microasm.isa revision 4348:5c21bdb46e6d
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:
9//
10// The software must be used only for Non-Commercial Use which means any
11// use which is NOT directed to receiving any direct monetary
12// compensation for, or commercial advantage from such use.  Illustrative
13// examples of non-commercial use are academic research, personal study,
14// teaching, education and corporate research & development.
15// Illustrative examples of commercial use are distributing products for
16// commercial advantage and providing services using the software for
17// commercial advantage.
18//
19// If you wish to use this software or functionality therein that may be
20// covered by patents for commercial use, please contact:
21//     Director of Intellectual Property Licensing
22//     Office of Strategy and Technology
23//     Hewlett-Packard Company
24//     1501 Page Mill Road
25//     Palo Alto, California  94304
26//
27// Redistributions of source code must retain the above copyright notice,
28// this list of conditions and the following disclaimer.  Redistributions
29// in binary form must reproduce the above copyright notice, this list of
30// conditions and the following disclaimer in the documentation and/or
31// other materials provided with the distribution.  Neither the name of
32// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33// contributors may be used to endorse or promote products derived from
34// this software without specific prior written permission.  No right of
35// sublicense is granted herewith.  Derivatives of the software and
36// output created using the software may be prepared, but only for
37// Non-Commercial Uses.  Derivatives of the software may be shared with
38// others provided: (i) the others agree to abide by the list of
39// conditions herein which includes the Non-Commercial Use restrictions;
40// and (ii) such Derivatives of the software include the above copyright
41// notice to acknowledge the contribution from this software where
42// applicable, this list of conditions and the disclaimer below.
43//
44// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
60//  Code to "specialize" a microcode sequence to use a particular
61//  variety of operands
62//
63
64let {{
65    # This code builds up a decode block which decodes based on switchval.
66    # vals is a dict which matches case values with what should be decoded to.
67    # builder is called on the exploded contents of "vals" values to generate
68    # whatever code should be used.
69    def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
70        header_output = ''
71        decoder_output = ''
72        decode_block = 'switch(%s) {\n' % switchVal
73        exec_output = ''
74        for (val, todo) in vals.items():
75            (new_header_output,
76             new_decoder_output,
77             new_decode_block,
78             new_exec_output) = builder(name, Name, *todo)
79            header_output += new_header_output
80            decoder_output += new_decoder_output
81            decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
82            exec_output += new_exec_output
83        if default:
84            (new_header_output,
85             new_decoder_output,
86             new_decode_block,
87             new_exec_output) = builder(name, Name, *default)
88            header_output += new_header_output
89            decoder_output += new_decoder_output
90            decode_block += '\tdefault: %s\n' % new_decode_block
91            exec_output += new_exec_output
92        decode_block += '}\n'
93        return (header_output, decoder_output, decode_block, exec_output)
94}};
95
96let {{
97    class OpType(object):
98        parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
99        def __init__(self, opTypeString):
100            match = OpType.parser.search(opTypeString)
101            if match == None:
102                raise Exception, "Problem parsing operand type %s" % opTypeString
103            self.reg = match.group("reg")
104            self.tag = match.group("tag")
105            self.size = match.group("size")
106
107    # This function specializes the given piece of code to use a particular
108    # set of argument types described by "opTypes". These are "implemented"
109    # in reverse order.
110    def specializeInst(name, Name, code, opTypes):
111        opNum = len(opTypes) - 1
112        while len(opTypes):
113            # print "Building a composite op with tags", opTypes
114            # print "And code", code
115            opNum = len(opTypes) - 1
116            # A regular expression to find the operand placeholders we're
117            # interested in.
118            opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
119
120            # Parse the operand type strign we're working with
121            opType = OpType(opTypes[opNum])
122
123            if opType.reg:
124                #Figure out what to do with fixed register operands
125                if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
126                    code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
127                elif opType.reg == "Al":
128                    # We need a way to specify register width
129                    code = opRe.sub("%{INTREG_RAX}", code)
130                else:
131                    print "Didn't know how to encode fixed register %s!" % opType.reg
132            elif opType.tag == None or opType.size == None:
133                raise Exception, "Problem parsing operand tag: %s" % opType.tag
134            elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
135                # Use the "reg" field of the ModRM byte to select the register
136                code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
137            elif opType.tag in ("E", "Q", "W"):
138                # This might refer to memory or to a register. We need to
139                # divide it up farther.
140                regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
141                regTypes = copy.copy(opTypes)
142                regTypes.pop(-1)
143                # This needs to refer to memory, but we'll fill in the details
144                # later. It needs to take into account unaligned memory
145                # addresses.
146                memCode = opRe.sub("%0", code)
147                memTypes = copy.copy(opTypes)
148                memTypes.pop(-1)
149                return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
150                    {"3" : (regCode, regTypes)}, (memCode, memTypes))
151            elif opType.tag in ("I", "J"):
152                # Immediates are already in the instruction, so don't leave in
153                # those parameters
154                code = opRe.sub("${IMMEDIATE}", code)
155            elif opType.tag == "M":
156                # This needs to refer to memory, but we'll fill in the details
157                # later. It needs to take into account unaligned memory
158                # addresses.
159                code = opRe.sub("%0", code)
160            elif opType.tag in ("PR", "R", "VR"):
161                # There should probably be a check here to verify that mod
162                # is equal to 11b
163                code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
164            else:
165                raise Exception, "Unrecognized tag %s." % opType.tag
166            opTypes.pop(-1)
167
168        # At this point, we've built up "code" to have all the necessary extra
169        # instructions needed to implement whatever types of operands were
170        # specified. Now we'll assemble it it into a StaticInst.
