util.isa revision 4224:7e828583f2cb
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37        /**
38         * Base class for memory operations.
39         */
40        class Mem : public SparcStaticInst
41        {
42          protected:
43
44            // Constructor
45            Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46                SparcStaticInst(mnem, _machInst, __opClass)
47            {
48            }
49
50            std::string generateDisassembly(Addr pc,
51                    const SymbolTable *symtab) const;
52        };
53
54        /**
55         * Class for memory operations which use an immediate offset.
56         */
57        class MemImm : public Mem
58        {
59          protected:
60
61            // Constructor
62            MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63                Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64            {}
65
66            std::string generateDisassembly(Addr pc,
67                    const SymbolTable *symtab) const;
68
69            const int32_t imm;
70        };
71}};
72
73output decoder {{
74        std::string Mem::generateDisassembly(Addr pc,
75                const SymbolTable *symtab) const
76        {
77            std::stringstream response;
78            bool load = flags[IsLoad];
79            bool store = flags[IsStore];
80
81            printMnemonic(response, mnemonic);
82            if(store)
83            {
84                printReg(response, _srcRegIdx[0]);
85                ccprintf(response, ", ");
86            }
87            ccprintf(response, "[");
88            if(_srcRegIdx[!store ? 0 : 1] != 0)
89            {
90                printSrcReg(response, !store ? 0 : 1);
91                ccprintf(response, " + ");
92            }
93            printSrcReg(response, !store ? 1 : 2);
94            ccprintf(response, "]");
95            if(load)
96            {
97                ccprintf(response, ", ");
98                printReg(response, _destRegIdx[0]);
99            }
100
101            return response.str();
102        }
103
104        std::string MemImm::generateDisassembly(Addr pc,
105                const SymbolTable *symtab) const
106        {
107            std::stringstream response;
108            bool load = flags[IsLoad];
109            bool save = flags[IsStore];
110
111            printMnemonic(response, mnemonic);
112            if(save)
113            {
114                printReg(response, _srcRegIdx[0]);
115                ccprintf(response, ", ");
116            }
117            ccprintf(response, "[");
118            if(_srcRegIdx[!save ? 0 : 1] != 0)
119            {
120                printReg(response, _srcRegIdx[!save ? 0 : 1]);
121                ccprintf(response, " + ");
122            }
123            if(imm >= 0)
124                ccprintf(response, "0x%x]", imm);
125            else
126                ccprintf(response, "-0x%x]", -imm);
127            if(load)
128            {
129                ccprintf(response, ", ");
130                printReg(response, _destRegIdx[0]);
131            }
132
133            return response.str();
134        }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140                Trace::InstRecord *traceData) const
141        {
142            Fault fault = NoFault;
143            Addr EA;
144            %(fp_enable_check)s;
145            %(op_decl)s;
146            %(op_rd)s;
147            %(ea_code)s;
148            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
149            %(fault_check)s;
150            if(fault == NoFault)
151            {
152                fault = xc->read(EA, (%(mem_acc_type)s%(mem_acc_size)s_t&)Mem, %(asi_val)s);
153            }
154            if(fault == NoFault)
155            {
156                %(code)s;
157            }
158            if(fault == NoFault)
159            {
160                    //Write the resulting state to the execution context
161                    %(op_wb)s;
162            }
163
164            return fault;
165        }
166}};
167
168def template LoadInitiateAcc {{
169        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
170                Trace::InstRecord * traceData) const
171        {
172            Fault fault = NoFault;
173            Addr EA;
174            %(fp_enable_check)s;
175            %(op_decl)s;
176            %(op_rd)s;
177            %(ea_code)s;
178            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
179            %(fault_check)s;
180            if(fault == NoFault)
181            {
182                fault = xc->read(EA, (%(mem_acc_type)s%(mem_acc_size)s_t&)Mem, %(asi_val)s);
183            }
184            return fault;
185        }
186}};
187
188def template LoadCompleteAcc {{
189        Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
190                Trace::InstRecord * traceData) const
191        {
192            Fault fault = NoFault;
193            %(op_decl)s;
194            %(op_rd)s;
195            Mem = pkt->get<typeof(Mem)>();
196            %(code)s;
197            if(fault == NoFault)
198            {
199                %(op_wb)s;
200            }
201            return fault;
202        }
203}};
204
205//This template provides the execute functions for a store
206def template StoreExecute {{
207        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
208                Trace::InstRecord *traceData) const
209        {
210            Fault fault = NoFault;
211            //This is to support the conditional store in cas instructions.
