created using the software may be prepared, but only for 35// Non-Commercial Uses. Derivatives of the software may be shared with 36// others provided: (i) the others agree to abide by the list of 37// conditions herein which includes the Non-Commercial Use restrictions; 38// and (ii) such Derivatives of the software include the above copyright 39// notice to acknowledge the contribution from this software where 40// applicable, this list of conditions and the disclaimer below. 41// 42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 53// 54// Authors: Gabe Black 55 56////////////////////////////////////////////////////////////////////////// 57// 58// RegOp Microop templates 59// 60////////////////////////////////////////////////////////////////////////// 61 62def template MicroRegOpExecute {{ 63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, 64 Trace::InstRecord *traceData) const 65 { 66 Fault fault = NoFault; 67 68 DPRINTF(X86, "The data size is %d\n", dataSize); 69 %(op_decl)s; 70 %(op_rd)s; 71 72 if(%(cond_check)s) 73 { 74 %(code)s; 75 %(flag_code)s; 76 } 77 else 78 { 79 %(else_code)s; 80 } 81 82 //Write the resulting state to the execution context 83 if(fault == NoFault) 84 { 85 %(op_wb)s; 86 } 87 return fault; 88 } 89}}; 90 91def template MicroRegOpImmExecute {{ 92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, 93 Trace::InstRecord *traceData) const 94 { 95 Fault fault = NoFault; 96 97 %(op_decl)s; 98 %(op_rd)s; 99 100 if(%(cond_check)s) 101 { 102 %(code)s; 103 %(flag_code)s; 104 } 105 else 106 { 107 %(else_code)s; 108 } 109 110 //Write the resulting state to the execution context 111 if(fault == NoFault) 112 { 113 %(op_wb)s; 114 } 115 return fault; 116 } 117}}; 118 119def template MicroRegOpDeclare {{ 120 class %(class_name)s : public %(base_class)s 121 { 122 protected: 123 void buildMe(); 124 125 public: 126 %(class_name)s(ExtMachInst _machInst, 127 const char * instMnem, 128 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 129 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest, 130 uint8_t _dataSize, uint16_t _ext); 131 132 %(class_name)s(ExtMachInst _machInst, 133 const char * instMnem, 134 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest, 135 uint8_t _dataSize, uint16_t _ext); 136 137 %(BasicExecDeclare)s 138 }; 139}}; 140 141def template MicroRegOpImmDeclare {{ 142 143 class %(class_name)s : public %(base_class)s 144 { 145 protected: 146 void buildMe(); 147 148 public: 149 %(class_name)s(ExtMachInst _machInst, 150 const char * instMnem, 151 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 152 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest, 153 uint8_t _dataSize, uint16_t _ext); 154 155 %(class_name)s(ExtMachInst _machInst, 156 const char * instMnem, 157 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest, 158 uint8_t _dataSize, uint16_t _ext); 159 160 %(BasicExecDeclare)s 161 }; 162}}; 163 164def template MicroRegOpConstructor {{ 165 166 inline void %(class_name)s::buildMe() 167 { 168 %(constructor)s; 169 } 170 171 inline %(class_name)s::%(class_name)s( 172 ExtMachInst machInst, const char * instMnem, 173 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest, 174 uint8_t _dataSize, uint16_t _ext) : 175 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 176 false, false, false, false, 177 _src1, _src2, _dest, _dataSize, _ext, 178 %(op_class)s) 179 { 180 buildMe(); 181 } 182 183 inline %(class_name)s::%(class_name)s( 184 ExtMachInst machInst, const char * instMnem, 185 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 186 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest, 187 uint8_t _dataSize, uint16_t _ext) : 188 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 189 isMicro, isDelayed, isFirst, isLast, 190 _src1, _src2, _dest, _dataSize, _ext, 191 %(op_class)s) 192 { 193 buildMe(); 194 } 195}}; 196 197def template MicroRegOpImmConstructor {{ 198 199 inline void %(class_name)s::buildMe() 200 { 201 %(constructor)s; 202 } 203 204 inline %(class_name)s::%(class_name)s( 205 ExtMachInst machInst, const char * instMnem, 206 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest, 207 uint8_t _dataSize, uint16_t _ext) : 208 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 209 false, false, false, false, 210 _src1, _imm8, _dest, _dataSize, _ext, 211 %(op_class)s) 212 { 213 buildMe(); 214 } 215 216 inline %(class_name)s::%(class_name)s( 217 ExtMachInst machInst, const char * instMnem, 218 bool isMicro, bool isDelayed, bool isFirst, bool isLast, 219 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest, 220 uint8_t _dataSize, uint16_t _ext) : 221 %(base_class)s(machInst, "%(mnemonic)s", instMnem, 222 isMicro, isDelayed, isFirst, isLast, 223 _src1, _imm8, _dest, _dataSize, _ext, 224 %(op_class)s) 225 { 226 buildMe(); 227 } 228}}; 229 230output header {{ 231 void 232 divide(uint64_t dividend, uint64_t divisor, 233 uint64_t "ient, uint64_t &remainder); 234 235 enum SegmentSelectorCheck { 236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck, 237 SegSoftIntGateCheck, SegSSCheck, SegIretCheck, SegIntCSCheck, 238 SegTRCheck, SegTSSCheck, SegInGDTCheck, SegLDTCheck 239 }; 240 241 enum LongModeDescriptorType { 242 LDT64 = 2, 243 AvailableTSS64 = 9, 244 BusyTSS64 = 0xb, 245 CallGate64 = 0xc, 246 IntGate64 = 0xe, 247 TrapGate64 = 0xf 248 }; 249}}; 250 251output decoder {{ 252 void 253 divide(uint64_t dividend, uint64_t divisor, 254 uint64_t "ient, uint64_t &remainder) 255 { 256 //Check for divide by zero. 257 if (divisor == 0) 258 panic("Divide by zero!