microasm.isa revision 4338:24d31b35bcf9
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:
9//
10// The software must be used only for Non-Commercial Use which means any
11// use which is NOT directed to receiving any direct monetary
12// compensation for, or commercial advantage from such use.  Illustrative
13// examples of non-commercial use are academic research, personal study,
14// teaching, education and corporate research & development.
15// Illustrative examples of commercial use are distributing products for
16// commercial advantage and providing services using the software for
17// commercial advantage.
18//
19// If you wish to use this software or functionality therein that may be
20// covered by patents for commercial use, please contact:
21//     Director of Intellectual Property Licensing
22//     Office of Strategy and Technology
23//     Hewlett-Packard Company
24//     1501 Page Mill Road
25//     Palo Alto, California  94304
26//
27// Redistributions of source code must retain the above copyright notice,
28// this list of conditions and the following disclaimer.  Redistributions
29// in binary form must reproduce the above copyright notice, this list of
30// conditions and the following disclaimer in the documentation and/or
31// other materials provided with the distribution.  Neither the name of
32// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33// contributors may be used to endorse or promote products derived from
34// this software without specific prior written permission.  No right of
35// sublicense is granted herewith.  Derivatives of the software and
36// output created using the software may be prepared, but only for
37// Non-Commercial Uses.  Derivatives of the software may be shared with
38// others provided: (i) the others agree to abide by the list of
39// conditions herein which includes the Non-Commercial Use restrictions;
40// and (ii) such Derivatives of the software include the above copyright
41// notice to acknowledge the contribution from this software where
42// applicable, this list of conditions and the disclaimer below.
43//
44// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
60//  Code to "specialize" a microcode sequence to use a particular
61//  variety of operands
62//
63
64let {{
65    # This builds either a regular or macro op to implement the sequence of
66    # ops we give it.
67    def genInst(name, Name, ops):
68        # If we can implement this instruction with exactly one microop, just
69        # use that directly.
70        newStmnt = ''
71        if len(ops) == 1:
72            decode_block = "return (X86StaticInst *)(%s);" % \
73                            ops[0].getAllocator()
74            return ('', '', decode_block, '')
75        else:
76            # Build a macroop to contain the sequence of microops we've
77            # been given.
78            return genMacroOp(name, Name, ops)
79}};
80
81let {{
82    # This code builds up a decode block which decodes based on switchval.
83    # vals is a dict which matches case values with what should be decoded to.
84    # builder is called on the exploded contents of "vals" values to generate
85    # whatever code should be used.
86    def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
87        header_output = ''
88        decoder_output = ''
89        decode_block = 'switch(%s) {\n' % switchVal
90        exec_output = ''
91        for (val, todo) in vals.items():
92            (new_header_output,
93             new_decoder_output,
94             new_decode_block,
95             new_exec_output) = builder(name, Name, *todo)
96            header_output += new_header_output
97            decoder_output += new_decoder_output
98            decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
99            exec_output += new_exec_output
100        if default:
101            (new_header_output,
102             new_decoder_output,
103             new_decode_block,
104             new_exec_output) = builder(name, Name, *default)
105            header_output += new_header_output
106            decoder_output += new_decoder_output
107            decode_block += '\tdefault: %s\n' % new_decode_block
108            exec_output += new_exec_output
109        decode_block += '}\n'
110        return (header_output, decoder_output, decode_block, exec_output)
111}};
112
113let {{
114    class OpType(object):
115        parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
116        def __init__(self, opTypeString):
117            match = OpType.parser.search(opTypeString)
118            if match == None:
119                raise Exception, "Problem parsing operand type %s" % opTypeString
120            self.reg = match.group("reg")
121            self.tag = match.group("tag")
122            self.size = match.group("size")
123}};
124
125let {{
126
127    # This function specializes the given piece of code to use a particular
128    # set of argument types described by "opTypes". These are "implemented"
129    # in reverse order.