212            //It should be optomized out in all the others
213            bool storeCond = true;
214            Addr EA;
215            %(fp_enable_check)s;
216            %(op_decl)s;
217            %(op_rd)s;
218            %(ea_code)s;
219            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
220            %(fault_check)s;
221            if(fault == NoFault)
222            {
223                %(code)s;
224            }
225            if(storeCond && fault == NoFault)
226            {
227                fault = xc->write((%(mem_acc_type)s%(mem_acc_size)s_t)Mem,
228                        EA, %(asi_val)s, 0);
229            }
230            if(fault == NoFault)
231            {
232                    //Write the resulting state to the execution context
233                    %(op_wb)s;
234            }
235
236            return fault;
237        }
238}};
239
240def template StoreInitiateAcc {{
241        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
242                Trace::InstRecord * traceData) const
243        {
244            Fault fault = NoFault;
245            bool storeCond = true;
246            Addr EA;
247            %(fp_enable_check)s;
248            %(op_decl)s;
249
250            %(op_rd)s;
251            %(ea_code)s;
252            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
253            %(fault_check)s;
254            if(fault == NoFault)
255            {
256                %(code)s;
257            }
258            if(storeCond && fault == NoFault)
259            {
260                fault = xc->write((%(mem_acc_type)s%(mem_acc_size)s_t)Mem,
261                        EA, %(asi_val)s, 0);
262            }
263            if(fault == NoFault)
264            {
265                    //Write the resulting state to the execution context
266                %(op_wb)s;
267            }
268            return fault;
269        }
270}};
271
272def template StoreCompleteAcc {{
273        Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
274                Trace::InstRecord * traceData) const
275        {
276            return NoFault;
277        }
278}};
279
280//This delcares the initiateAcc function in memory operations
281def template InitiateAccDeclare {{
282    Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
283}};
284
285//This declares the completeAcc function in memory operations
286def template CompleteAccDeclare {{
287    Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
288}};
289
290//Here are some code snippets which check for various fault conditions
291let {{
292    LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
293    StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
294
295    # The LSB can be zero, since it's really the MSB in doubles and quads
296    # and we're dealing with doubles
297    BlockAlignmentFaultCheck = '''
298        if(RD & 0xe)
299            fault = new IllegalInstruction;
300        else if(EA & 0x3f)
301            fault = new MemAddressNotAligned;
302    '''
303    TwinAlignmentFaultCheck = '''
304        if(RD & 0x1)
305            fault = new IllegalInstruction;
306        else if(EA & 0xf)
307            fault = new MemAddressNotAligned;
308    '''
309    # XXX Need to take care of pstate.hpriv as well. The lower ASIs
310    # are split into ones that are available in priv and hpriv, and
311    # those that are only available in hpriv
312    AlternateASIPrivFaultCheck = '''
313        if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
314                             !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
315                fault = new PrivilegedAction;
316        else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
317            fault = new PrivilegedAction;
318    '''
319
320}};
321
322//A simple function to generate the name of the macro op of a certain
323//instruction at a certain micropc
324let {{
325    def makeMicroName(name, microPc):
326            return name + "::" + name + "_" + str(microPc)
327}};
328
329//This function properly generates the execute functions for one of the
330//templates above. This is needed because in one case, ea computation,
331//fault checks and the actual code all occur in the same function,
332//and in the other they're distributed across two. Also note that for
333//execute functions, the name of the base class doesn't matter.
334let {{
335    def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
336        microParam["asi_val"] = asi;
337        iop = InstObjParams(name, Name, '', microParam, opt_flags)
338        (execf, initf, compf) = execute
339        return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
340
341
342    def doDualSplitExecute(code, postacc_code, eaRegCode, eaImmCode, execute,
343            faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
344        executeCode = ''
345        for (eaCode, name, Name) in (
346                (eaRegCode, nameReg, NameReg),
347                (eaImmCode, nameImm, NameImm)):
348            microParams = {"code": code, "postacc_code" : postacc_code,
349                "ea_code": eaCode, "fault_check": faultCode}
350            executeCode += doSplitExecute(execute, name, Name,
351                    asi, opt_flags, microParams)
352        return executeCode
353}};
354