\\n"); 259 //If the divisor is bigger than the dividend, don't do anything. 260 if (divisor <= dividend) { 261 //Shift the divisor so it's msb lines up with the dividend. 262 int dividendMsb = findMsbSet(dividend); 263 int divisorMsb = findMsbSet(divisor); 264 int shift = dividendMsb - divisorMsb; 265 divisor <<= shift; 266 //Compute what we'll add to the quotient if the divisor isn't 267 //now larger than the dividend. 268 uint64_t quotientBit = 1; 269 quotientBit <<= shift; 270 //If we need to step back a bit (no pun intended) because the 271 //divisor got too to large, do that here. This is the "or two" 272 //part of one or two bit division. 273 if (divisor > dividend) { 274 quotientBit >>= 1; 275 divisor >>= 1; 276 } 277 //Decrement the remainder and increment the quotient. 278 quotient += quotientBit; 279 remainder -= divisor; 280 } 281 } 282}}; 283 284let {{ 285 # Make these empty strings so that concatenating onto 286 # them will always work. 287 header_output = "" 288 decoder_output = "" 289 exec_output = "" 290 291 immTemplates = ( 292 MicroRegOpImmDeclare, 293 MicroRegOpImmConstructor, 294 MicroRegOpImmExecute) 295 296 regTemplates = ( 297 MicroRegOpDeclare, 298 MicroRegOpConstructor, 299 MicroRegOpExecute) 300 301 class RegOpMeta(type): 302 def buildCppClasses(self, name, Name, suffix, \ 303 code, flag_code, cond_check, else_code): 304 305 # Globals to stick the output in 306 global header_output 307 global decoder_output 308 global exec_output 309 310 # Stick all the code together so it can be searched at once 311 allCode = "|".join((code, flag_code, cond_check, else_code)) 312 313 # If op2 is used anywhere, make register and immediate versions 314 # of this code. 315 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?") 316 match = matcher.search(allCode) 317 if match: 318 typeQual = "" 319 if match.group("typeQual"): 320 typeQual = match.group("typeQual") 321 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual) 322 self.buildCppClasses(name, Name, suffix, 323 matcher.sub(src2_name, code), 324 matcher.sub(src2_name, flag_code), 325 matcher.sub(src2_name, cond_check), 326 matcher.sub(src2_name, else_code)) 327 self.buildCppClasses(name + "i", Name, suffix + "Imm", 328 matcher.sub("imm8", code), 329 matcher.sub("imm8", flag_code), 330 matcher.sub("imm8", cond_check), 331 matcher.sub("imm8", else_code)) 332 return 333 334 # If there's something optional to do with flags, generate 335 # a version without it and fix up this version to use it. 336 if flag_code != "" or cond_check != "true": 337 self.buildCppClasses(name, Name, suffix, 338 code, "", "true", else_code) 339 suffix = "Flags" + suffix 340 341 # If psrc1 or psrc2 is used, we need to actually insert code to 342 # compute it. 343 matcher = re.compile("(?<!\w)psrc1(?!\w)") 344 if matcher.search(allCode): 345 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code 346 matcher = re.compile("(?<!\w)psrc2(?!\w)") 347 if matcher.search(allCode): 348 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code 349 # Also make available versions which do sign extension 350 matcher = re.compile("(?<!\w)spsrc1(?!\w)") 351 if matcher.search(allCode): 352 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code 353 matcher = re.compile("(?<!\w)spsrc2(?!\w)") 354 if matcher.search(allCode): 355 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code 356 357 base = "X86ISA::RegOp" 358 359 # If imm8 shows up in the code, use the immediate templates, if 360 # not, hopefully the register ones will be correct. 361 templates = regTemplates 362 matcher = re.compile("(?<!\w)imm8(?!\w)") 363 if matcher.search(allCode): 364 base += "Imm" 365 templates = immTemplates 366 367 # Get everything ready for the substitution 368 iop = InstObjParams(name, Name + suffix, base, 369 {"code" : code, 370 "flag_code" : flag_code, 371 "cond_check" : cond_check, 372 "else_code" : else_code}) 373 374 # Generate the actual code (finally!) 