util.isa revision 3627:1c91588389c5
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37        /**
38         * Base class for memory operations.
39         */
40        class Mem : public SparcStaticInst
41        {
42          protected:
43
44            // Constructor
45            Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46                SparcStaticInst(mnem, _machInst, __opClass)
47            {
48            }
49
50            std::string generateDisassembly(Addr pc,
51                    const SymbolTable *symtab) const;
52        };
53
54        /**
55         * Class for memory operations which use an immediate offset.
56         */
57        class MemImm : public Mem
58        {
59          protected:
60
61            // Constructor
62            MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63                Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64            {}
65
66            std::string generateDisassembly(Addr pc,
67                    const SymbolTable *symtab) const;
68
69            const int32_t imm;
70        };
71}};
72
73output decoder {{
74        std::string Mem::generateDisassembly(Addr pc,
75                const SymbolTable *symtab) const
76        {
77            std::stringstream response;
78            bool load = flags[IsLoad];
79            bool store = flags[IsStore];
80
81            printMnemonic(response, mnemonic);
82            if(store)
83            {
84                printReg(response, _srcRegIdx[0]);
85                ccprintf(response, ", ");
86            }
87            ccprintf(response, "[");
88            if(_srcRegIdx[!store ? 0 : 1] != 0)
89            {
90                printSrcReg(response, !store ? 0 : 1);
91                ccprintf(response, " + ");
92            }
93            printSrcReg(response, !store ? 1 : 2);
94            ccprintf(response, "]");
95            if(load)
96            {
97                ccprintf(response, ", ");
98                printReg(response, _destRegIdx[0]);
99            }
100
101            return response.str();
102        }
103
104        std::string MemImm::generateDisassembly(Addr pc,
105                const SymbolTable *symtab) const
106        {
107            std::stringstream response;
108            bool load = flags[IsLoad];
109            bool save = flags[IsStore];
110
111            printMnemonic(response, mnemonic);
112            if(save)
113            {
114                printReg(response, _srcRegIdx[0]);
115                ccprintf(response, ", ");
116            }
117            ccprintf(response, "[");
118            if(_srcRegIdx[!save ? 0 : 1] != 0)
119            {
120                printReg(response, _srcRegIdx[!save ? 0 : 1]);
121                ccprintf(response, " + ");
122            }
123            if(imm >= 0)
124                ccprintf(response, "0x%x]", imm);
125            else
126                ccprintf(response, "-0x%x]", -imm);
127            if(load)
128            {
129                ccprintf(response, ", ");
130                printReg(response, _destRegIdx[0]);
131            }
132
133            return response.str();
134        }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140                Trace::InstRecord *traceData) const
141        {
142            Fault fault = NoFault;
143            Addr EA;
144            %(op_decl)s;
145            %(op_rd)s;
146            %(ea_code)s;
147            DPRINTF(Sparc, "The address is 0x%x\n", EA);
148            %(fault_check)s;
149            if(fault == NoFault)
150            {
151                fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
152            }
153            if(fault == NoFault)
154            {
155                %(code)s;
156            }
157            if(fault == NoFault)
158            {
159                    //Write the resulting state to the execution context
160                    %(op_wb)s;
161            }
162
163            return fault;
164        }
165
166        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
167                Trace::InstRecord * traceData) const
168        {
169            Fault fault = NoFault;
170            Addr EA;
171            uint%(mem_acc_size)s_t Mem;
172            %(ea_decl)s;
173            %(ea_rd)s;
174            %(ea_code)s;
175            %(fault_check)s;
176            if(fault == NoFault)
177            {
178                fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
179            }
180            return fault;
181        }
182
183        Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
184                Trace::InstRecord * traceData) const
185        {
186            Fault fault = NoFault;
187            %(code_decl)s;
188            %(code_rd)s;
189            Mem = pkt->get<typeof(Mem)>();
190            %(code)s;
191            if(fault == NoFault)
192            {
193                %(code_wb)s;
194            }
195            return fault;
196        }
197}};
198
199//This template provides the execute functions for a store
200def template StoreExecute {{
201        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
202                Trace::InstRecord *traceData) const
203        {
204            Fault fault = NoFault;
205            uint64_t write_result = 0;
206            //This is to support the conditional store in cas instructions.