171        return assembleMicro(name, Name, code)
172}};
173
174////////////////////////////////////////////////////////////////////
175//
176//  The microcode assembler
177//
178
179let {{
180    # These are used when setting up microops so that they can specialize their
181    # base class template properly.
182    RegOpType = "RegisterOperand"
183    ImmOpType = "ImmediateOperand"
184}};
185
186let {{
187    class MicroOpStatement(object):
188        def __init__(self):
189            self.className = ''
190            self.label = ''
191            self.args = []
192
193        # This converts a list of python bools into
194        # a comma seperated list of C++ bools.
195        def microFlagsText(self, vals):
196            text = ""
197            for val in vals:
198                if val:
199                    text += ", true"
200                else:
201                    text += ", false"
202            return text
203
204        def getAllocator(self, *microFlags):
205            args = ''
206            signature = "<"
207            emptySig = True
208            for arg in self.args:
209                if not emptySig:
210                    signature += ", "
211                emptySig = False
212                if arg.has_key("operandImm"):
213                    args += ", %s" % arg["operandImm"]
214                    signature += ImmOpType
215                elif arg.has_key("operandReg"):
216                    args += ", %s" % arg["operandReg"]
217                    signature += RegOpType
218                elif arg.has_key("operandLabel"):
219                    raise Exception, "Found a label while creating allocator string."
220                else:
221                    raise Exception, "Unrecognized operand type."
222            signature += ">"
223            return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
224}};
225
226let{{
227    def assembleMicro(name, Name, code):
228
229        # This function takes in a block of microcode assembly and returns
230        # a python list of objects which describe it.
231
232        # Keep this around in case we need it later
233        orig_code = code
234        # A list of the statements we've found thus far
235        statements = []
236
237        # Regular expressions to pull each piece of the statement out at a
238        # time. Each expression expects the thing it's looking for to be at
239        # the beginning of the line, so the previous component is stripped
240        # before continuing.
241        labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
242        lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
243        classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
244        # This recognizes three different flavors of operands:
245        # 1. Raw decimal numbers composed of digits between 0 and 9
246        # 2. Code beginning with "{" and continuing until the first "}"
247        #         ^ This one might need revising
248        # 3. A label, which starts with a capital or small letter, or
249        #    underscore, which is optionally followed by a sequence of
250        #    capital or small letters, underscores, or digts between 0 and 9
251        opRe = re.compile( \
252            r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
253                    r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
254                    r'(\%(?P<operandReg0>\w\w*))|' +
255                    r'(\%\{(?P<operandReg1>[^}]*)\})|' +
256                    r'(\$(?P<operandImm0>\w\w*))|' +
257                    r'(\$\{(?P<operandImm1>[^}]*)\}))')
258        lineMatch = lineRe.search(code)
259        while lineMatch != None:
260            statement = MicroOpStatement()
261            # Get a line and seperate it from the rest of the code
262            line = lineMatch.group("line")
263            orig_line = line
264            # print "Parsing line %s" % line
265            code = lineRe.sub('', code, 1)
266
267            # Find the label, if any
268            labelMatch = labelRe.search(line)
269            if labelMatch != None:
270                statement.label = labelMatch.group("label")
271                # print "Found label %s." % statement.label
272            # Clear the label from the statement
273            line = labelRe.sub('', line, 1)
274
275            # Find the class name which is roughly equivalent to the op name
276            classMatch = classRe.search(line)
277            if classMatch == None:
278                raise Exception, "Couldn't find class name in statement: %s" \
279                        % orig_line
280            else:
281                statement.className = classMatch.group("className")
282                # print "Found class name %s." % statement.className
283
284            # Clear the class name from the statement
285            line = classRe.sub('', line, 1)
286
287            #Find as many arguments as you can
288            statement.args = []
289            opMatch = opRe.search(line)
290            while opMatch is not None:
291                statement.args.append({})
292                # args is a list of dicts which collect different
293                # representations of operand values. Different forms might be
294                # needed in different places, for instance to replace a label
295                # with an offset.
296                for opType in ("operandLabel0", "operandReg0", "operandImm0",
297                               "operandLabel1", "operandReg1", "operandImm1"):
298                    if opMatch.group(opType):
299                        statement.args[-1][opType[:-1]] = opMatch.group(opType)
300                if len(statement.args[-1]) == 0:
301                    print "Problem parsing operand in statement: %s" \
302                            % orig_line
303                line = opRe.sub('', line, 1)
304                # print "Found operand %s." % statement.args[-1]
305                opMatch = opRe.search(line)
306            # print "Found operands", statement.args
307
308            # Add this statement to our collection
309            statements.append(statement)
310
311            # Get the next line
312            lineMatch = lineRe.search(code)
313
314        # Decode the labels into displacements
315
316        labels = {}
317        micropc = 0
318        for statement in statements:
319            if statement.label:
320                labels[statement.label] = count
321            micropc += 1
322        micropc = 0
323        for statement in statements:
324            for arg in statement.args:
325                if arg.has_key("operandLabel"):
326                    if not labels.has_key(arg["operandLabel"]):
327                        raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
328                    # This is assuming that intra microcode branches go to
329                    # the next micropc + displacement, or
330                    # micropc + 1 + displacement.
331                    arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
332            micropc += 1
333
334        # If we can implement this instruction with exactly one microop, just
335        # use that directly.
336        if len(statements) == 1:
337            decode_block = "return %s;" % \
338                            statements[0].getAllocator()
339            return ('', '', decode_block, '')
340        else:
341            # Build a macroop to contain the sequence of microops we've
342            # been given.
343            return genMacroOp(name, Name, statements)
344}};
345