375 header_output += templates[0].subst(iop) 376 decoder_output += templates[1].subst(iop) 377 exec_output += templates[2].subst(iop) 378 379 380 def __new__(mcls, Name, bases, dict): 381 abstract = False 382 name = Name.lower() 383 if "abstract" in dict: 384 abstract = dict['abstract'] 385 del dict['abstract'] 386 387 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict) 388 if not abstract: 389 cls.className = Name 390 cls.base_mnemonic = name 391 code = cls.code 392 flag_code = cls.flag_code 393 cond_check = cls.cond_check 394 else_code = cls.else_code 395 396 # Set up the C++ classes 397 mcls.buildCppClasses(cls, name, Name, "", 398 code, flag_code, cond_check, else_code) 399 400 # Hook into the microassembler dict 401 global microopClasses 402 microopClasses[name] = cls 403 404 allCode = "|".join((code, flag_code, cond_check, else_code)) 405 406 # If op2 is used anywhere, make register and immediate versions 407 # of this code. 408 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?") 409 if matcher.search(allCode): 410 microopClasses[name + 'i'] = cls 411 return cls 412 413 414 class RegOp(X86Microop): 415 __metaclass__ = RegOpMeta 416 # This class itself doesn't act as a microop 417 abstract = True 418 419 # Default template parameter values 420 flag_code = "" 421 cond_check = "true" 422 else_code = ";" 423 424 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"): 425 self.dest = dest 426 self.src1 = src1 427 self.op2 = op2 428 self.flags = flags 429 self.dataSize = dataSize 430 if flags is None: 431 self.ext = 0 432 else: 433 if not isinstance(flags, (list, tuple)): 434 raise Exception, "flags must be a list or tuple of flags" 435 self.ext = " | ".join(flags) 436 self.className += "Flags" 437 438 def getAllocator(self, *microFlags): 439 className = self.className 440 if self.mnemonic == self.base_mnemonic + 'i': 441 className += "Imm" 442 allocator = '''new %(class_name)s(machInst, macrocodeBlock 443 %(flags)s, %(src1)s, %(op2)s, %(dest)s, 444 %(dataSize)s, %(ext)s)''' % { 445 "class_name" : className, 446 "flags" : self.microFlagsText(microFlags), 447 "src1" : self.src1, "op2" : self.op2, 448 "dest" : self.dest, 449 "dataSize" : self.dataSize, 450 "ext" : self.ext} 451 return allocator 452 453 class LogicRegOp(RegOp): 454 abstract = True 455 flag_code = ''' 456 //Don't have genFlags handle the OF or CF bits 457 uint64_t mask = CFBit | ECFBit | OFBit; 458 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2); 459 //If a logic microop wants to set these, it wants to set them to 0. 460 ccFlagBits &= ~(CFBit & ext); 461 ccFlagBits &= ~(ECFBit & ext); 462 ccFlagBits &= ~(OFBit & ext); 463 ''' 464 465 class FlagRegOp(RegOp): 466 abstract = True 467 flag_code = \ 468 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);" 469 470 class SubRegOp(RegOp): 471 abstract = True 472 flag_code = \ 473 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);" 474 475 class CondRegOp(RegOp): 476 abstract = True 477 cond_check = "checkCondition(ccFlagBits, ext)" 478 479 class RdRegOp(RegOp): 480 abstract = True 481 def __init__(self, dest, src1=None, dataSize="env.dataSize"): 482 if not src1: 483 src1 = dest 484 super(RdRegOp, self).__init__(dest, src1, \ 485 "InstRegIndex(NUM_INTREGS)", None, dataSize) 486 487 class WrRegOp(RegOp): 488 abstract = True 489 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"): 490 super(WrRegOp, self).__init__("InstRegIndex(NUM_INTREGS)", \ 491 src1, src2, flags, dataSize) 492 493 class Add(FlagRegOp): 494 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);' 495 496 class Or(LogicRegOp): 497 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);' 498 499 class Adc(FlagRegOp): 500 code = ''' 501 CCFlagBits flags = ccFlagBits; 502 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize); 503 ''' 504 505 class Sbb(SubRegOp): 506 code = ''' 507 CCFlagBits flags = ccFlagBits; 508 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize); 509 ''' 510 511 class And(LogicRegOp): 512 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)' 513 514 class Sub(SubRegOp): 515 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)' 516 517 class Xor(LogicRegOp): 518 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)' 519 520 class Mul1s(WrRegOp): 521 code = ''' 522 ProdLow = psrc1 * op2; 523 int halfSize = (dataSize * 8) / 2; 524 uint64_t shifter = (1ULL << halfSize); 525 uint64_t hiResult; 526 uint64_t psrc1_h = psrc1 / shifter; 527 uint64_t psrc1_l = psrc1 & mask(halfSize); 528 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize); 529 uint64_t psrc2_l = op2 & mask(halfSize); 530 hiResult = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l + 531 ((psrc1_l * psrc2_l) / shifter)) /shifter) + 532 psrc1_h * psrc2_h; 533 if (bits(psrc1, dataSize * 8 - 1)) 534 hiResult -= op2; 535 if (bits(op2, dataSize * 8 - 1)) 536 hiResult -= psrc1; 537 ProdHi = hiResult; 538 ''' 539 flag_code = ''' 540 if ((-ProdHi & mask(dataSize * 8)) != 541 bits(ProdLow, dataSize * 8 - 1)) { 542 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit)); 543 } else { 544 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit)); 