130    def specializeInst(name, Name, code, opTypes):
131        opNum = len(opTypes) - 1
132        while len(opTypes):
133            # print "Building a composite op with tags", opTypes
134            # print "And code", code
135            opNum = len(opTypes) - 1
136            # A regular expression to find the operand placeholders we're
137            # interested in.
138            opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
139
140            # Parse the operand type strign we're working with
141            opType = OpType(opTypes[opNum])
142
143            if opType.reg:
144                #Figure out what to do with fixed register operands
145                if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
146                    code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
147                elif opType.reg == "Al":
148                    # We need a way to specify register width
149                    code = opRe.sub("%{INTREG_RAX}", code)
150                else:
151                    print "Didn't know how to encode fixed register %s!" % opType.reg
152            elif opType.tag == None or opType.size == None:
153                raise Exception, "Problem parsing operand tag: %s" % opType.tag
154            elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
155                # Use the "reg" field of the ModRM byte to select the register
156                code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
157            elif opType.tag in ("E", "Q", "W"):
158                # This might refer to memory or to a register. We need to
159                # divide it up farther.
160                regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
161                regTypes = copy.copy(opTypes)
162                regTypes.pop(-1)
163                # This needs to refer to memory, but we'll fill in the details
164                # later. It needs to take into account unaligned memory
165                # addresses.
166                memCode = opRe.sub("%0", code)
167                memTypes = copy.copy(opTypes)
168                memTypes.pop(-1)
169                return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
170                    {"3" : (regCode, regTypes)}, (memCode, memTypes))
171            elif opType.tag in ("I", "J"):
172                # Immediates are already in the instruction, so don't leave in
173                # those parameters
174                code = opRe.sub("${IMMEDIATE}", code)
175            elif opType.tag == "M":
176                # This needs to refer to memory, but we'll fill in the details
177                # later. It needs to take into account unaligned memory
178                # addresses.
179                code = opRe.sub("%0", code)
180            elif opType.tag in ("PR", "R", "VR"):
181                # There should probably be a check here to verify that mod
182                # is equal to 11b
183                code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
184            else:
185                raise Exception, "Unrecognized tag %s." % opType.tag
186            opTypes.pop(-1)
187
188        # At this point, we've built up "code" to have all the necessary extra
189        # instructions needed to implement whatever types of operands were
190        # specified. Now we'll assemble it it into a microOp sequence.
191        ops = assembleMicro(code)
192
193        # Build a macroop to contain the sequence of microops we've
194        # constructed. The decode block will be used to fill in our
195        # inner decode structure, and the rest will be concatenated and
196        # passed back.
197        return genInst(name, Name, ops)
198}};
199
200////////////////////////////////////////////////////////////////////
201//
202//  The microcode assembler
203//
204
205let {{
206    class MicroOpStatement(object):
207        def __init__(self):
208            self.className = ''
209            self.label = ''
210            self.args = []
211
212        # This converts a list of python bools into
213        # a comma seperated list of C++ bools.
214        def microFlagsText(self, vals):
215            text = ""
216            for val in vals:
217                if val:
218                    text += ", true"
219                else:
220                    text += ", false"
221            return text
222
223        def getAllocator(self, *microFlags):
224            args = ''
225            signature = "<"
226            emptySig = True
227            for arg in self.args:
228                if not emptySig:
229                    signature += ", "
230                emptySig = False
231                if arg.has_key("operandImm"):
232                    args += ", %s" % arg["operandImm"]
233                    signature += ImmOpType
234                elif arg.has_key("operandReg"):
235                    args += ", %s" % arg["operandReg"]
236                    signature += RegOpType
237                elif arg.has_key("operandLabel"):
238                    raise Exception, "Found a label while creating allocator string."
239                else:
240                    raise Exception, "Unrecognized operand type."