207            //It should be optomized out in all the others
208            bool storeCond = true;
209            Addr EA;
210            %(op_decl)s;
211            %(op_rd)s;
212            %(ea_code)s;
213            DPRINTF(Sparc, "The address is 0x%x\n", EA);
214            %(fault_check)s;
215            if(fault == NoFault)
216            {
217                %(code)s;
218            }
219            if(storeCond && fault == NoFault)
220            {
221                fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
222            }
223            if(fault == NoFault)
224            {
225                    //Write the resulting state to the execution context
226                    %(op_wb)s;
227            }
228
229            return fault;
230        }
231
232        Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
233                Trace::InstRecord * traceData) const
234        {
235            Fault fault = NoFault;
236            uint64_t write_result = 0;
237            bool storeCond = true;
238            Addr EA;
239            %(op_decl)s;
240            %(op_rd)s;
241            %(ea_code)s;
242            DPRINTF(Sparc, "The address is 0x%x\n", EA);
243            %(fault_check)s;
244            if(fault == NoFault)
245            {
246                %(code)s;
247            }
248            if(storeCond && fault == NoFault)
249            {
250                fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
251            }
252            if(fault == NoFault)
253            {
254                    //Write the resulting state to the execution context
255                %(op_wb)s;
256            }
257            return fault;
258        }
259
260        Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
261                Trace::InstRecord * traceData) const
262        {
263            return NoFault;
264        }
265}};
266
267//This delcares the initiateAcc function in memory operations
268def template InitiateAccDeclare {{
269    Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
270}};
271
272//This declares the completeAcc function in memory operations
273def template CompleteAccDeclare {{
274    Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
275}};
276
277//Here are some code snippets which check for various fault conditions
278let {{
279    # The LSB can be zero, since it's really the MSB in doubles and quads
280    # and we're dealing with doubles
281    BlockAlignmentFaultCheck = '''
282        if(RD & 0xe)
283            fault = new IllegalInstruction;
284        else if(EA & 0x3f)
285            fault = new MemAddressNotAligned;
286    '''
287    # XXX Need to take care of pstate.hpriv as well. The lower ASIs
288    # are split into ones that are available in priv and hpriv, and
289    # those that are only available in hpriv
290    AlternateASIPrivFaultCheck = '''
291        if(bits(Pstate,2,2) == 0 && (EXT_ASI & 0x80) == 0)
292            fault = new PrivilegedAction;
293        else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
294            fault = new PrivilegedAction;
295    '''
296
297}};
298
299//A simple function to generate the name of the macro op of a certain
300//instruction at a certain micropc
301let {{
302    def makeMicroName(name, microPc):
303            return name + "::" + name + "_" + str(microPc)
304}};
305
306//This function properly generates the execute functions for one of the
307//templates above. This is needed because in one case, ea computation,
308//fault checks and the actual code all occur in the same function,
309//and in the other they're distributed across two. Also note that for
310//execute functions, the name of the base class doesn't matter.
311let {{
312    def doSplitExecute(code, execute, name, Name, opt_flags, microParam):
313        codeParam = microParam.copy()
314        codeParam["ea_code"] = ''
315        codeIop = InstObjParams(name, Name, '', code, opt_flags, codeParam)
316        eaIop = InstObjParams(name, Name, '', microParam["ea_code"],
317                opt_flags, microParam)
318        iop = InstObjParams(name, Name, '', code, opt_flags, microParam)
319        (iop.ea_decl,
320         iop.ea_rd,
321         iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
322        (iop.code_decl,
323         iop.code_rd,
324         iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
325        return execute.subst(iop)
326
327
328    def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
329            faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
330        executeCode = ''
331        for (eaCode, name, Name) in (
332                (eaRegCode, nameReg, NameReg),
333                (eaImmCode, nameImm, NameImm)):
334            microParams = {"ea_code" : eaCode, "fault_check": faultCode}
335            executeCode += doSplitExecute(code, execute, name, Name,
336                    opt_flags, microParams)
337        return executeCode
338}};
339