545 } 546 ''' 547 548 class Mul1u(WrRegOp): 549 code = ''' 550 ProdLow = psrc1 * op2; 551 int halfSize = (dataSize * 8) / 2; 552 uint64_t shifter = (1ULL << halfSize); 553 uint64_t psrc1_h = psrc1 / shifter; 554 uint64_t psrc1_l = psrc1 & mask(halfSize); 555 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize); 556 uint64_t psrc2_l = op2 & mask(halfSize); 557 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l + 558 ((psrc1_l * psrc2_l) / shifter)) / shifter) + 559 psrc1_h * psrc2_h; 560 ''' 561 flag_code = ''' 562 if (ProdHi) { 563 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit)); 564 } else { 565 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit)); 566 } 567 ''' 568 569 class Mulel(RdRegOp): 570 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);' 571 572 class Muleh(RdRegOp): 573 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"): 574 if not src1: 575 src1 = dest 576 super(RdRegOp, self).__init__(dest, src1, \ 577 "InstRegIndex(NUM_INTREGS)", flags, dataSize) 578 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);' 579 580 # One or two bit divide 581 class Div1(WrRegOp): 582 code = ''' 583 //These are temporaries so that modifying them later won't make 584 //the ISA parser think they're also sources. 585 uint64_t quotient = 0; 586 uint64_t remainder = psrc1; 587 //Similarly, this is a temporary so changing it doesn't make it 588 //a source. 589 uint64_t divisor = op2; 590 //This is a temporary just for consistency and clarity. 591 uint64_t dividend = remainder; 592 //Do the division. 593 divide(dividend, divisor, quotient, remainder); 594 //Record the final results. 595 Remainder = remainder; 596 Quotient = quotient; 597 Divisor = divisor; 598 ''' 599 600 # Step divide 601 class Div2(RegOp): 602 code = ''' 603 uint64_t dividend = Remainder; 604 uint64_t divisor = Divisor; 605 uint64_t quotient = Quotient; 606 uint64_t remainder = dividend; 607 int remaining = op2; 608 //If we overshot, do nothing. This lets us unrool division loops a 609 //little. 610 if (remaining) { 611 //Shift in bits from the low order portion of the dividend 612 while(dividend < divisor && remaining) { 613 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1); 614 quotient <<= 1; 615 remaining--; 616 } 617 remainder = dividend; 618 //Do the division. 619 divide(dividend, divisor, quotient, remainder); 620 } 621 //Keep track of how many bits there are still to pull in. 622 DestReg = merge(DestReg, remaining, dataSize); 623 //Record the final results 624 Remainder = remainder; 625 Quotient = quotient; 626 ''' 627 flag_code = ''' 628 if (DestReg == 0) 629 ccFlagBits = ccFlagBits | (ext & EZFBit); 630 else 631 ccFlagBits = ccFlagBits & ~(ext & EZFBit); 632 ''' 633 634 class Divq(RdRegOp): 635 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);' 636 637 class Divr(RdRegOp): 638 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);' 639 640 class Mov(CondRegOp): 641 code = 'DestReg = merge(SrcReg1, op2, dataSize)' 642 else_code = 'DestReg = merge(DestReg, DestReg, dataSize);' 643 644 # Shift instructions 645 646 class Sll(RegOp): 647 code = ''' 648 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 649 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize); 650 ''' 651 flag_code = ''' 652 // If the shift amount is zero, no flags should be modified. 653 if (shiftAmt) { 654 //Zero out any flags we might modify. This way we only have to 655 //worry about setting them. 656 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 657 int CFBits = 0; 658 //Figure out if we -would- set the CF bits if requested. 659 if (shiftAmt <= dataSize * 8 && 660 bits(SrcReg1, dataSize * 8 - shiftAmt)) { 661 CFBits = 1; 662 } 663 //If some combination of the CF bits need to be set, set them. 664 if ((ext & (CFBit | ECFBit)) && CFBits) 665 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 666 //Figure out what the OF bit should be. 667 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1))) 668 ccFlagBits = ccFlagBits | OFBit; 669 //Use the regular mechanisms to calculate the other flags. 670 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 671 DestReg, psrc1, op2); 672 } 673 ''' 674 675 class Srl(RegOp): 676 code = ''' 677 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 678 // Because what happens to the bits shift -in- on a right shift 679 // is not defined in the C/C++ standard, we have to mask them out 680 // to be sure they're zero. 681 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt); 682 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize); 683 ''' 684 flag_code = ''' 685 // If the shift amount is zero, no flags should be modified. 