241            signature += ">"
242            return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
243}};
244
245let {{
246    def buildLabelDict(ops):
247        labels = {}
248        micropc = 0
249        for op in ops:
250            if op.label:
251                labels[op.label] = count
252            micropc += 1
253        return labels
254}};
255
256let{{
257    def assembleMicro(code):
258        # This function takes in a block of microcode assembly and returns
259        # a python list of objects which describe it.
260
261        # Keep this around in case we need it later
262        orig_code = code
263        # A list of the statements we've found thus far
264        statements = []
265
266        # Regular expressions to pull each piece of the statement out at a
267        # time. Each expression expects the thing it's looking for to be at
268        # the beginning of the line, so the previous component is stripped
269        # before continuing.
270        labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
271        lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
272        classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
273        # This recognizes three different flavors of operands:
274        # 1. Raw decimal numbers composed of digits between 0 and 9
275        # 2. Code beginning with "{" and continuing until the first "}"
276        #         ^ This one might need revising
277        # 3. A label, which starts with a capital or small letter, or
278        #    underscore, which is optionally followed by a sequence of
279        #    capital or small letters, underscores, or digts between 0 and 9
280        opRe = re.compile( \
281            r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
282                    r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
283                    r'(\%(?P<operandReg0>\w\w*))|' +
284                    r'(\%\{(?P<operandReg1>[^}]*)\})|' +
285                    r'(\$(?P<operandImm0>\w\w*))|' +
286                    r'(\$\{(?P<operandImm1>[^}]*)\}))')
287        lineMatch = lineRe.search(code)
288        while lineMatch != None:
289            statement = MicroOpStatement()
290            # Get a line and seperate it from the rest of the code
291            line = lineMatch.group("line")
292            orig_line = line
293            # print "Parsing line %s" % line
294            code = lineRe.sub('', code, 1)
295
296            # Find the label, if any
297            labelMatch = labelRe.search(line)
298            if labelMatch != None:
299                statement.label = labelMatch.group("label")
300                # print "Found label %s." % statement.label
301            # Clear the label from the statement
302            line = labelRe.sub('', line, 1)
303
304            # Find the class name which is roughly equivalent to the op name
305            classMatch = classRe.search(line)
306            if classMatch == None:
307                raise Exception, "Couldn't find class name in statement: %s" \
308                        % orig_line
309            else:
310                statement.className = classMatch.group("className")
311                # print "Found class name %s." % statement.className
312
313            # Clear the class name from the statement
314            line = classRe.sub('', line, 1)
315
316            #Find as many arguments as you can
317            statement.args = []
318            opMatch = opRe.search(line)
319            while opMatch is not None:
320                statement.args.append({})
321                # args is a list of dicts which collect different
322                # representations of operand values. Different forms might be
323                # needed in different places, for instance to replace a label
324                # with an offset.
325                for opType in ("operandLabel0", "operandReg0", "operandImm0",
326                               "operandLabel1", "operandReg1", "operandImm1"):
327                    if opMatch.group(opType):
328                        statement.args[-1][opType[:-1]] = opMatch.group(opType)
329                if len(statement.args[-1]) == 0:
330                    print "Problem parsing operand in statement: %s" \
331                            % orig_line
332                line = opRe.sub('', line, 1)
333                # print "Found operand %s." % statement.args[-1]
334                opMatch = opRe.search(line)
335            # print "Found operands", statement.args
336
337            # Add this statement to our collection
338            statements.append(statement)
339
340            # Get the next line
341            lineMatch = lineRe.search(code)
342
343        # Decode the labels into displacements
344        labels = buildLabelDict(statements)
345        micropc = 0
346        for statement in statements:
347            for arg in statement.args:
348                if arg.has_key("operandLabel"):
349                    if not labels.has_key(arg["operandLabel"]):
350                        raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
351                    # This is assuming that intra microcode branches go to
352                    # the next micropc + displacement, or
353                    # micropc + 1 + displacement.
354                    arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
355            micropc += 1
356        return statements
357}};
358