util.isa revision 3954:d689b611d9dc
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37        /**
38         * Base class for memory operations.
39         */
40        class Mem : public SparcStaticInst
41        {
42          protected:
43
44            // Constructor
45            Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46                SparcStaticInst(mnem, _machInst, __opClass)
47            {
48            }
49
50            std::string generateDisassembly(Addr pc,
51                    const SymbolTable *symtab) const;
52        };
53
54        /**
55         * Class for memory operations which use an immediate offset.
56         */
57        class MemImm : public Mem
58        {
59          protected:
60
61            // Constructor
62            MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63                Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64            {}
65
66            std::string generateDisassembly(Addr pc,
67                    const SymbolTable *symtab) const;
68
69            const int32_t imm;
70        };
71}};
72
73output decoder {{
74        std::string Mem::generateDisassembly(Addr pc,
75                const SymbolTable *symtab) const
76        {
77            std::stringstream response;
78            bool load = flags[IsLoad];
79            bool store = flags[IsStore];
80
81            printMnemonic(response, mnemonic);
82            if(store)
83            {
84                printReg(response, _srcRegIdx[0]);
85                ccprintf(response, ", ");
86            }
87            ccprintf(response, "[");
88            if(_srcRegIdx[!store ? 0 : 1] != 0)
89            {
90                printSrcReg(response, !store ? 0 : 1);
91                ccprintf(response, " + ");
92            }
93            printSrcReg(response, !store ? 1 : 2);
94            ccprintf(response, "]");
95            if(load)
96            {
97                ccprintf(response, ", ");
98                printReg(response, _destRegIdx[0]);
99            }
100
101            return response.str();
102        }
103
104        std::string MemImm::generateDisassembly(Addr pc,
105                const SymbolTable *symtab) const
106        {
107            std::stringstream response;
108            bool load = flags[IsLoad];
109            bool save = flags[IsStore];
110
111            printMnemonic(response, mnemonic);
112            if(save)
113            {
114                printReg(response, _srcRegIdx[0]);
115                ccprintf(response, ", ");
116            }
117            ccprintf(response, "[");
118            if(_srcRegIdx[!save ? 0 : 1] != 0)
119            {
120                printReg(response, _srcRegIdx[!save ? 0 : 1]);
121                ccprintf(response, " + ");
122            }
123            if(imm >= 0)
124                ccprintf(response, "0x%x]", imm);
125            else
126                ccprintf(response, "-0x%x]", -imm);
127            if(load)
128            {
129                ccprintf(response, ", ");
130                printReg(response, _destRegIdx[0]);
131            }
132
133            return response.str();
134        }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140                Trace::InstRecord *traceData) const
141        {
142            Fault fault = NoFault;
143            Addr EA;
144            %(op_decl)s;
145            %(op_rd)s;
146            %(ea_code)s;
147            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
148            %(fault_check)s;
149            if(fault == NoFault)
150            {
151                fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
152            }
153            if(fault == NoFault)
154            {
155                %(code)s;
156            }
157            if(fault == NoFault)
158            {
159                    //Write the resulting state to the execution context
160                    %(op_wb)s;
161            }
162
163            return fault;
164        }
165}};
166
167def template LoadInitiateAcc {{
168        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
169                Trace::InstRecord * traceData) const
170        {
171            Fault fault = NoFault;
172            Addr EA;
173            %(op_decl)s;
174            %(op_rd)s;
175            %(ea_code)s;
176            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
177            %(fault_check)s;
178            if(fault == NoFault)
179            {
180                fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
181            }
182            return fault;
183        }
184}};
185
186def template LoadCompleteAcc {{
187        Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
188                Trace::InstRecord * traceData) const
189        {
190            Fault fault = NoFault;
191            %(op_decl)s;
192            %(op_rd)s;
193            Mem = pkt->get<typeof(Mem)>();
194            %(code)s;
195            if(fault == NoFault)
196            {
197                %(op_wb)s;
198            }
199            return fault;
200        }
201}};
202
203//This template provides the execute functions for a store
204def template StoreExecute {{
205        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
206                Trace::InstRecord *traceData) const
207        {
208            Fault fault = NoFault;
209            //This is to support the conditional store in cas instructions.