686 if (shiftAmt) { 687 //Zero out any flags we might modify. This way we only have to 688 //worry about setting them. 689 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 690 //If some combination of the CF bits need to be set, set them. 691 if ((ext & (CFBit | ECFBit)) && 692 shiftAmt <= dataSize * 8 && 693 bits(SrcReg1, shiftAmt - 1)) { 694 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 695 } 696 //Figure out what the OF bit should be. 697 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1)) 698 ccFlagBits = ccFlagBits | OFBit; 699 //Use the regular mechanisms to calculate the other flags. 700 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 701 DestReg, psrc1, op2); 702 } 703 ''' 704 705 class Sra(RegOp): 706 code = ''' 707 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 708 // Because what happens to the bits shift -in- on a right shift 709 // is not defined in the C/C++ standard, we have to sign extend 710 // them manually to be sure. 711 uint64_t arithMask = (shiftAmt == 0) ? 0 : 712 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt); 713 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize); 714 ''' 715 flag_code = ''' 716 // If the shift amount is zero, no flags should be modified. 717 if (shiftAmt) { 718 //Zero out any flags we might modify. This way we only have to 719 //worry about setting them. 720 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 721 //If some combination of the CF bits need to be set, set them. 722 uint8_t effectiveShift = 723 (shiftAmt <= dataSize * 8) ? shiftAmt : (dataSize * 8); 724 if ((ext & (CFBit | ECFBit)) && 725 bits(SrcReg1, effectiveShift - 1)) { 726 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 727 } 728 //Use the regular mechanisms to calculate the other flags. 729 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 730 DestReg, psrc1, op2); 731 } 732 ''' 733 734 class Ror(RegOp): 735 code = ''' 736 uint8_t shiftAmt = 737 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 738 uint8_t realShiftAmt = shiftAmt % (dataSize * 8); 739 if(realShiftAmt) 740 { 741 uint64_t top = psrc1 << (dataSize * 8 - realShiftAmt); 742 uint64_t bottom = bits(psrc1, dataSize * 8, realShiftAmt); 743 DestReg = merge(DestReg, top | bottom, dataSize); 744 } 745 else 746 DestReg = merge(DestReg, DestReg, dataSize); 747 ''' 748 flag_code = ''' 749 // If the shift amount is zero, no flags should be modified. 750 if (shiftAmt) { 751 //Zero out any flags we might modify. This way we only have to 752 //worry about setting them. 753 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 754 //Find the most and second most significant bits of the result. 755 int msb = bits(DestReg, dataSize * 8 - 1); 756 int smsb = bits(DestReg, dataSize * 8 - 2); 757 //If some combination of the CF bits need to be set, set them. 758 if ((ext & (CFBit | ECFBit)) && msb) 759 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 760 //Figure out what the OF bit should be. 761 if ((ext & OFBit) && (msb ^ smsb)) 762 ccFlagBits = ccFlagBits | OFBit; 763 //Use the regular mechanisms to calculate the other flags. 764 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 765 DestReg, psrc1, op2); 766 } 767 ''' 768 769 class Rcr(RegOp): 770 code = ''' 771 uint8_t shiftAmt = 772 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 773 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1); 774 if(realShiftAmt) 775 { 776 CCFlagBits flags = ccFlagBits; 777 uint64_t top = flags.cf << (dataSize * 8 - realShiftAmt); 778 if (realShiftAmt > 1) 779 top |= psrc1 << (dataSize * 8 - realShiftAmt + 1); 780 uint64_t bottom = bits(psrc1, dataSize * 8 - 1, realShiftAmt); 781 DestReg = merge(DestReg, top | bottom, dataSize); 782 } 783 else 784 DestReg = merge(DestReg, DestReg, dataSize); 785 ''' 786 flag_code = ''' 787 // If the shift amount is zero, no flags should be modified. 788 if (shiftAmt) { 789 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0; 790 //Zero out any flags we might modify. This way we only have to 791 //worry about setting them. 792 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 793 //Figure out what the OF bit should be. 794 if ((ext & OFBit) && (origCFBit ^ 795 bits(SrcReg1, dataSize * 8 - 1))) { 796 ccFlagBits = ccFlagBits | OFBit; 797 } 798 //If some combination of the CF bits need to be set, set them. 799 if ((ext & (CFBit | ECFBit)) && 800 (realShiftAmt == 0) ? origCFBit : 801 bits(SrcReg1, realShiftAmt - 1)) { 802 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 803 } 804 //Use the regular mechanisms to calculate the other flags. 805 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 806 DestReg, psrc1, op2); 807 } 808 ''' 809 810 class Rol(RegOp): 811 code = ''' 812 uint8_t shiftAmt = 813 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 814 uint8_t realShiftAmt = shiftAmt % (dataSize * 8); 815 if(realShiftAmt) 816 { 817 uint64_t top = psrc1 << realShiftAmt; 818 uint64_t bottom = 819 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - realShiftAmt); 820 DestReg = merge(DestReg, top | bottom, dataSize); 821 } 822 else 823 DestReg = merge(DestReg, DestReg, dataSize); 824 ''' 825 flag_code = ''' 826 // If the shift amount is zero, no flags should be modified. 