decoder.hh revision 11165:d90aec9435bd
1/*
2 * Copyright (c) 2012 Google
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 */
30
31#ifndef __ARCH_X86_DECODER_HH__
32#define __ARCH_X86_DECODER_HH__
33
34#include <cassert>
35#include <vector>
36
37#include "arch/x86/regs/misc.hh"
38#include "arch/x86/types.hh"
39#include "base/bitfield.hh"
40#include "base/misc.hh"
41#include "base/trace.hh"
42#include "base/types.hh"
43#include "cpu/decode_cache.hh"
44#include "cpu/static_inst.hh"
45#include "debug/Decoder.hh"
46
47namespace X86ISA
48{
49
50class ISA;
51class Decoder
52{
53  private:
54    //These are defined and documented in decoder_tables.cc
55    static const uint8_t SizeTypeToSize[3][10];
56    typedef const uint8_t ByteTable[256];
57    static ByteTable Prefixes;
58
59    static ByteTable UsesModRMOneByte;
60    static ByteTable UsesModRMTwoByte;
61    static ByteTable UsesModRMThreeByte0F38;
62    static ByteTable UsesModRMThreeByte0F3A;
63
64    static ByteTable ImmediateTypeOneByte;
65    static ByteTable ImmediateTypeTwoByte;
66    static ByteTable ImmediateTypeThreeByte0F38;
67    static ByteTable ImmediateTypeThreeByte0F3A;
68    static ByteTable ImmediateTypeVex[10];
69
70  protected:
71    struct InstBytes
72    {
73        StaticInstPtr si;
74        std::vector<MachInst> chunks;
75        std::vector<MachInst> masks;
76        int lastOffset;
77
78        InstBytes() : lastOffset(0)
79        {}
80    };
81
82    static InstBytes dummy;
83
84    //The bytes to be predecoded
85    MachInst fetchChunk;
86    InstBytes *instBytes;
87    int chunkIdx;
88    //The pc of the start of fetchChunk
89    Addr basePC;
90    //The pc the current instruction started at
91    Addr origPC;
92    //The offset into fetchChunk of current processing
93    int offset;
94    //The extended machine instruction being generated
95    ExtMachInst emi;
96    //Predecoding state
97    X86Mode mode;
98    X86SubMode submode;
99    uint8_t altOp;
100    uint8_t defOp;
101    uint8_t altAddr;
102    uint8_t defAddr;
103    uint8_t stack;
104
105    uint8_t getNextByte()
106    {
107        return ((uint8_t *)&fetchChunk)[offset];
108    }
109
110    void getImmediate(int &collected, uint64_t &current, int size)
111    {
112        //Figure out how many bytes we still need to get for the
113        //immediate.
114        int toGet = size - collected;
115        //Figure out how many bytes are left in our "buffer"
116        int remaining = sizeof(MachInst) - offset;
117        //Get as much as we need, up to the amount available.
118        toGet = toGet > remaining ? remaining : toGet;
119
120        //Shift the bytes we want to be all the way to the right
121        uint64_t partialImm = fetchChunk >> (offset * 8);
122        //Mask off what we don't want
123        partialImm &= mask(toGet * 8);
124        //Shift it over to overlay with our displacement.
125        partialImm <<= (immediateCollected * 8);
126        //Put it into our displacement
127        current |= partialImm;
128        //Update how many bytes we've collected.
129        collected += toGet;
130        consumeBytes(toGet);
131    }
132
133    void updateOffsetState()
134    {
135        assert(offset <= sizeof(MachInst));
136        if (offset == sizeof(MachInst)) {
137            DPRINTF(Decoder, "At the end of a chunk, idx = %d, chunks = %d.\n",
138                    chunkIdx, instBytes->chunks.size());
139            chunkIdx++;
140            if (chunkIdx == instBytes->chunks.size()) {
141                outOfBytes = true;
142            } else {
143                offset = 0;
144                fetchChunk = instBytes->chunks[chunkIdx];
145                basePC += sizeof(MachInst);
146            }
147        }
148    }
149
150    void consumeByte()
151    {
152        offset++;
153        updateOffsetState();
154    }
155
156    void consumeBytes(int numBytes)
157    {
158        offset += numBytes;
159        updateOffsetState();
160    }
161
162    //State machine state
163  protected:
164    //Whether or not we're out of bytes
165    bool outOfBytes;
166    //Whether we've completed generating an ExtMachInst
167    bool instDone;
168    //The size of the displacement value
169    int displacementSize;
170    //The size of the immediate value
171    int immediateSize;
172    //This is how much of any immediate value we've gotten. This is used
173    //for both the actual immediate and the displacement.
174    int immediateCollected;
175
176    enum State {
177        ResetState,
178        FromCacheState,
179        PrefixState,
180        TwoByteVexState,
181        ThreeByteVexFirstState,
182        ThreeByteVexSecondState,
183        OneByteOpcodeState,
184        TwoByteOpcodeState,
185        ThreeByte0F38OpcodeState,
186        ThreeByte0F3AOpcodeState,
187        ModRMState,
188        SIBState,
189        DisplacementState,
190        ImmediateState,
191        //We should never get to this state. Getting here is an error.