210            //It should be optomized out in all the others
211            bool storeCond = true;
212            Addr EA;
213            %(op_decl)s;
214            %(op_rd)s;
215            %(ea_code)s;
216            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
217            %(fault_check)s;
218            if(fault == NoFault)
219            {
220                %(code)s;
221            }
222            if(storeCond && fault == NoFault)
223            {
224                fault = xc->write((uint%(mem_acc_size)s_t)Mem,
225                        EA, %(asi_val)s, 0);
226            }
227            if(fault == NoFault)
228            {
229                    //Write the resulting state to the execution context
230                    %(op_wb)s;
231            }
232
233            return fault;
234        }
235}};
236
237def template StoreInitiateAcc {{
238        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
239                Trace::InstRecord * traceData) const
240        {
241            Fault fault = NoFault;
242            bool storeCond = true;
243            Addr EA;
244            %(op_decl)s;
245            %(op_rd)s;
246            %(ea_code)s;
247            DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
248            %(fault_check)s;
249            if(fault == NoFault)
250            {
251                %(code)s;
252            }
253            if(storeCond && fault == NoFault)
254            {
255                fault = xc->write((uint%(mem_acc_size)s_t)Mem,
256                        EA, %(asi_val)s, 0);
257            }
258            if(fault == NoFault)
259            {
260                    //Write the resulting state to the execution context
261                %(op_wb)s;
262            }
263            return fault;
264        }
265}};
266
267def template StoreCompleteAcc {{
268        Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
269                Trace::InstRecord * traceData) const
270        {
271            return NoFault;
272        }
273}};
274
275//This delcares the initiateAcc function in memory operations
276def template InitiateAccDeclare {{
277    Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
278}};
279
280//This declares the completeAcc function in memory operations
281def template CompleteAccDeclare {{
282    Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
283}};
284
285//Here are some code snippets which check for various fault conditions
286let {{
287    LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
288    StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
289    # The LSB can be zero, since it's really the MSB in doubles and quads
290    # and we're dealing with doubles
291    BlockAlignmentFaultCheck = '''
292        if(RD & 0xe)
293            fault = new IllegalInstruction;
294        else if(EA & 0x3f)
295            fault = new MemAddressNotAligned;
296    '''
297    # XXX Need to take care of pstate.hpriv as well. The lower ASIs
298    # are split into ones that are available in priv and hpriv, and
299    # those that are only available in hpriv
300    AlternateASIPrivFaultCheck = '''
301        if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
302                             !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
303                fault = new PrivilegedAction;
304        else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
305            fault = new PrivilegedAction;
306    '''
307
308}};
309
310//A simple function to generate the name of the macro op of a certain
311//instruction at a certain micropc
312let {{
313    def makeMicroName(name, microPc):
314            return name + "::" + name + "_" + str(microPc)
315}};
316
317//This function properly generates the execute functions for one of the
318//templates above. This is needed because in one case, ea computation,
319//fault checks and the actual code all occur in the same function,
320//and in the other they're distributed across two. Also note that for
321//execute functions, the name of the base class doesn't matter.
322let {{
323    def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
324        microParam["asi_val"] = asi;
325        iop = InstObjParams(name, Name, '', microParam, opt_flags)
326        (execf, initf, compf) = execute
327        return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
328
329
330    def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
331            faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
332        executeCode = ''
333        for (eaCode, name, Name) in (
334                (eaRegCode, nameReg, NameReg),
335                (eaImmCode, nameImm, NameImm)):
336            microParams = {"code": code, "ea_code": eaCode,
337                "fault_check": faultCode}
338            executeCode += doSplitExecute(execute, name, Name,
339                    asi, opt_flags, microParams)
340        return executeCode
341}};
342