827 if (shiftAmt) { 828 //Zero out any flags we might modify. This way we only have to 829 //worry about setting them. 830 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 831 //The CF bits, if set, would be set to the lsb of the result. 832 int lsb = DestReg & 0x1; 833 int msb = bits(DestReg, dataSize * 8 - 1); 834 //If some combination of the CF bits need to be set, set them. 835 if ((ext & (CFBit | ECFBit)) && lsb) 836 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 837 //Figure out what the OF bit should be. 838 if ((ext & OFBit) && (msb ^ lsb)) 839 ccFlagBits = ccFlagBits | OFBit; 840 //Use the regular mechanisms to calculate the other flags. 841 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 842 DestReg, psrc1, op2); 843 } 844 ''' 845 846 class Rcl(RegOp): 847 code = ''' 848 uint8_t shiftAmt = 849 (op2 & ((dataSize == 8) ? mask(6) : mask(5))); 850 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1); 851 if(realShiftAmt) 852 { 853 CCFlagBits flags = ccFlagBits; 854 uint64_t top = psrc1 << realShiftAmt; 855 uint64_t bottom = flags.cf << (realShiftAmt - 1); 856 if(shiftAmt > 1) 857 bottom |= 858 bits(psrc1, dataSize * 8 - 1, 859 dataSize * 8 - realShiftAmt + 1); 860 DestReg = merge(DestReg, top | bottom, dataSize); 861 } 862 else 863 DestReg = merge(DestReg, DestReg, dataSize); 864 ''' 865 flag_code = ''' 866 // If the shift amount is zero, no flags should be modified. 867 if (shiftAmt) { 868 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0; 869 //Zero out any flags we might modify. This way we only have to 870 //worry about setting them. 871 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit)); 872 int msb = bits(DestReg, dataSize * 8 - 1); 873 int CFBits = bits(SrcReg1, dataSize * 8 - realShiftAmt); 874 //If some combination of the CF bits need to be set, set them. 875 if ((ext & (CFBit | ECFBit)) && 876 (realShiftAmt == 0) ? origCFBit : CFBits) 877 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit)); 878 //Figure out what the OF bit should be. 879 if ((ext & OFBit) && (msb ^ CFBits)) 880 ccFlagBits = ccFlagBits | OFBit; 881 //Use the regular mechanisms to calculate the other flags. 882 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit), 883 DestReg, psrc1, op2); 884 } 885 ''' 886 887 class Wrip(WrRegOp, CondRegOp): 888 code = 'RIP = psrc1 + sop2 + CSBase' 889 else_code="RIP = RIP;" 890 891 class Wruflags(WrRegOp): 892 code = 'ccFlagBits = psrc1 ^ op2' 893 894 class Wrflags(WrRegOp): 895 code = ''' 896 MiscReg newFlags = psrc1 ^ op2; 897 MiscReg userFlagMask = 0xDD5; 898 // Get only the user flags 899 ccFlagBits = newFlags & userFlagMask; 900 // Get everything else 901 nccFlagBits = newFlags & ~userFlagMask; 902 ''' 903 904 class Rdip(RdRegOp): 905 code = 'DestReg = RIP - CSBase' 906 907 class Ruflags(RdRegOp): 908 code = 'DestReg = ccFlagBits' 909 910 class Rflags(RdRegOp): 911 code = 'DestReg = ccFlagBits | nccFlagBits' 912 913 class Ruflag(RegOp): 914 code = ''' 915 int flag = bits(ccFlagBits, imm8); 916 DestReg = merge(DestReg, flag, dataSize); 917 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) : 918 (ccFlagBits & ~EZFBit); 919 ''' 920 def __init__(self, dest, imm, flags=None, \ 921 dataSize="env.dataSize"): 922 super(Ruflag, self).__init__(dest, \ 923 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize) 924 925 class Rflag(RegOp): 926 code = ''' 927 MiscReg flagMask = 0x3F7FDD5; 928 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask; 929 int flag = bits(flags, imm8); 930 DestReg = merge(DestReg, flag, dataSize); 931 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) : 932 (ccFlagBits & ~EZFBit); 933 ''' 934 def __init__(self, dest, imm, flags=None, \ 935 dataSize="env.dataSize"): 936 super(Rflag, self).__init__(dest, \ 937 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize) 938 939 class Sext(RegOp): 940 code = ''' 941 IntReg val = psrc1; 942 // Mask the bit position so that it wraps. 943 int bitPos = op2 & (dataSize * 8 - 1); 944 int sign_bit = bits(val, bitPos, bitPos); 945 uint64_t maskVal = mask(bitPos+1); 946 val = sign_bit ? (val | ~maskVal) : (val & maskVal); 947 DestReg = merge(DestReg, val, dataSize); 948 ''' 949 flag_code = ''' 950 if (!sign_bit) 951 ccFlagBits = ccFlagBits & 952 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit)); 953 else 954 ccFlagBits = ccFlagBits | 955 (ext & (CFBit | ECFBit | ZFBit | EZFBit)); 956 ''' 957 958 class Zext(RegOp): 959 code = 'DestReg = merge(DestReg, bits(psrc1, op2, 0), dataSize);' 960 961 class Rddr(RegOp): 962 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 963 super(Rddr, self).