192        ErrorState
193    };
194
195    State state;
196
197    //Functions to handle each of the states
198    State doResetState();
199    State doFromCacheState();
200    State doPrefixState(uint8_t);
201    State doTwoByteVexState(uint8_t);
202    State doThreeByteVexFirstState(uint8_t);
203    State doThreeByteVexSecondState(uint8_t);
204    State doOneByteOpcodeState(uint8_t);
205    State doTwoByteOpcodeState(uint8_t);
206    State doThreeByte0F38OpcodeState(uint8_t);
207    State doThreeByte0F3AOpcodeState(uint8_t);
208    State doModRMState(uint8_t);
209    State doSIBState(uint8_t);
210    State doDisplacementState();
211    State doImmediateState();
212
213    //Process the actual opcode found earlier, using the supplied tables.
214    State processOpcode(ByteTable &immTable, ByteTable &modrmTable,
215                        bool addrSizedImm = false);
216    // Process the opcode found with VEX / XOP prefix.
217    State processExtendedOpcode(ByteTable &immTable);
218
219  protected:
220    /// Caching for decoded instruction objects.
221
222    typedef MiscReg CacheKey;
223
224    typedef DecodeCache::AddrMap<Decoder::InstBytes> DecodePages;
225    DecodePages *decodePages;
226    typedef m5::hash_map<CacheKey, DecodePages *> AddrCacheMap;
227    AddrCacheMap addrCacheMap;
228
229    DecodeCache::InstMap *instMap;
230    typedef m5::hash_map<CacheKey, DecodeCache::InstMap *> InstCacheMap;
231    static InstCacheMap instCacheMap;
232
233  public:
234    Decoder(ISA* isa = nullptr) : basePC(0), origPC(0), offset(0),
235        outOfBytes(true), instDone(false),
236        state(ResetState)
237    {
238        memset(&emi, 0, sizeof(emi));
239        mode = LongMode;
240        submode = SixtyFourBitMode;
241        emi.mode.mode = mode;
242        emi.mode.submode = submode;
243        altOp = 0;
244        defOp = 0;
245        altAddr = 0;
246        defAddr = 0;
247        stack = 0;
248        instBytes = &dummy;
249        decodePages = NULL;
250        instMap = NULL;
251    }
252
253    void setM5Reg(HandyM5Reg m5Reg)
254    {
255        mode = (X86Mode)(uint64_t)m5Reg.mode;
256        submode = (X86SubMode)(uint64_t)m5Reg.submode;
257        emi.mode.mode = mode;
258        emi.mode.submode = submode;
259        altOp = m5Reg.altOp;
260        defOp = m5Reg.defOp;
261        altAddr = m5Reg.altAddr;
262        defAddr = m5Reg.defAddr;
263        stack = m5Reg.stack;
264
265        AddrCacheMap::iterator amIter = addrCacheMap.find(m5Reg);
266        if (amIter != addrCacheMap.end()) {
267            decodePages = amIter->second;
268        } else {
269            decodePages = new DecodePages;
270            addrCacheMap[m5Reg] = decodePages;
271        }
272
273        InstCacheMap::iterator imIter = instCacheMap.find(m5Reg);
274        if (imIter != instCacheMap.end()) {
275            instMap = imIter->second;
276        } else {
277            instMap = new DecodeCache::InstMap;
278            instCacheMap[m5Reg] = instMap;
279        }
280    }
281
282    void takeOverFrom(Decoder *old)
283    {
284        mode = old->mode;
285        submode = old->submode;
286        emi.mode.mode = mode;
287        emi.mode.submode = submode;
288        altOp = old->altOp;
289        defOp = old->defOp;
290        altAddr = old->altAddr;
291        defAddr = old->defAddr;
292        stack = old->stack;
293    }
294
295    void reset()
296    {
297        state = ResetState;
298    }
299
300    void process();
301
302    //Use this to give data to the decoder. This should be used
303    //when there is control flow.
304    void moreBytes(const PCState &pc, Addr fetchPC, MachInst data)
305    {
306        DPRINTF(Decoder, "Getting more bytes.\n");
307        basePC = fetchPC;
308        offset = (fetchPC >= pc.instAddr()) ? 0 : pc.instAddr() - fetchPC;
309        fetchChunk = data;
310        outOfBytes = false;
311        process();
312    }
313
314    bool needMoreBytes()
315    {
316        return outOfBytes;
317    }
318
319    bool instReady()
320    {
321        return instDone;
322    }
323
324    void
325    updateNPC(X86ISA::PCState &nextPC)
326    {
327        if (!nextPC.size()) {
328            int size = basePC + offset - origPC;
329            DPRINTF(Decoder,
330                    "Calculating the instruction size: "
331                    "basePC: %#x offset: %#x origPC: %#x size: %d\n",
332                    basePC, offset, origPC, size);
333            nextPC.size(size);
334            nextPC.npc(nextPC.pc() + size);
335        }
336    }
337
338  public:
339    StaticInstPtr decodeInst(ExtMachInst mach_inst);
340
341    /// Decode a machine instruction.
342    /// @param mach_inst The binary instruction to decode.
343    /// @retval A pointer to the corresponding StaticInst object.
344    StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
345    StaticInstPtr decode(X86ISA::PCState &nextPC);
346};
347
348} // namespace X86ISA
349
350#endif // __ARCH_X86_DECODER_HH__
351