__init__(dest, \ 964 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize) 965 code = ''' 966 CR4 cr4 = CR4Op; 967 DR7 dr7 = DR7Op; 968 if ((cr4.de == 1 && (src1 == 4 || src1 == 5)) || src1 >= 8) { 969 fault = new InvalidOpcode(); 970 } else if (dr7.gd) { 971 fault = new DebugException(); 972 } else { 973 DestReg = merge(DestReg, DebugSrc1, dataSize); 974 } 975 ''' 976 977 class Wrdr(RegOp): 978 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 979 super(Wrdr, self).__init__(dest, \ 980 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize) 981 code = ''' 982 CR4 cr4 = CR4Op; 983 DR7 dr7 = DR7Op; 984 if ((cr4.de == 1 && (dest == 4 || dest == 5)) || dest >= 8) { 985 fault = new InvalidOpcode(); 986 } else if ((dest == 6 || dest == 7) && bits(psrc1, 63, 32) && 987 machInst.mode.mode == LongMode) { 988 fault = new GeneralProtection(0); 989 } else if (dr7.gd) { 990 fault = new DebugException(); 991 } else { 992 DebugDest = psrc1; 993 } 994 ''' 995 996 class Rdcr(RegOp): 997 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 998 super(Rdcr, self).__init__(dest, \ 999 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize) 1000 code = ''' 1001 if (src1 == 1 || (src1 > 4 && src1 < 8) || (src1 > 8)) { 1002 fault = new InvalidOpcode(); 1003 } else { 1004 DestReg = merge(DestReg, ControlSrc1, dataSize); 1005 } 1006 ''' 1007 1008 class Wrcr(RegOp): 1009 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1010 super(Wrcr, self).__init__(dest, \ 1011 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize) 1012 code = ''' 1013 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) { 1014 fault = new InvalidOpcode(); 1015 } else { 1016 // There are *s in the line below so it doesn't confuse the 1017 // parser. They may be unnecessary. 1018 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize); 1019 MiscReg newVal = psrc1; 1020 1021 // Check for any modifications that would cause a fault. 1022 switch(dest) { 1023 case 0: 1024 { 1025 Efer efer = EferOp; 1026 CR0 cr0 = newVal; 1027 CR4 oldCr4 = CR4Op; 1028 if (bits(newVal, 63, 32) || 1029 (!cr0.pe && cr0.pg) || 1030 (!cr0.cd && cr0.nw) || 1031 (cr0.pg && efer.lme && !oldCr4.pae)) 1032 fault = new GeneralProtection(0); 1033 } 1034 break; 1035 case 2: 1036 break; 1037 case 3: 1038 break; 1039 case 4: 1040 { 1041 CR4 cr4 = newVal; 1042 // PAE can't be disabled in long mode. 1043 if (bits(newVal, 63, 11) || 1044 (machInst.mode.mode == LongMode && !cr4.pae)) 1045 fault = new GeneralProtection(0); 1046 } 1047 break; 1048 case 8: 1049 { 1050 if (bits(newVal, 63, 4)) 1051 fault = new GeneralProtection(0); 1052 } 1053 default: 1054 panic("Unrecognized control register %d.\\n", dest); 1055 } 1056 ControlDest = newVal; 1057 } 1058 ''' 1059 1060 # Microops for manipulating segmentation registers 1061 class SegOp(CondRegOp): 1062 abstract = True 1063 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1064 super(SegOp, self).__init__(dest, \ 1065 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize) 1066 1067 class Wrbase(SegOp): 1068 code = ''' 1069 SegBaseDest = psrc1; 1070 ''' 1071 1072 class Wrlimit(SegOp): 1073 code = ''' 1074 SegLimitDest = psrc1; 1075 ''' 1076 1077 class Wrsel(SegOp): 1078 code = ''' 1079 SegSelDest = psrc1; 1080 ''' 1081 1082 class WrAttr(SegOp): 1083 code = ''' 1084 SegAttrDest = psrc1; 1085 ''' 1086 1087 class Rdbase(SegOp): 1088 code = ''' 1089 DestReg = merge(DestReg, SegBaseSrc1, dataSize); 1090 ''' 1091 1092 class Rdlimit(SegOp): 1093 code = ''' 1094 DestReg = merge(DestReg, SegLimitSrc1, dataSize); 1095 ''' 1096 1097 class RdAttr(SegOp): 1098 code = ''' 1099 DestReg = merge(DestReg, SegAttrSrc1, dataSize); 1100 ''' 1101 1102 class Rdsel(SegOp): 1103 code = ''' 1104 DestReg = merge(DestReg, SegSelSrc1, dataSize); 1105 ''' 1106 1107 class Rdval(RegOp): 1108 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1109 super(Rdval, self).__init__(dest, src1, \ 1110 "InstRegIndex(NUM_INTREGS)", flags, dataSize) 1111 code = ''' 1112 DestReg = MiscRegSrc1; 1113 ''' 1114 1115 class Wrval(RegOp): 1116 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"): 1117 super(Wrval, self).__init__(dest, src1, \ 1118 "InstRegIndex(NUM_INTREGS)", flags, dataSize) 1119 code = ''' 1120 MiscRegDest = SrcReg1; 1121 ''' 1122 1123 class Chks(RegOp): 1124 def __init__(self, dest, src1, src2=0, 1125 flags=None, dataSize="env.dataSize"): 1126 super(Chks, self).__init__(dest, 1127 src1, src2, flags, dataSize) 1128 code = ''' 1129 // The selector is in source 1 and can be at most 16 bits. 1130 SegSelector selector = DestReg; 1131 SegDescriptor desc = SrcReg1; 1132 HandyM5Reg m5reg = M5Reg; 1133 1134 switch (imm8) 1135 { 1136 case SegNoCheck: 1137 break; 1138 case SegCSCheck: 1139 // Make sure it's the right type 1140 if (desc.s == 0 || desc.type.codeOrData != 1) { 1141 fault = new GeneralProtection(0); 1142 } else if (m5reg.cpl != desc.dpl) { 1143 fault = new GeneralProtection(0); 1144 } 1145 break; 1146 case SegCallGateCheck: 1147 panic("CS checks for far calls/jumps through call gates" 1148 "not implemented.\\n"); 1149 break; 1150 case SegSoftIntGateCheck: 1151 // Check permissions. 1152 if (desc.dpl < m5reg.cpl) { 1153 fault = new GeneralProtection(selector); 1154 break; 1155 } 1156 // Fall through on purpose 1157 case SegIntGateCheck: 1158 // Make sure the gate's the right type. 1159 if ((m5reg.mode == LongMode && (desc.type & 0xe) != 0xe) || 1160 ((desc.type & 0x6) != 0x6)) { 1161 fault = new GeneralProtection(0); 1162 } 1163 break; 1164 case SegSSCheck: 1165 if (selector.si || selector.ti) { 1166 if (!desc.p) { 1167 fault = new StackFault(selector); 1168 } 1169 } else { 1170 if ((m5reg.submode != SixtyFourBitMode || 1171 m5reg.cpl == 3) || 1172 !(desc.s == 1 && 1173 desc.type.codeOrData == 0 && desc.type.w) || 1174 (desc.dpl != m5reg.cpl) || 1175 (selector.rpl != m5reg.cpl)) { 1176 fault = new GeneralProtection(selector); 1177 } 1178 } 1179 break; 1180 case SegIretCheck: 1181 { 1182 if ((!selector.si && !selector.ti) || 1183 (selector.rpl < m5reg.cpl) || 1184 !(desc.s == 1 && desc.type.codeOrData == 1) || 1185 (!desc.type.c && desc.dpl != selector.rpl) || 1186 (desc.type.c && desc.dpl > selector.rpl)) { 1187 fault = new GeneralProtection(selector); 1188 } else if (!desc.p) { 1189 fault = new SegmentNotPresent(selector); 1190 } 1191 break; 1192 } 1193 case SegIntCSCheck: 1194 if (m5reg.mode == LongMode) { 1195 if (desc.l != 1 || desc.d != 0) { 1196 fault = new GeneralProtection(selector); 1197 } 1198 } else { 1199 panic("Interrupt CS checks not implemented " 1200 "in legacy mode.\\n"); 1201 } 1202 break; 1203 case SegTRCheck: 1204 if (!selector.si || selector.ti) { 1205 fault = new GeneralProtection(selector); 1206 } 1207 break; 1208 case SegTSSCheck: 1209 if (!desc.p) { 1210 fault = new SegmentNotPresent(selector); 1211 } else if (!(desc.type == 0x9 || 1212 (desc.type == 1 && 1213 m5reg.mode != LongMode))) { 1214 fault = new GeneralProtection(selector); 1215 } 1216 break; 1217 case SegInGDTCheck: 1218 if (selector.ti) { 1219 fault = new GeneralProtection(selector); 1220 } 1221 break; 1222 case SegLDTCheck: 1223 if (!desc.p) { 1224 fault = new SegmentNotPresent(selector); 1225 } else if (desc.type != 0x2) { 1226 fault = new GeneralProtection(selector); 1227 } 1228 break; 1229 default: 1230 panic("Undefined segment check type.\\n"); 1231 } 1232 ''' 1233 flag_code = ''' 1234 // Check for a NULL selector and set ZF,EZF appropriately. 1235 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit)); 1236 if (!selector.si && !selector.ti) 1237 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit)); 1238 ''' 1239 1240 class Wrdh(RegOp): 1241 code = ''' 1242 SegDescriptor desc = SrcReg1; 1243 1244 uint64_t target = bits(SrcReg2, 31, 0) << 32; 1245 switch(desc.type) { 1246 case LDT64: 1247 case AvailableTSS64: 1248 case BusyTSS64: 1249 replaceBits(target, 23, 0, desc.baseLow); 1250 replaceBits(target, 31, 24, desc.baseHigh); 1251 break; 1252 case CallGate64: 1253 case IntGate64: 1254 case TrapGate64: 1255 replaceBits(target, 15, 0, bits(desc, 15, 0)); 1256 replaceBits(target, 31, 16, bits(desc, 63, 48)); 1257 break; 1258 default: 1259 panic("Wrdh used with wrong descriptor type!\\n"); 1260 } 1261 DestReg = target; 1262 ''' 1263 1264 class Wrtsc(WrRegOp): 1265 code = ''' 1266 TscOp = psrc1; 1267 ''' 1268 1269 class Rdtsc(RdRegOp): 1270 code = ''' 1271 DestReg = TscOp; 1272 ''' 1273 1274 class Rdm5reg(RdRegOp): 1275 code = ''' 1276 DestReg = M5Reg; 1277 ''' 1278 1279 class Wrdl(RegOp): 1280 code = ''' 1281 SegDescriptor desc = SrcReg1; 1282 SegSelector selector = SrcReg2; 1283 if (selector.si || selector.ti) { 1284 if (!desc.p) 1285 panic("Segment not present.\\n"); 1286 SegAttr attr = 0; 1287 attr.dpl = desc.dpl; 1288 attr.unusable = 0; 1289 attr.defaultSize = desc.d; 1290 attr.longMode = desc.l; 1291 attr.avl = desc.avl; 1292 attr.granularity = desc.g; 1293 attr.present = desc.p; 1294 attr.system = desc.s; 1295 attr.type = desc.type; 1296 if (!desc.s) { 1297 // The expand down bit happens to be set for gates. 1298 if (desc.type.e) { 1299 panic("Gate descriptor encountered.\\n"); 1300 } 1301 attr.readable = 1; 1302 attr.writable = 1; 1303 attr.expandDown = 0; 1304 } else { 1305 if (desc.type.codeOrData) { 1306 attr.expandDown = 0; 1307 attr.readable = desc.type.r; 1308 attr.writable = 0; 1309 } else { 1310 attr.expandDown = desc.type.e; 1311 attr.readable = 1; 1312 attr.writable = desc.type.w; 1313 } 1314 } 1315 Addr base = desc.baseLow | (desc.baseHigh << 24); 1316 Addr limit = desc.limitLow | (desc.limitHigh << 16); 1317 if (desc.g) 1318 limit = (limit << 12) | mask(12); 1319 SegBaseDest = base; 1320 SegLimitDest = limit; 1321 SegAttrDest = attr; 1322 } else { 1323 SegBaseDest = SegBaseDest; 1324 SegLimitDest = SegLimitDest; 1325 SegAttrDest = SegAttrDest; 1326 } 1327 ''' 1328}}; 1329